Ground Water Resources Harmon and parts of Greer and Jackson Counties, Oklahoma

Bulletin No. 29 Published by

Oklahoma Water Resources Board

State of Oklahoma

HENRY L. BELLMON, GOVERNOR

Oklahoma Water Resources Board

Members

Dr. Lloyd E. Church, Wilburton, Chairman

Glade R. Kirkpatrick, Tulsa, Vice Chairman

Geo. R. Benz, Bartlesville, Secretary L. L. Males, Cheyenne Milton C. Craig, Chandler Robert C. Lang, Ardmore

Guy H. James, Oklahoma City

Frank Raab

Director

The report describes the geology of Harmon County and adjacent parts of Greer and Jackson Counties; it describes and interprets the geologic and hydrologic features that determine the source, movement, quantity and quality of ground water; and it assembles basic ground-water data that will be useful in planning and developing the ground-water resources of the area.

Oklahoma Water Resources Board

GROUND-WATER RESOURCES OF HARMON COUNTY AND ADJACENT PARTS OF GREER AND JACKSON COUNTIES, OKLAHOMA

By

C. E. Steele and J. E. Barclay

U.S. Geological Survey

Prepared by

The United States Geological Survey in cooperation with The Oklahoma Water Resources Board Bulletin 29 Oklahoma City, Oklahoma 1965

CONTENTS

	Page
Abstract	, 1
Introduction	, 3
Purpose and scope of this investigation	, 3
Location and extent of the area	. 3
Previous work in the area	, 5
Methods of this investigation	. 5
Well-numbering system	, 7
Acknowledgments	. 7
Geography	, 9
Topography and drainage	9
Climate	11
Agriculture	. 13
Industries	13
Population	1 3
General geology	. 14
Structural summary	, 14
Permian System	. 14
Hennessey Shale	. 16
El Reno Group	16
Duncan Sandstone and Flowerpot Shale	16
Blaine Formation	17
Dog Creek Shale	19
Whitehorse Group	21
Quaternary System	22
Terrace deposits	22
Alluvium	23
water resources	23
Surface water	23
Ground water	23
Water-table and artesian conditions	24
Movement	26
Water-level fluctuations and effects of pumping	29
Discharge	33
	40
Domestic supplies	40
Stock supplies	40
Public supplies	40
Violda of volla	42
There of Weils	44
Appuel mechanics	44
Chemical quality of the vector	47
Suitability for drinking	52
Suitability for livesteck	54
Suitability for irrigation	56
Conclusions	50 60
References	62
Appendix A. Measured stratigraphic sections	65
Appendix B. Records of wells and test holes	70
ADDendix C: Logs of wells and test holes	80
TI	00

GROUND-WATER RESOURCES OF HARMON COUNTY AND ADJACENT PARTS

OF GREER AND JACKSON COUNTIES, OKLAHOMA

By C. E. Steele and J. E. Barclay

ABSTRACT

The area described in this report is in the southwest corner of Oklahoma and in the drainage basin of Red River. It includes Harmon County and adjacent parts of Greer and Jackson Counties--an area of about 1,170 square miles. The principal aquifer is in the Dog Creek Shale and the Blaine Formation of Permian age, but in parts of the area other formations of Permian age and the unconsolidated deposits of Quaternary age also are sources of ground water.

The Dog Creek Shale and Blaine Formation consist of interbedded shale, gypsum, anhydrite, dolomite, and limestone, which in places are characterized by solution channels and zones of secondary porosity. Test drilling shows that the thickness of the rocks capable or potentially capable of transmitting water in suitable quantities for irrigation averages about 80 feet. The yield of an individual well is largely dependent on the number, size, and interconnection of the water-filled solution channels which are best developed within the drainage basins of the major creeks. Virtually all the water used for irrigation in the area is obtained from wells tapping solution channels.

Water levels in the aquifer respond rapidly to the infiltration of precipitation, the principal source of recharge, and to the effects of pumping, the principal form of discharge. Water levels declined significantly during 1954 and 1956, owing to subnormal precipitation and heavy irrigation pumpage. They rose several feet during 1955 and 1957 when precipitation was above normal. During the 5-year period 1958-1962, when precipitation averaged near normal, water levels declined more than 3 feet. The decline was even greater during the drought year of 1963.

Yields of wells in the Dog Creek Shale and Blaine Formation range from less than 10 gpm (gallons per minute) to more than 2,000 gpm. Sufficient water for stock needs can be obtained at most places.

The usual methods of conducting aquifer tests were not used in this investigation. Because the physical and hydrologic properties of the principal aquifer differ so widely from those that were assumed in developing the formulas for determining coefficients of transmissibility and storage, the

conventional method of making aquifer tests was not considered applicable. However, by utilizing data on quantities of water pumped and measurements of water-level decline due to pumping in selected parts of the irrigation areas, reasonable estimates of the coefficients were calculated. The coefficient of transmissibility thus determined ranged from 1.2×10^5 to 4.6×10^5 gpd/ft (gallons per day per foot) and averaged 2.6×10^5 gpd/ft; the coefficient of storage ranged from 4×10^{-4} to 3×10^{-2} and averaged 1.6 to 10^{-2} . The coefficient of storage of the aquifer outside the irrigation areas was assumed to be about one-third of that inside the irrigation areas, or about 5×10^{-3} , and the average coefficient of storage for the parts of the aquifer affected by pumping for irrigation is assumed to be about 10^{-2} .

In most places the water from the Dog Creek Shale and the Blaine Formation is so highly mineralized that it is not suitable for drinking or cooking; however, the municipal supply of Duke and Eldorado is obtained from wells tapping these formations. Much of the water for rural domestic supplies is hauled from the larger towns whose municipal-supply wells tap terrace deposits either inside or outside the report area. Although the water is highly mineralized, it is generally used for livestock and in most of the area for irrigation.

Recharge to the Dog Creek Shale and Blaine Formation in the 400,000 acres affected by pumping for irrigation is about 7 percent of the rainfall, or about 56,000 acre-feet per year. The "safe perennial yield" of the main aquifer is tentatively estimated to be about 50,000 acre-feet per year, and the amoubt of water in storage is estimated to be about 340,000 acre-feet. Water in storage was about 12,500 acre-feet less in 1962 than 5 years earlier. If a third of the water in storage can be recovered by pumping, withdrawals at the estimated rate of the "safe perennial yield" could be continued for only 2 years if no recharge occurred. Because there has been continued development of the aquifer since 1955, it is concluded that the aquifer is overdeveloped and that a drought of 2 or 3 years' duration would result in the curtailment of pumping in the area.

INTRODUCTION

Prior to 1942 the bedrock in Greer, Harmon, and Jackson Counties was believed to be incapable of yielding more than enough water for domestic and stock needs. Then, in 1942, a successful irrigation well was drilled just west of the town of Duke, and by 1955, 327 irrigation wells were known to be in use within the area described by this report. Most of these wells obtain water from solution cavities in the gypsum, dolomite, or limestone beds of the Permian bedrock.

In 1949 the Oklahoma State Legislature, recognizing the value of the ground-water resources of the State, passed the Oklahoma Ground Water Law (title 82, sec. 1001-1019 incl., Oklahoma Statutes, 1951). The Oklahoma Planning and Resources Board was assigned responsibility for making hydrographic surveys to establish the facts necessary for the adjudication of water rights. The Board was authorized to cooperate with Federal agencies in making such surveys and to accept and use the results of the work of agencies of the Federal Government. In 1957 the Oklahoma State Legislature created the Oklahoma Water Resources Board and transferred to it the functions and responsibilities previously assigned to the Water Resources Division of the Oklahoma Planning and Resources Board.

Purpose and Scope of this Investigation

Owing to the rapidly increasing use of ground water for irrigation in the area described in this report, an appraisal of the ground-water supply was needed. An investigation to determine the occurrence, quantity, and quality of the water in the Permian bedrock was made, and the results of that investigation are presented in this report.

The investigation was begun in July 1953 by the U.S. Geological Survey in cooperation with the Oklahoma Planning and Resources Board. Project work was under the general administration of A. N. Sayre and P. E. Lamoreaux, former chiefs of the Ground Water Branch, U.S. Geological Survey, and O. M. Hackett, present chief. Cooperating agencies were the Division of Water Resources, Oklahoma Planning and Resources Board (Ira C. Husky, director); and the Oklahoma Water Resources Board (Francis J. Borelli, former director, and Frank Raab, director). Stuart L. Schoff, district geologist, U.S. Geological Survey, directly supervised the field work and A. R. Leonard the completion of the report.

Location and Extent of the Area

The area investigated covers about 1,170 square miles in the extreme southwestern part of Oklahoma (fig. 1). It is bounded on the north by the north line of T. 6 N., Rs. 26 and 27 W., and by Elm Fork of North Fork Red River; on the east by the east line of Tps. 4 and 5 N., R. 22 W., and Salt

Fork Red River; on the south by the Red River (the southern boundary of Oklahoma); and on the west by the State of Texas. The area includes all of Harmon County and adjacent parts of Greer and Jackson Counties.

Previous Work in the Area

Gould (1905) in his report on the geology and water resources of Oklahoma discussed the ground water and stratigraphy in the area of the present study. His report includes a geologic map, three measured sections of the Blaine Formation (then known as the Greer Formation), and detailed descriptions of the gypsum and limestone or dolomite beds. A table of well records includes data on 10 wells in the area and comments on the chemical quality of the water.

Reports by Clifton (1928, 1930) were concerned chiefly with the possibility of oil and gas production. He discussed briefly the drainage, topography, geologic history, and stratigraphy of the area. One of the reports also contains the logs of two wells in this area and a geologic map of Greer, Harmon, Jackson, and Tillman Counties.

Sears (1951) discussed the topography, drainage, and stratigraphy of Jackson County and most of Harmon and Greer Counties. His report includes three structure-contour maps and two figures showing subsurface correlation and structure, as determined by means of electric logs.

A report by Schoff (1948) contains brief discussions of the stratigraphy and hydrology of a small area near the town of Duke. Information on eight irrigation wells in Jackson and Greer Counties is given in a table, and the wells are discussed in more detail in the text. A chemical analysis of the water from one of the wells is included.

Methods of this Investigation

Local farmers and well drillers were interviewed and well logs were collected from them during the course of the field work. A systematic well inventory was begun in August 1953 and completed in January 1954 by personnel of the Oklahoma Planning and Resources Board and the U.S. Geological Survey. Special effort was made to obtain pertinent data on irrigation wells and other wells of large capacity. To obtain an estimate of the overall use of ground water in the area, a complete count of wells was made in two townships that were representative of the entire area--T. 5 N., R. 22 W., and T. 2 N., R. 24 W. Altogether, 776 wells and test holes were inventoried during the investigation; they are listed in appendix B.

Geologic mapping was begun in September 1953 and completed in early December 1953. Mapping was done with the aid of aerial photographs, and the contacts were drawn on township plats on a scale of one inch per mile. The base map was prepared from county highway maps, and the drainage was

superimposed from aerial photographs. The Permian bedrock, terrace deposits, and alluvium were mapped as separate geologic units, but no attempt was made to subdivide the bedrock into all the recognized stratigraphic units. A distinctive gypsum bed, the Haystack Gypsum Member of the Blaine Formation, was selected as a key bed and its base was mapped to aid in illustrating the areal distribution of the Blaine and to help determine the regional structure of this formation and the overlying Dog Creek Shale. The stratigraphic sections given in appendix A also were measured in late 1953.

Several persons, especially irrigators and drillers, in the area of this investigation reported visible movement of water in wells. During the investigation there were several opportunities to both see and hear small streams of water flowing into wells. These observations suggested the possibility of rapid movement of ground water in areas where the larger solution cavities are concentrated. However, attempts to determine the rate of flow by use of a Pygmy current meter and by the use of fluorescein dye did not indicate rapid movement of ground water within the zone of saturation.

Bimonthly measurements of the water level in about 145 wells were begun in February 1954 and ended in June 1955; 44 of these wells were selected as observation wells in which measurements of water level were made every month. A field party of the Oklahoma Planning and Resources Board determined surface altitudes of test holes, wells, and selected points on the key bed by trigonometric leveling during the course of the investigation.

An inventory of pumpage for 1954 was begun in April 1954. All irrigators were interviewed in the spring and early summer of 1954, at the beginning of the irrigation season, and again in the fall of 1954 and early winter of 1955, after the irrigation season. During the pumpage inventory, records of several new irrigation wells were obtained; by the end of March 1955, a total of 327 irrigation wells had been inventoried.

Of the 127 test holes for which information was obtained, 8 were drilled as part of this investigation, 2 were drilled by the towns of Gould and Hollis, 115 were drilled by private landowners, and 2 were started by private owners, then deepened for this investigation.

Test-holes 2N-26W-3dbc1 and 4N-25W-31cdb1 were drilled by private owners in search of irrigation water and were deepened for this investigation to determine the depth to the bottom of the Blaine Formation, which is considered to be the lower limit of the strata from which large amounts of usable ground water can be obtained. Well 2N-26W-3dbc1 later was converted to an irrigation well. Test-holes 4N-24W-14bbb2, 4N-24W-17dad1, 4N-25W-23aaa1, 4N-25W-24cbc2, 4N-25W-24cbc3, 4N-25W-29aaa3, 4N-26W-14cdc2, and 4N-27W-13cdd2 were drilled to determine the depth to water not only in the terrace deposits and Whitehorse Group but also in the underlying Dog Creek Shale and Blaine Formation, but three of them were not suitable for that purpose. Each of the test holes first was drilled through the terrace deposits and Whitehorse Group and the and the depth to water measured. Then a casing was set to seal out the water in the upper rocks, the hole was deepened into the Dog Creek Shale or Blaine Formation, and if water was encountered, the depth to water in the lower strata was measured. The success of each test hole depended on the satisfactory setting and sealing of the casing to exclude water from the overlying rocks and on encountering water in the Dog Creek Shale or Blaine Formation.

A portable single-electrode logger was used to make an electric log of nine wells, but no beds could be correlated reliably from one to another of the wells.

Chemical analyses of 43 samples of ground water and 6 samples from springs were made in the U.S. Geological Survey laboratory at Oklahoma City. This laboratory is operated on a cooperative basis by the Geological Survey and the Oklahoma Water Resources Board. The analyses are given in table 7.

Well-Numbering System

The numbers used for wells and test holes in this report are based on the land-survey system of the Bureau of Land Management. In the location system the first digit of a well number indicates the township, the second the range, and the third the section in which the well is situated. The first lowercase letter denotes the quarter section (160-acre tract), the second the quarter-quarter section (40-acre tract), and the third the quarter-quarter-quarter section (10-acre tract). Within the tract wells are numbered serially, as indicated by the final digit of the number. Thus well 2N-23W-12bbd1 is the first well for which records were obtained in the $SE\frac{1}{4}NW\frac{1}{4}NW\frac{1}{4}$ sec. 12, T. 2 N., R. 23 W. (fig. 2).

Some wells have been designated by only one or two lowercase letters. If only one lowercase letter is used, the well location is known only to the nearest quarter section. If two letters are used, the location is known to the quarter-quarter section.

Acknowledgments

The writers express appreciation to the many well owners who supplied information and permitted use of their wells for observation purposes. Walter Bell, Oscar Bryant, Ed Masters, Wilcy Moore, F. E. Motley, and Brian Putnam were especially helpful in allowing use of their wells for the experiments with fluorescein dye.

Most of the logs of wells and test holes collected for this report were made available through the cooperation of drillers, especially Jack Jenkins of Hollis and Ivan Owen of Duke.

The chemical analyses of water used in this report were made under the supervision of T. B. Dover, district chemist, and the streamflow measurements

under the supervision of S. K. Jackson, district engineer, both of the U.S. Geological Survey. The illustrations were drafted by Mrs. Grace Drennan, Oklahoma Water Resources Board. The periodic measurements of ground-water levels and much of the well inventory were by Dannie E. Spiser, Oklahoma Water Resources Board.

Figure 2 — Diagram showing well-numbering system used in this report.

GEOGRAPHY

Topography and Drainage

The maximum regional relief, as determined from altitudes established by a leveling party during the course of this investigation, is about 700 feet. The highest point recorded, in $NE\frac{1}{4}NE\frac{1}{4}SE\frac{1}{4}$ sec. 16, T. 5 N., R. 26 W., has an altitude of 1,954.8 feet; the lowest point, along Gypsum Creek in the $SE\frac{1}{4}NW\frac{1}{4}$ sec. 12, T. 1 S., R. 22 W., has an altitude of 1,294.8 feet. The lowest point in the area, at the mouth of Salt Fork, has an altitude of about 1,230 feet. Although locally the relief is as much as 200 feet, it generally is much less.

The most widespread topographic form in the area is that which has been called "Gypsum Hills" by some authors (Gould, 1905; Clifton, 1928; and Sears, 1951). Gould applied the term to those areas having marked relief due to the "unequal erosion consequent upon the relatively hard ledges of gypsum which outcrop in this part of the territory and to the hard sandstone and dolomite which lie above the gypsum."

In Jackson and Harmon Counties "Gypsum Hills" topography is characterized by a series of benches supported by resistant beds. The edges of the benches slope sharply, and vegetation is sparse or absent on the slopes. Most of the escarpments are about 5 to 15 feet high and are spaced widely. Local relief is not great at most places, but along the escarpment that runs approximately north and south through R. 22 W., at points on the escarpment along the north side of the Red River, along Gypsum Creek, and along Salt Fork and Elm Fork, relief may be as much as 150 to 200 feet.

The escarpment in R. 22 W. roughly parallels the course of Salt Fork at a distance ranging from 1 to 10 miles from the stream. It becomes progressively closer to Salt Fork in an upstream direction until, along the eastwardtrending part of the stream in Greer and Harmon Counties, it rises abruptly from the alluvium. In Greer County and eastern Harmon County, the resistant gypsum and limestone beds form sheer cliffs and steeply rolling hills that bound the valley on both sides.

In Rs. 25 and 26 W., the gypsum beds form sheer cliffs and steeply rolling hills along the south edge of Elm Fork valley. To the east the exposures of gypsum trend southward, away from the stream, and are partly obscured by terrace deposits.

In a few areas, such as along the drainage divide between Lebos Creek and Turkey Creek in Harmon County, drainage is not well developed and the land is flat to gently rolling. Parts of the areas mapped as terrace deposits, such as those in Rs. 21 and 22 W., along the west side of Salt Fork, and and those in the central part of T. 5 N., R. 23 W., are nearly flat. Sand dunes that range in height from about 5 to 30 feet form the dominant

topography in the areas mapped as terrace deposits along the north side of the Red River, the south side of Elm Fork, and in T. 4 N., Rs. 24, 25, and 26 W.

Most of the surface is drained by nine streams, each of which has an integrated dendritic drainage pattern. These are the Red River and its tributaries: Lebos Creek, Gypsum Creek, Salt Fork, Turkey Creek, Elm Fork, Buck Creek, Fish Creek, and Mulberry Creek.

The Red River is an intermittent stream that is formed by the junction of Prairie Dog Town Fork Red River and Buck Creek about 2 miles east of the southwest corner of the State. It forms the south boundary of the area of this investigation and receives the drainage of all the area except that part along the north boundary, which is drained by Elm Fork of North Fork Red River.

Lebos Creek heads in the Texas Panhandle and flows southeastward across Harmon and Jackson Counties before joining the Red River in sec. 2, T. 2 S., R. 23 W. It is a perennial stream through the lower half of its course.

Gypsum Creek is an intermittent stream that originates in eastern Harmon County, flows southeastward through Jackson County, and joins the Red River in sec. 28, T. 1 S., R. 21 W.

Salt Fork is an intermittent stream. It heads in the Texas Panhandle and flows eastward across Harmon County and about 12 miles into Greer County before turning abruptly to flow southward through G_1 and Jackson Counties. It joins the Red River in sec. 23, T. 1 S., R. 2⁻¹

Turkey Creek is an intermittent stream that has its headwaters in the area of terrace deposits in T. 4 N., Rs. 24 and 25 W. It flows east-southeastward and joins Salt Fork in sec. 22, T. 1 N., R. 21 W.

The Elm Fork is a perennial stream with headwaters in the Texas Panhandle. It flows across the southwestern part of Beckham County, the northern part of Harmon County, eastward across Greer County, and empties into North Fork Red River at a point outside the report area.

Buck Creek is an intermittent stream that heads in the Texas Panhandle, flows across the extreme southwest corner of Oklahoma, and joins Prairie Dog Town Fork in sec. 7, T. 1 N., R. 26 W., to form the Red River. Only the lower 2 or 3 miles of the stream is in Oklahoma.

Fish Creek originates within the area of this investigation, in T. 5 N.. R. 25 W., and flows generally eastward for about 10 miles before emptying _ to Salt Fork in sec. 35, T. 5 N., R. 24 W. In the lower 2 miles of its course it has a perennial flow maintained by springs issuing from the Dog Creek Shale.

Mulberry Creek is only 5 miles long. It originates within the area of this investigation in T. 5 N., R. 23 W., and flows southward to join Salt Fork in sec. 16, T. 4 N., R. 23 W. It is a perennial stream in the lower part of its course, the flow being maintained by springs from terrace deposits.

Climate

The area has a dry subhumid climate (Thornthwaite, 1941, pl. 3). The normal annual temperature, as reported by the U.S. Weather Bureau (table 1) is 63.1°F at Hollis, and the average length of the growing season is 219 days. The mean annual precipitation is 22.05 inches at Eldorado, 22.69 inches at Hollis, and 22.99 inches at Mangum (tables 2 and 3).

Table	1 <u>Norma1</u>	temperat	ures,	in de	egrees Fa	hrenheit,	at	Hollis
	(From	records	of th	e U.S.	Weather	Bureau)		

Month	Temperature (°F)	Month	Temperature (°F)
January	40.2	July	85.5
February	44.4	August	84.9
March	51.7	September	76.3
April	62.4	October	64.9
May	71.3	November	50.4
June	81.3	December	42.4
Annua1	63.1		

Table 2.--Summary of precipitation at Eldorado, Hollis, and Mangum (From records of U.S. Weather Bureau)

		Precipitatio	Precipitation, in inches			
Year	Eldorado	Hollis	Mangum	Average of three		
10.54		1		stations		
1954	12.84	14.97	14.87	14.24		
1955	31.80	25.18	30.29	29.10		
1956	. 14.09	14.35	17.66	15.37		
1957	36.05	32.10	30.95	33.03		
1958	20.20	22.50	21.03	21.24		
1959	24.82	28.43	26.61	26.62		
1960	31.24	31.51	34.44	32.40		
1961	22.42	16.79	24.39	21.21		
1962	23.00	20.62	25.20	22.94		
1963	14.54	14.70	14.25	14.50		
10-year aver	age 23.10	22.12	23.96	23.07		
Long-term me	an 22.05	22.69	22.99	22.58		

	Eldorado (1903-18)			Ho1	Hollis (1922-63)			Mangum (1892-1963)		
Month	Maximum	(1942) Minimum	-63) Mean <u>-</u>	Maximum	Minimum	Mean	Maximum	Minimum	Mean	
January	3.66	0.00		4.14	0.00	0.83	4.50	0.00	1.03	
February	4.50	.00		2.38	.00	.90	4.61	.00	.95	
March	5.60	.00		5.85	Т	.96	6.25	.00	1.15	
Apri1	8.51	Т		8.86	т	2.53	7.35	Т	2.41	
May	9.79	.01		12.70	.04	4.96	15.39	.91	4.74	
June	8.82	Т		9.65	.00	2.90	11.54	.00	2.69	
July	7.70	Т		8.14	.10	1.88	6.68	.00	1.61	
August	10.44	.02		6.26	Т	1.84	10.33	Т	2.23	
September	5.77	.00		8.61	.00	2.28	8.75	.00	2.24	
October	11.51	.00			т	1.91	15.75	.00	2.06	
November	5.09	.00		2.97	.00	.76	6.03	.00	.90	
December	5.03	.00		6.75	T	.94	5.00	.00	.98	
Annua1	36.58	11.57	22.05 ^{a/}	44.65	13.47	22.69	45.13	10.86	22.99	

Table 3. -- Summary of monthly precipitation, in inches, at Eldorado, Hollis, and Mangum (From records of U.S. Weather Bureau)

T Trace

 $\underline{a'}$ Average for 30 years of record

Ч

Agriculture

The economy of the report area is based on agriculture. The principal crops are cotton and wheat, but alfalfa and a variety of small grains and truck crops are becoming increasingly important as irrigation farming increases. Large parts of the area are used exclusively for grazing, and some of the cultivated land is used for grazing during the fall and winter months.

Industries

The Oklahoma Department of Commerce and Industry (1959, p. 22, 24) lists the following industrial or commercial enterprises in the area: at Hollis--a cottonseed processing plant, a machinery and equipment manufacturing company, a frozen-food plant, and a plant that manufactures handbags; at Mangum--a drainage- and irrigation-pipe manufacturer, a soft-drink bottling company, a dairy-products company, a gun shop, a feed mill, a brick and tile company, a printing and publishing company, an elevator, and a potato-chip company. Of these industries, one serves local markets, six serve State and regional markets, and two serve national markets.

There are cotton gins in both Hollis and Mangum and several in other parts of the area. In the extreme northwestern part of the area, sodium chloride salt is extracted by evaporation from waters issuing from springs in a canyon tributary to Elm Fork.

The Lone Star gasoline plant, which operated a few miles northwest of Hollis for several years, was closed in 1954.

Population

The area had a population of about 16,000, according to the 1960 census. Mangum, with a population of 3,950, is the largest city in the area. The 1960 populations of other cities and towns in the area were: Hollis, 3,006; Eldorado, 708; Olustee, 463; Duke, 333; and Gould, 241.

GENERAL GEOLOGY

The exposed rocks range in age from Permian to Quaternary. Throughout most of the area, the Permian rocks at the land surface consist of alternating layers of red and gray shale, gypsum, and limestone or dolomite, but in Tps. 5 and 6 N., R. 26 W., they consist predominantly of finegrained red sandstone containing a few relatively thin, lenticular beds of gypsum. The Quaternary rocks consist of high-lying terrace deposits and alluvium, which underlies the bottom lands along the major streams.

The areal extent of the geologic formations are shown on the geologic map (pl. 1), and the character and water-bearing properties of each are described briefly in table 4.

Structural Summary

The structure of the bedrock in the area described in this report is related, in general, to the uplift of the Wichita Mountains to the northeast. According to Sears (1951, p. 52), the Permian rocks that are older than those exposed dip approximately 100 feet per mile southwestward. In order to determine the dip of the Dog Creek Shale and the Blaine Formation, the rocks from which most wells in this area obtain water, a key bed (the Haystack Gypsum Member of the Blaine Formation) was mapped, and the altitudes of several widely spaced points on this bed were determined by trigonometric leveling. (See section on the Blaine Formation.) The altitudes were determined for exposures in T. 1 N., R. 22 W.; T. 3 N., R. 22 W.; T. 4 N., R. 22 W.; T. 5 N., R. 23 W.; and T. 6 N., R. 26 W. On the basis of these altitudes, the regional dip of the Dog Creek Shale and Blaine Formation is about 14 feet per mile toward the south-southwest.

Small structural features are obscured by sinkhole development and the effects of local solution and collapse. The generally parallel valleys of streams, such as the Red River, and Lebos, Gypsum, and Turkey Creeks, suggest that structural features may have controlled the location of these valleys. The development of solution channels seems to be related to the surface drainge system (pl. 2) and both probably are related to structural features. However, the determination of the relations of these various features is beyond the scope of this investigation.

Permian System

The Permian rocks are the most productive source of ground water in the area. Although the towns of Duke and Eldorado obtain water from the Permian strata, the water from these rocks is rather highly mineralized and ordinarily is not used for human consumption. The Permian rocks include,

Table 4.--Generalized section of the exposed rocks in Harmon County and adjacent parts of Greer and Jackson Counties

System	Group	Formation	Thickness (feet)	Lithology and water-bearing properties				
lary		Alluvium	0 - 40+	Sand, gravel, silt, and clay underlying the lowlands along the major streams. Yields hard water to municipal and stock wells.				
Quatern		Terrace deposits	0 - 65 +	Gravel, sand, silt, and clay underlying the terrace along the major streams and on the interstream divides. Yields hard water to domestic, stock, and municipal wells.				
······	UNCO	DNFORMI	ГҮ					
	Whitehorse		155-	Very fine to fine-grained brick-red massive, friable sandstone. Some of the sandstone is well cemented with gypsum. Includes one or more anhydritic lenticular gypsum beds about 2 or 3 feet thick. Yields small to moederate amounts of water to domestic and stock wells.				
	UNCONFORMITY							
an	E1 Reno	Dog Creek Shale	100-	Reddish-brown and gray shale alternating with beds of limestone, dolomite, anhydrite, and gypsum which contain solution cavities that yield large amounts of hard water to irrigation, stock, and munici- pal wells.				
Permi		Blaine Formation	140	Reddish-brown and gray shale alternating with beds of gypsum, anhydrite, limestone, and dolomite. The gypsum, anhydrite, lime- stone, and dolomite beds contain solution cavities that yield large amounts of water to irrigation, stock, and municipal wells.				
		Flowerpot Shale and Duncan Sandstone	120	Alternating layers of reddish-brown and gray shale and fine sand- stone with interspersed layers of nodular gypsum that range in thickness from 1 to 6 inches. Yield small amounts of hard water to stock wells.				
	UNCONFORMITY							
		Hennessey Shale		Alternating layers of reddish-brown and gray shale with some lenticu- lar beds of siltstone and fine-grained sandstone. Not known to yield water to any wells in the area of this investigation.				

from oldest to youngest, the Hennessey Shale, the Duncan Sandstone, the Flowerpot Shale, the Blaine Formation, the Dog Creek Shale, and the Whitehorse Group.

The principal aquifers, the Dog Creek Shale and the Blaine Formation, are composed, in parts, of beds of gypsum, limestone, and dolomite. Subsurface solution and removal by percolating waters has produced many cavities in these rocks, and these cavities yield most of the water to the many irrigation wells in the area.

Hennessey Shale

The oldest geologic formation that crops out in the area is the Hennessey Shale, which was named for exposures near Hennessey in Kingfisher County. It was described by Aurin, Officer, and Gould (1926) as a clayshale formation underlain by the Garber Sandstone and overlain by the Duncan Sandstone. In this area, the Hennessey Shale is exposed in only a few places along the south side of Elm Fork. It is composed of alternating layers of reddish-brown and gray shale and contains some lenticular beds of siltstone and fine-grained sandstone.

The Hennessey Shale is not known to yield any water to wells in this area, but it does yield small amounts of hard water to domestic, stock, and municipal wells outside the report area.

E1 Reno Group

The El Reno Group consists of the strata between the top of the Hennessey Shale and the base of the Whitehorse Group. It comprises the following formations, in ascending order: the Duncan Sandstone, Flowerpot Shale, Blaine Formation, and Dog Creek Shale.

Duncan Sandstone and Flowerpot Shale

The Duncan Sandstone was named by Gould (1924, p. 326-329) for exposures near Duncan in Stephens County. In its type locality, it consists of two or three layers of ledge-forming sandstone separated by shale and ranges in thickness from 75 to 250 feet. According to Davis (1955, p. 51), the Duncan Sandstone correlates with the lower part of the Flowerpot Shale of northern Oklahoma and the San Angelo Sandstone of Texas.

The overlying Flowerpot Shale was named by Cragin (1896, p. 3, 24-27) for Flowerpot Mound in Barber County, Kansas. He described it as "chiefly highly gypsiferous varicolored clays, 150 feet thick....."

<u>Character.--The Duncan Sandstone underlies the Flowerpot Shale, and</u> the two formations comprise about 120 feet of strata between the Hennessey Shale, below, and the Blaine Formation, above. The Duncan Sandstone and the Flowerpot Shale were not differentiated on the Geologic map of Oklahoma (Miser, 1954) nor during this investigation. In the report area, they are exposed between the outcrop bands of the Blaine Formation and the Hennessey Shale, terrace deposits, or the alluvium along Salt Fork and Elm Fork (fig. 2). Scott and Ham (1957, p. 13) describe the Duncan Sandstone as a brown or buff, indurated crossbedded silty domomitic sandstone interbedded with buff to gray silty shale. They measured a thickness of 28 feet for the Duncan about 12 miles northeast of the area, and about $2\frac{1}{2}$ feet in sec. 23, T. 7 N., R. 23 W., about 8 miles north of Elm Fork. The Flowerpot Shale is composed of alternating layers of reddish-brown, gray and green shale interspersed with many beds of dolomite and nodular gypsum that range in thickness from 1 inch to 1 foot.

<u>Water supply</u>.--The Duncan Sandstone and Flowerpot Shale are not known to yield much water to wells in the area. In the eastern part of the area, a few stock wells, equipped with windmills, are drilled through the thin terrace deposits and into these formations. The water is reported to be high in sulfate and unpalatable.

Blaine Formation

Character, thickness, and correlation.--The Blaine Formation was named by Gould (1902, p. 47) for exposures in Blaine County. Gould described it as averaging 75 feet in thickness and consisting of red shale containing interbedded strata of gypsum and dolomite. According to Fay (1958) the chief distinguishing features in the type area are three massive gypsum members named, in ascending order, Medicine Lodge Gypsum, Nescatunga Gypsum, and Shimer Gypsum Members.

In the report area, the rocks that make up the Blaine Formation were first assigned by Gould (1902, p. 52-57) to his Greer division, which he described as "a thickness of from 150 to 300 feet of rocks consisting of red clays, shales, and sandstone with intercalated beds of gypsum and magnesian limestone or dolomite." The base of the division was not well defined, but the top member was given the name Delphi dolomite, which he later (1905) changed to Mangum dolomite. The five most prominent gypsum layers were named, in ascending order, the Chaney gypsum, Kiser gypsum, Haystack gypsum, Cedartop gypsum, and Collingsworth gypsum. Later, Gould (1924) provisionally correlated the gypsum members of the Blaine Formation at the type locality with the Haystack, Cedartop, and Collingsworth gypsums, respectively, of his Greer division in southwestern Oklahoma.

The Blaine Gypsum, as the name commonly is used in Texas (Sellards and others, 1933), includes, in addition to equivalents of the Blaine at the type locality, a part of the underlying Flowerpot Shale and part or all of the overlying Dog Creek Shale. However, in this report the Blaine

17

includes the Chaney Gypsum Member, which is the lowest massive gypsum bed in the area, and, at its top, the Mangum Dolomite Member, which is well below the top of the formation as it is described in Texas. The total thickness of the formation, as thus defined, is about 140 feet. Thus, the Blaine Formation embraces the same stratigraphic units that constituted the Greer division of Gould. This usage coincides closely to the Blaine Gypsum as it is mapped on the Geologic map of Oklahoma.

The Oklahoma Geological Survey (Ham, 1958), on the basis of recent geologic work in the Carter area, has revised its classification of the Blaine Formation. As defined by Scott and Ham (1957) of that agency, the base of the Blaine is the base of the Haystack Gypsum Member and the top of the Blaine is the top of the gypsum member named Van Vacter by Scott and Ham. The Van Vacter Gypsum Member overlies the Mangum Dolomite Member but occurs only locally, and where it is absent the top of the Blaine is defined as the top of the Mangum. This definition excludes the Chaney and Kiser Gypsum Members, which, together with intervening shales, are considered by Scott and Ham to be a part of the underlying Flowerpot Shale.

The five gypsum beds and the Mangum Dolomite Member form a pronounced escarpment along the south and west sides of Salt Fork of Red River in Greer and Jackson Counties, although in Jackson County the escarpment is not as well defined as in Greer County. The escarpment is present also along the south side of Elm Fork in T. 5 N., R. 23 W., and in T. 6 N., Rs. 25 and 26 W.

The gypsum beds are mostly gray to white massive alabaster and contain many small clay-filled fissures. Solution channels as large as 1 foot in diameter can be seen in some surface exposures. In many places the beds consist largely of anhydrite and form well-defined ledges. They are not individually distinctive and cannot be identified reliably unless some underlying or overlying stratigraphic units also are exposed, so that identification can be substantiated by stratigraphic position. None of the gypsum beds is continuous laterally in surface exposures. Each either thins and disappears or is buried by rock debris from higher beds. For example, in the NW_4^1 sec. 32, and the SW_4^1 sec. 29, T. 5 N., R. 22 W., the the Cedartop Gypsum Member changes from a gypsum bed 3 or 4 feet thick to a 6-inch limestone bed within 100 feet.

The Haystack Gypsum Member persists laterally for much greater distances than do the other gypsum beds. Accordingly, it was selected as a key bed, and its base was mapped to help determine the structure of the Permian strata (pl. 1).

Between the gypsum members of the Blaine Formation are alternating layers of reddish-brown and gray to blue shale. The shale is calcareous in part and contains many thin beds of selenite or nodular alabaster that range in thickness from less than an inch to 6 inches. In some exposures shale contains many steeply dipping veins of selenite and satinspar gypsum which range in width from less than an inch to 4 inches.

The Mangum Dolomite Member, wherever exposed in the area, consists generally of slightly dolomitic limestone. It is gray, buff, or brown, and dense to finely crystalline. In most localities it is cavernous or honeycombed, but in other places it is massive and makes an excellent building stone. The unnamed limestone that lies about 10 feet above the Cedartop Gypsum Member (app. A) is very much like the Mangum and cannot reliably be differentiated from it unless a considerable part of the geologic section is exposed nearby. To further complicate the picture, several limestones in the overlying Dog Creek Shale are similar to the two limestones in the upper part of the Blaine Formation. Because their angle and direction of dip change sharply in short distances, the limestones are not considered satisfactory beds to map or for use in determining the structure of the underlying rocks.

<u>Water supply</u>.--Although most irrigation wells tapping the Blaine Formation in the eastern part of the area are pumped at rates ranging from 500 to 1,000 gpm (gallons per minute), a few have yields as high as 1,500 gpm. The wells obtain water from solution cavities in the gypsum, anhydrite, limestone, and dolomite beds of the Blaine. Because the occurrence of individual solution cavities cannot be predicted from surface evidence, it is not unusual for a successful irrigation well to be drilled within 100 feet of a place where another well drilled through the same sequence of beds failed to supply enough water for a stock well.

The water from the Blaine is very hard and has a very high calcium sulfate content. Although it constitutes the municipal-water supplies for the towns of Duke and Eldorado, it generally is unsuitable for human consumption.

Dog Creek Shale

Correlation and thickness.--The Dog Creek Shale was named by Cragin (1896, p. 39) for exposures along Dog Creek in Barber County, Kansas. According to Gould (1905, p. 53), Professor Cragin's original description of the Dog Creek Shale reads:

"The Dog Creek*****consists of some 30 feet, or locally of a less or greater thickness, of dull-red argillaceous shales, with laminae in the basal part and one or two ledges of unevenly lithified dolomite in the upper. The color of these shales resembles that which prevails in most of the division below rather than of the terranes above the Dog Creek."

Cragin assigned the Dog Creek to a position below the Red Bluff Sandstones (later the Whitehorse Group) and above the Shimer Gypsum Member of the Cave Creek Formation (later the Blaine Formation). Gould (1902, p. 50) stated that in many parts of Oklahoma the thickness of the Dog Creek was much greater than that given by Cragin. He ascribed a thickness of 225 feet to the Dog Creek near Quinlan, in eastern Woodward County. He further stated that thicknesses of 150 and 175 feet were recorded at a number of places in Oklahoma, and that exposures were common along the top of the "Gypsum Hills" from Canadian County to the Kansas line, and beyond.

Locations where both the bottom and the top of the Dog Creek Shale are exposed within a distance of less than 5 or 6 miles of each other are known to occur in only the northwestern part of the area. The altitude of the base of the Dog Creek in the $SE_4^{1}NE_4^{1}$ sec. 14, T. 6 N., R. 26 W., and of the top in the $SW_4^{1}NE_4^{1}$ sec. 23, T. 6 N., R. 26 W., were determined by trigonometric leveling. They show the Dog Creek to be about 55 feet thick in that locality, but the Dog Creek is believed to be thicker southward.

<u>Character and subdivisions.</u>--Because the full thickness of the Dog Creek Shale is not exposed anywhere in the area, the lithic character of the formation is known only from scattered exposures of less than the full thickness. A gypsum bed 15 feet thick immediately overlies the Mangum Dolomite Member and underlies a limestone bed 1 or 2 feet thick in the stratigraphic section that was measured in the $NW\frac{1}{4}NW\frac{1}{4}SW\frac{1}{4}$ sec. 27, T. 6 N., R. 25 W. (app. A). This bed is the lower part of the Van Vacter Gypsum Member of the Blaine Formation of Scott and Ham (1957).

Several gypsum, anhydrite, limestone, and dolomite beds occur in the lower part of the Dog Creek Shale and perhaps throughout the formation. Where exposed, the limestone beds are buff to brown, dolomitic, dense to finely crystalline, and range in thickness from 1 foot to 5 feet. Like the Mangum Dolomite Member they are honeycombed and have a very high porosity. The dolomite beds are buff to light gray, dense, honeycombed, and thin-bedded, with about the same range of thickness as the limestones. The gypsum beds are gray to white, soft, and so badly slumped in most exposures that their thickness cannot be measured accurately. Solution channels 6 to 7 feet in diameter are exposed in the gypsum beds along Fish Creek in T. 5 N., R. 24 W., and some of these caverns have been traced several hundred feet. Anhydrite beds, exposed along the road cuts in most of southern Harmon County, are white, gray, or bluish gray, and range in thickness from 1 foot to 5 feet.

The base of the Haystack Gypsum Member of the Blaine Formation dips beneath the alluvium of Salt Fork in the $NW_4^1SE_4^1$ sec. 9, T. 4 N., R. 23 W. Along the north side of Salt Fork the Mangum Dolomite Member disappears beneath the alluvium about a mile upstream from where the Haystack disappears. At this point the basal part of the Dog Creek Shale contains three other limestone beds 1 to 3 feet thick and lithologically similar to the Mangum. These limestone beds are separated from each other by 5 to 10 feet of reddish-brown and gray shale. In the next mile upstream the lower two of these three limestone beds disappear below the surface, and a gypsum bed 10 feet thick occupies the interval between the middle and upper limestone beds. In the next 4 miles upstream at least two more gypsum beds appear higher in the Dog Creek Shale. They differ widely in thickness in short distances along their outcrops; one grades latterly, within a distance of 100 feet, from a 10-foot gypsum bed to a 3-foot bed of sandy magnesian limestone. Above the upper bed of gypsum, which is about 30 feet thick, about 3 feet of thin-bedded light-gray dense dolomite is exposed.

In secs. 26, 27, 34, and 35, T. 5 N., R. 24 W., gypsum beds consisting of soft gray alabaster, more than 15 feet thick, are exposed along with several thin beds of limestone and dolomite. Because the gypsum beds slump badly, accurate measurements of their thickness and determinations of their stratigraphic position are possible in only a very few places.

Because of the lithologic similarity of the beds of the Dog Creek Shale to those in the Blaine Formation, the two formations could not be distinguished from each other.

Except in the area mapped on plate 1 as terrace deposits or alluvium, beds of gypsum, limestone, and dolomite from 1 foot to 5 feet thick are exposed throughout most of Harmon County south of Salt Fork. The exposures are designated Dog Creek Shale on the Geologic map of Oklahoma.

<u>Water supply</u>.--Many wells in Harmon County and western Jackson County are believed to obtain water from solution cavities in the gypsum, anhydrite, limestone, and dolomite beds of the Dog Creek Shale as well as from underlying rocks. Because the Dog Creek Shale and the Blaine Formation could not be distinguished in subsurface, it was not possible to determine which wells take water solely from the Dog Creek. The irrigation wells in Harmon County yield 500 to 2,000 gpm, or about as much as the wells in Jackson and Greer Counties which are believed to tap only the Blaine. For a well drilled into either the Dog Creek or the Blaine to yield enough water for irrigation, it must tap water-filled solution cavities. In Harmon County the water from these formations is very hard and has a very high calcium sulfate content (table 6). It is not known to be used for any regular consumption by humans. Locally in southeastern and northwestern Harmon County the water has a very high sodium chloride content.

Whitehorse Group

The youngest Permian rocks exposed in the area are those of the Whitehorse Group. As mapped on the Geologic map of Oklahoma, the Whitehorse Group includes those rocks above the El Reno Group and below the Cloud Chief Formation. The group unconformably overlies the El Reno Group and is divided into the Marlow Formation below and the Rush Springs Sandstone above. The two formations of the Whitehorse Group are not differentiated in this area on the Geologic map of Oklahoma nor were they mapped separately for this report. The Whitehorse Group is exposed in the western half of T. 5 N., R. 25 W., the southern quarter of T. 6 N., R. 26 W., and almost all of T. 5 N., R. 26 W. It consists mostly of fine to very fine grained brick-red massive, friable sandstone. Some of the sandstone is well cemented with gypsum, and at some locations one or more anhydritic, lenticular gypsum beds, 2 to 3 feet thick, support poorly defined ledges. The topographic relief of the group indicates a maximum thickness of more than 100 feet.

Some domestic and stock wells derive small to moderate amounts of water from sandstone of the Whitehorse Group, but no wells tapping the Group are known to have large yields.

Quaternary System

The youngest rocks exposed in the report area are the terrace deposits and alluvium of the Quaternary System. The alluvium consists of streamlaid sediments in the bottom lands along the major streams; the terrace deposits, although of similar origin, occur at higher levels. Because this report is concerned primarily with water from the Permian bedrock, the water-bearing properties of the terrace deposits and alluvium were not studied in detail.

Terrace Deposits

The terrace deposits consist of interfingering lenses of clay, sandy clay, sand, and gravel. The largest areas of terrace deposits are along the north side of the Red River, the south side of Elm Fork, and the south and west sides of Salt Fork (pl. 1).

In the areas of terrace deposits along the north side of the Red River, the south side of Elm Fork, and in T. 4 N., Rs. 24, 25, and 26 W., the topography is dominated by sand dunes that range in height from about 5 to about 30 feet. It is in these areas that the terrace deposits are most inportant as an aquifer. The town of Gould gets its water supply from two wells that tap water from the terrace deposits in sec. 18, T. 4 N., R. 24 W., and the city of Hollis gets its water supply from four wells in sec. 20 and three springs in the terrace deposits in secs. 18 and 19, T. 4 N., R. 25 W. Many domestic and stock wells draw water from the terrace deposits, and yields of 100 to 300 gpm probably could be obtained.

The terrace deposits along the west side of the valley of Salt Fork, in Rs. 21 and 22 W., are composed almost entirely of brown and dark-gray clay. They are believed to be thin and may include colluvial material derived from the Permian bedrock to the west. The surface of the deposits is nearly flat with a very slight slope to the east or southeast. The town of Olustee obtains a small part of its municipal supply from a well tapping the terrace deposits in the $NE\frac{1}{4}$ sec. 20, T. 1 N., R. 21 W.

Alluvium

As mapped in this area, alluvium is the stream-laid sediment underlying the low-level terraces and the flood plain in the stream valleys and is separated from the higher terrace deposits on the basis of a well-defined topographic break. Because influent flow--that is, seepage from the stream into the alluvium--may occur naturally or be induced by pumping, the quality of the water in the alluvium may be affected by the quality of the water in the stream. The water in the major streams of this area is known to be highly mineralized.

Where the alluvium consists of significantly thick deposits of saturated sand and gravel it will yield moderate amounts of water to wells. The alluvium of Salt Fork in the report area yields water to a few stock wells, one irrigation well, and one of the Olustee municipal wells.

÷. .

WATER RESOURCES

Surface Water

In the area of this investigation, only Elm Fork Red River, and the lower reaches of Fish, Lebos, and Mulberry Creeks may be classed as perennial streams. The discharge of these streams is maintained chiefly by effluent seepage of ground water from the Dog Creek Shale and the Blaine Formation. Other streams draining the area commonly cease flowing during the summer when evaporation, transpiration, and pumping are at a maximum.

A survey of water use made in 1953 indicated that only about 1,700 acre-feet of surface water was used for irrigation purposes. Most of the water was diverted from Gypsum, Lebos, and Turkey Creeks.

Through September 30, 1960, the records of discharge and stage of streams at gaging stations and at miscellaneous sites along the streams have been published in an annual series of U.S. Geological Survey Water-Supply Papers entitled "Surface Water Supply of the United States, pt. 7, Lower Mississippi River Basin.

Beginning with the 1961 water year, streamflow records and related data have been released by the Geological Survey in annual reports entitled "Surface-Water Records of Oklahoma."

Ground Water

The openings in permeable rocks that lie below the land surface generally are partly or completely filled with water called "subsurface water." (For definitions of many ground-water-hydrology terms see Meinzer, 1923.) Below a level known as the water table, all the openings are completely filled with water and the water-bearing rocks or deposits are called "aquifers." The permeable rocks that lie above the water table are said to be in the "zone of aeration." In most places this zone can be subdivided into three parts, in ascending order: the capillary fringe, the intermediate belt, and the belt of soil moisture. In some places, however, the capillary fringe and the belt of soil moisture may be in direct contact or the capillary fringe may extend to the land surface.

In one form or another, water occurs almost everywhere. Although the great bulk of the total water supply is stored in the seas and oceans, a constant circulation is taking place. Evaporation from the surfaces of the oceans, streams, and lakes is nearly continuous. Most of the moisture so evaporated condenses and returns as precipitation to the earth's surface, part of it returns to the ocean as surface runoff, and part of it infiltrates into the ground is held by capillary attraction near the surface and is later evaporated; some is used by vegetation and returned to the atmosphere by transpiration; and some joins the ground-water reservoir and slowly moves to places of dischargefrom wells and springs and into streams. This' sequence of events is known as the hydrologic cycle and is represented graphically in figure 3.

Water-Table and Artesian Conditions

Ground water may occur under either artesian or water-table conditions. If an aquifer is overlain by a relatively impermeable stratum, the water in the aquifer may be confined and have an artesian pressure head.¹ Because of this pressure head, water stands at a level above the upper surface of the aquifer in any well that taps the aquifer. The surface to which the water from an artesian aquifer will rise under its full head when the confining layer is punctured is called the "piezometric surface" of that aquifer; it is an imaginary surface that coincides with the static level of the water in wells tapping the aquifer.

Water-table conditions exist where the upper surface of the water is not confined by an impermeable bed and it is free to fluctuate. This upper surface of the ground-water body is the water table. It is an irregular, sloping surface that in general approximates the slope of the land surface but has less relief. Where the rate of replenishment, or recharge, is greater locally than in the surrounding area, the water table may form a mound or ridge from which the water spreads outward.

"Perched" ground water is a body of ground water separated from another, underlying body of ground water by unsaturated strata. Perched water belongs to a different zone of saturation from that occupied by the underlying ground water and its water surface is a "perched water table," in

Many explanations and definitions used for completeness of this report were freely copied from other published reports (Barclay and Burton, 1953; Meinzer, 1923: Reed, Mogg, Barclay, and Peden, 1952).

Figure 3.--Graphic representation of the hydrologic cycle

contrast to that of the lower zone of saturation, which is called the "main water table."

In the area much of the water is confined in solution channels in gypsum, limestone, and dolomite beds. All irrigation wells in the principal irrigation areas tap the Dog Creek Shale or Blaine Formation and derive all or part of their water from solution channels in these formations. Wells drilled into the Dog Creek Shale or Blaine Formation beneath alluvium or terrace deposits may derive part of their water from the surface deposits; therefore, the water tapped probably occurs under water-table conditions. Also, in areas of heavy pumping, artesian conditions may exist when water levels are high, and water-table conditions may exist after a period of sustained pumping. The terrace and alluvial deposits of the area, especially the terrace deposits on the south side of Salt Fork, may contain a body of perched ground water.

Movement

Ground water, like other liquids, moves from points of higher head to points of lower head; therefore, water loses head as it moves. The difference in altitude between any two points on the water table or piezometric surface is the difference in head at those two points. Although the quantity of water in an aquifer depends on the porosity, or percentage of openings, in the material composing the aquifer, the ease with which water moves within an aquifer is governed by the permeability of those materials. Permeability is a function not only of the size and arrangement of the particles in the aquifer but also of the size and interconnection of the pores or openings. A high porosity does not necessarily indicate a high permeability. For example, a fine-grained sediment, such as clay, may be highly porous but may have a low permeability because the openings are so small. Although saturated, a clay will not yield significant quantities of water to gravity drainage because nearly all the water is held to the surface of the clay particles by molecular attraction.

Irrigators and drillers have reported visible movement of water in wells in this area, and during the course of this investigation water has been seen and heard flowing into wells. Such observations suggested the possibility of a rapid ground-water movement in areas where large solution cavities are concentrated. Attempts were made to determine the rate of flow by the use of a Pygmy current meter and of fluorescein dye.

A conventional Pygmy current meter was adapted for use in the largediameter wells by mounting it on a vertical shaft about 14 inches long, leaving the meter free to rotate on the shaft, and adding a short fin to direct the meter into any horizontal current. Light-weight steel discs about 10 inches in diameter were put on the shaft, one above the other below the meter, to prevent contact of the meter with the wall of the well. The earphone connections were conventional. Because of the protective discs and the construction of the instrument, the meter would be much more sensitive to horizontal than to vertical flow in a well; however, even a gentle raising or lowering of the meter in the well caused turbulence of the water which was recorded by the meter. Therefore, the instrument is believed to have been sensitive enough to record any abnormally rapid flow. No lateral movement of water could be detected in any of the six wells (1N-25W-1dbc1, 1N-25W-11baa1, 2N-22W-3bc1, 2N-22W-6cac1, 2N-23W-1cbd1, 3N-23W-21add1) in which the meter was used. One of the attempts to measure the rate of flow was made in a well (2N-23W-1cbd1) about 75 yards from an irrigation well that was being pumped. Even though pumping of the irrigation well had caused appreciable drawdown of the water level in the observation well, the flow was too slow to be detected by the current meter.

The use of fluorescein dye to trace ground-water movement was first described by Dole (1906). Attempts to use this method during this investigation were made on the Oscar Bryant farm in the SE^{$\frac{1}{4}$} sec. 21, T. 2 N., R. 25 W., and in the vicinity of the Wilcy Moore farm in the NW_4^1 sec. 32, T. 3 N., R. 25 W. Oscar Bryant's irrigation well (2N-25W-21dac1) is one of six wells drilled very close together. Of the other five wells, one is welded shut and covered with soil. The remaining four wells (2N-25W-21dac3, -21dac4, -21dac5, and -21dac6) are about 100 feet to the northwest, north, northeast, and east, respectively, of the irrigation well. The dye was put in the northwest well because a preliminary waterlevel map showed a hydraulic gradient to the southeast. At about 1:00 p.m. on October 7, 1953, one-eighth pound of yellow fluorescein dye was dissolved in one quart of water and then the jar containing the solution was lowered and raised several times through the column of water in the well to insure a thorough mixing of the solution with the well water. Three samples of water were taken from each of the three observation wells that afternoon, and at about 4:35 p.m. the irrigation well was pumped for 1 minute and a sample of water was taken from it. None of the samples contained visible concentration of dye. The next morning the observation wells were checked again, and again no dye was noted. Then a series of eight samples of water was taken at various depths in the injection well to see if any change could be detected. The change of concentration at various depths between the time of injection and the next day is represented in figure 4 by the shaded area.

Because the driller of these wells reported that a small cavity was encountered at about 42 feet when drilling the injection well and because water could be heard flowing in a nearby well when the irrigation well had been pumped for several hours, the change in concentration of dye is believed to be due primarily to the pumping of the irrigation well during the experiment. When the last samples from the observation wells were collected, at about 11:30 a.m. on October 8, 1953, there still was no trace of the dye. The experiment was abandoned with the conviction that movement of ground water could not be detected by this method at this location.

Width of black band represents concentration of fluorescein dye, diagrammatically

Figure 4.--Diagram showing in concentration of dye in irrigation well during test

Wilcy Moore's irrigation well (3N-25W-32bbbl) was chosen for use as the injection well in the other dye test for the following reasons: (1) according to Mr. Moore and the driller of the well, no cuttings could be recovered from a depth greater than 80 feet, a fact suggesting that the well was drilled into a solution channel; (2) eight other irrigation wells between half a mile and 2 miles southeast of Mr. Moore's well could be used as dye-detection points; and (3) according to Mr. Moore, the yield of his well was reduced when one of the nearby wells was being pumped, a fact indicating a direct hydraulic connection between the wells.

A pound of dye was dissolved in 10 gallons of water and the solution poured into the well. To be sure of thorough mixing in the well, the turbine pump was started several times and each time was shut off to cause backwashing when the water began to flow from the pump. Several samples of water were collected from the observation wells and the injection well between November 17 and 25, but none of the samples from the observation wells showed a trace of the dye and none of the samples from the injection well indicated a lessening of the dye concentration in that well. On December 14, 1953, nearly 4 weeks after the experiment was begun, the injection well was pumped for a few minutes; for only a moment the water was rather yellow, but the concentration of the dye had decreased noticeably. The experiment was terminated, the evidence indicating that natural ground-water movement is exceedingly slow through even the major solution channels at this location. The failure to demonstrate rapid movement of ground water through wells led to the conclusion that such movement does not occur under natural conditions except, possibly, in the immediate vicinity of springs and in the small amount that is continuously percolating downward to the zone of saturation through small solution channels. Apparently the drilling of some wells has provided a conduit for movement of water from higher to lower solution channels and, if this is so, the sound of running water in the wells may be due to water trickling down either the inside or the outside of the casing, or both. The appearance of water movement probably is merely a surface phenonomen caused by water entering a well above the level of the water surface, more so on one side of the well than on the other. Generally, rapid lateral movement of water within the zone of saturation occurs only when large quantities of water are being withdrawn from wells.

Water-Level Fluctuations and Effects of Pumping

The water level in an aquifer rises or falls continuously in response to changes in the ratio of recharge to discharge. During wet seasons, water normally is added to storage at a faster rate than it is discharged and the water level rises. Conversely, during dry seasons, the rate of discharge exceeds the rate of recharge and water levels decline. It is the discharge of ground water that maintains the flow of streams when overland runoff is negligible. Discharge of water by evaporation, by transpiration, or by pumping from wells also lowers the water level. The position of the water level at any given time is the net effect of all previous recharge and discharge, and is a measure of the quantity of water then in storage. The position of the water level is determined by measuring the depth to water in wells, and changes in its position are detected by measuring the depth to water at intervals.

Some fluctuations of the water level in wells are not related to recharge and discharge, but may be caused by tides, earthquakes, or variations of atmospheric (barometric) pressure. Of these causes, it is believed that only the atmospheric pressure significantly affects the water levels in the report area.

Water-level measurements were made, at approximately bimonthly intervals, from February 1954 to June 1955 in about 145 wells tapping various aquifers in the area. (See table 5). An additional measurement was made in September 1954, when the water levels were believed to have reached their lowest stage of the year. Monthly measurements were continued in 44 wells in conjunction with the Oklahoma part of the Federal observation-well program and 34 were still being measured in 1963. Because many of the observation wells were pumped frequently by their owners, a measurement of the static water level could not be made on every visit to the well. The locations of the individual wells in which observations of the water level were made are shown on the map showing water-level contours (pl. 2) and the maps showing changes in water level (pls. 3-6).

The contour lines on the map (pl. 2) show the altitude of the water level for about February 1954. Measurements for this date were used because several months had elapsed since pumping for the 1953 irrigation season had ended and pumping for the 1954 irrigation season had not yet begun, and also because February is a period of very little plant growth and evapotranspiration loss would be low.

The hydrographs in figure 5 show average changes in water level, both inside and outside the irrigation areas, in 1954 and 1955. They show the rapid response of water levels to periods of heavy rainfall such as May 1954 and May and October 1955. They also show that although water levels decline somewhat in all areas during the late summer months, the decline is much greater in the areas where large quantities of water are withdrawn for irrigation.

Figure 6 is a hydrograph showing the average change in water level (based on a "zero" level in November 1950) in eight wells that have been measured for a relatively long period. Plate 7 consists of hydrographs for four wells, each in a different irrigation area. The four hydrographs are believed to be typical of the water-level fluctuations in the respective areas. Water levels in all four wells were relatively low near the end of 1956, about the end of a severe drought period. All rose sharply in 1957 during the intensive wet period that broke the drought. Water levels in all four wells declined during the period June-September each year when wells were pumped heavily for irrigation. An exception was 1960, an unusually wet year during which very little irrigation water was required and water levels rose during the normal irrigation season. Generally, water levels were not as low during the latter part of 1963 as they had been in other years. This suggests the drought of 1963 was not as severe. in its effect on ground-water supplies in this area, as the drought of the mid-fifties. One reason is that water levels were at a relatively high stage at the beginning of 1963.

The water-level-change maps, plates 3, 4, 5, and 6, illustrate the important changes in water level from season to season during the period when intensive field work was underway for this investigation. These illustrations show the water-level changes resulting from recharge, irrigation pumping and other forms of discharge, and the movement of ground water. The outlines of the irrigation areas, also shown on the maps, help demonstrate the relation of areas of pumping to the changes of water level during the various periods.

Plate 6, which is based on measurements in 126 wells, shows the change in water levels from June to September 1954. Levels declined throughout most of the area owing to the meager rainfall and heavy irrigation pumping. Declines were greatest in areas where pumping was most concentrated.

FIGURE 5-- Graphs showing average changes of water level in the Dog Creek Shale and Blaine Formation, Feb. 1954 to Dec. 1955, and average precipitation at Eldorado, Hollis, and Mangum.

Plate 3, based on measurements in 125 wells, shows the change in water levels from September 1954 to February 1955. A season of heavy pumping had just ended, but there was very little rainfall or pumping during this interval. The water level rose as much as 25 feet locally in some irrigation areas, but it declined in other places both inside and outside irrigation areas. The rate of recovery seemed to be slower southwest of Gould, along a tributary of Lebos Creek, than elsewhere. This seems to be a local condition, but if ground-water withdrawals are increased along this tributary, water levels may become so low during the irrigation season that they will not recover fully during the following nonirrigation season.

Plate 4 is based on the difference in water levels in 95 wells between April and June 1955. In April and early May considerable water was pumped for irrigation, but almost no water was pumped in late May and June because of heavy rains. The recharge from precipitation, together with the shifting of water to fill local cones of depression, caused a general rise in the water level. This demonstrates the rapid rate that a large volume of recharging water can penetrate the aquifer after a period of heavy precipitation. The rise of water level along the tributary of Lebos Creek, southwest of Gould, again lagged behind recovery in other parts of the area. There was a slight but persistent decline of water level in the terrace deposits south of Salt Fork and a rise in level in the northwestern part of the area. The decline in the terrace deposits may be caused by the time lag between infiltration and the resulting rise in water levels.

Plate 5, based on measurements in 135 wells, shows that the water level declined at least slightly throughout most of the area from June 1954 to June 1955. In the heavily pumped areas of T. 2 N., R. 25 W., and T. 3 N., R. 23 W., declines were rather large. This map shows a locally significant rise in water level just south of Hollis, which may identify a local but persistent source of recharge to the surrounding area. It may be caused by concentrated and well-developed sinkholes in the area and by a good catchment area of alluvial and terrace deposits. The time lag for recharge southwest of Gould is again noticeable.

The water-level data, from which water-level-change maps were developed, are given in table 5.

Discharge

Ground water is discharged continuously from an aquifer by seepage through springs and into streams, evaporation, transpiration by plants, flow into adjoining aquifers, and flow or pumping from wells.

Effluent seepage.--Water that flows out of the zone of saturation and into a stream whose surface is lower than the water level in the aquifer is termed effluent seepage, and a stream into which ground water discharges is called an effluent, or gaining, stream.

_33

Table 5.--Depth to water in wells in Harmon County and adjacent parts of Greer and Jackson Counties

	12nd week	3rd week	4th week	4th week	4th week	4th week	1st week	2nd week	3rd week	4th week
Well	of Feb	of April	of June	of Aug.	of Sept.	of Oct	of Ian	of Feb.	of April	of June
number	1054	1954	1954	1954	1954	1954	1955	1955	1955	1955
	1/34									
				GREER	COUNTY				1. Sec. 1. Sec	
			5°		1					
3N-22W-3bbb1	13.9	13.7	12.8	14.5	14.7	14.6	14.7	14.7	14.7	14.4
13baa1	12.5	14.3	10.4	10.8	10.9	11.4	11.7	14.4	12.1	11.0
16dac1	16.2	16.8	15.7	16.4	16.6	16.7		16.8	17.0	15.6
3N-23W-2bdd1	63.8	64.6	60.8	62.1	62.7	63.1	64.2	64.7	72.1	
3dad1	39.8	39.6	36.7	39.8	39.0	41.5	42.0	52.2		42.3
3ddb1		41.1	36.3	40.0	42.0	43.2	43.9	56.8	47.6	41.3
4cha1	74 4	79.5	70 1		85.7	82.4	80.7	80.4	105.7	73.5
16001	10.8	48 1	1	65 5		54 0	48 4	45.6	66.5	38.4
17221	52 0	60.5	49 7		77.9	66.2	60.6	57.9	80.2	50.4
1 / uu 1	52.7	00.5				00.2	00.0	51.5	0012	
4N-22W-4aad1	65	70	73	03	9.6	10.2	94	03.	89	7.5
15dcc1	73	71	5 5		8.0	83	8.6	8.7	9.7	5.1
176221	74.0	75 1	5.5		0.0	75.0	0.0	75 5	73 5	73.2
10ddo 1	74.0	75.1	75 1	73 0	73 7	73.0	72 0	73.0	74.0	72 5
27cbb1	14.0	5.0	13.1	5.0	6.4	6.5	6.6	6.8	7 5	4.0
270001	0.2	47.7	4.0	16 6	16 0	46.0	477 1	47.1	47.1	4.0
520001	47.0	47.7	40.1	40.0	40.0	40.0	47.1	47.1	4/.1	40.5
AN 22W 30001	{	54 5	56 1	1						53 0
4N-25W-5ada1		34.5	30.4	20.6				20.0	42 2	33.9
200001	37.6	38.0	35.4	39.0	40.0	39.3	39.0	39.0	42.2	39.0
200001	+ 1.7	+ 0.9	+ 1.0	+ 0.3	0.0	+ 0.4	+ 0.1	+ 0.3	2.0	3.8
33dab1	1	48.3	42.1		61.3	48.9	47.0	46.7	57.6	50.1
4N-24W-12ddd1	27.0	27.0	27.2	29.7	30.1	30.4	29.6	30.4	36.9	29.8
146661	31.9	32.2	32.3	32.4	32.5	32.5	32.6	32.6	32.5	32.8
26ddc1	69.9	72.0	69.4	72.0	73.3	71.7	74.0	74.3	79.1	77.8
	1									
5N-22W-76661	15.4	16.5	13.6	15.8	17.9	18.1	17.6	16.7	19.3	11.4
11ddc1	33.8	33.8	33.6	34.1	34.1	34.1	34.1	34.0	• • • •	
16cdc1	9.7	9.5	8.9	9.4	9.9	10.8	13.6	13.1	14.5	9.9
19baa1	18.8		18.3	19.4	19.7	19.6	20.0	20.0	19.9	17.5
25bcc1	25.8	25.8	25.8	25.9	26.2	25.9	26.0	26.2	26.0	25.8
							÷			Í
5N-23W-3cd1	52.8	58.4	50.4			••••			••••	
6bbc1	31.6	32.1	32.7	32.9	33.1	33.2	33.5	33.8	34.2	34.2
20dcc1	60.2	60.6	60.8	61.0	61.1	61.4	61.7	61.6	62.1	
22aaa1	94.9		92.9	100.1		96.8	99.7	99.0	• • • •	94.7
5N-24W-2baa1	10.4	10.0	10.5			• • • • •	••••		11.3	10.8
15ddd1		29.4	25.8	27.8	28.5	29.1	30.1	32.7	31.3	27.4
					l					
				HARMO	N COUNTY					
	·				1					
N-24W-4bc1	85.9	86.8	77.8	83.0	87.0	89.1	89.8	90.5	92.1	86.7
15aad1		28.4	19.7		27.2	27.9	28.7	29.2		18.6
20ddd1	67.5		67.1	71.0	71.1	70.6	70.2	70.1		70.6
25dad1	30.1	30.3	29.2	31.2	31.8	32.2	32.3	32.3	32.7	31.4
30dbb1	11.2	12.1	11.6	17.8	17.3	15.4	13.7	13.4	17.4	12.2
34dcc1	15.1	15.4	15.6		16.8	16.6	16.2	15.7	16.4	14.7
				1						
1N-25W-4dba1	51.1	55.5	53.2	· · · ·		59.8	56.8	56.2		56.2
8caa1	102.6	113.7	103.6	107.1	108.7	108.5	107.6	106.7	109.2	106.9
11baa1	44.9	75.1	50.0		60.5	53.0	50.7	50.0		49.5
13dcc1	21.4	22.7	20.8	23.5	26.7	24.0	19.8	22.4	27.3	21.7
36cac1	20.6	21.5	21.2			25.2	24.0	23.4	27.2	21.7
			[
1N-26W-5aab1	71.8	80.6	74.6		91.4	81.6	76.8	76.4		73.1
2N-24W-2bc1	52.5	1					54.1	54.0		
13ccd1	64.6	64.7	64.2	65.9	65.0	65.0	65.2	65.3		64.1
17dcc1	33.9	33.7	34.2	34.1	34.2	33.3	33.7	33.4	34.2	33.7
22add1	14.9	17.0	14.9		15.2	15.1				15.4
30dcc1	53.6		60.7		92.2	81.3	79.7	77.1		81.5
		1		1						
2N-25W-2aaa1	57.1	1	59.9					68.5		
5aaa1	49.2	55.1	51.1		74.3	61.3				
6bch1	30.6	32.2	30.8					35.2		36.2
7dab1	183	19 1	18.2		22.3	22.3	22.6	19.3		22.3
8daa 1	-0.5		-0.2		59.0	44 8	40.4	38 5		40.1
14chh1	21.2	24.8			43.8	37 9	31.7	30 4		31.9
170001	24.4	27.0	28.0		-5.0	3/ 2	31.0	30.4	•••••	30.8
	29.4	61.9	20.9			54.5	31.0	33.4	••••	20.6
57ahh1	21 4	24 8	22 7	••••	37 5	35 6	30 4	280	••••	30.3
25001	37 4	67.0	40.9		51.5	54 1	52 0	52 1	••••	50.4
ascuut	1 31.0	1	40.0		0.10	J. 1. 1	JC.7	JG.1	••••	JU.T

(feet below land-surface datum)

34

Table 5.--Continued

	2nd week	3rd week	4th week	4th week	4th week	4th week	1st week	2nd week	3rd week	4th week
Well	of Feb.	of April	of June	of Aug.	of Sept.	of Oct.	of Jan.	of Feb.	of April	of June
number	1954	1954	1954	1954	1954	1954	1955	1955	1955	1955
			11	A RMON COUN	l TVContin	nod				
			<u>_</u>	ARMON COUN	<u>11</u> cont m	l				
2N-25W-26ac1						43.0	42.4	41.2		37.9
29bbb1	28.7			58.1				31.1		32.6
29ada1	30.3	33.7						34.9		
30dbb1	46.5	58.8	45.0		70.6		47.8	46.4		50.5
31bbb1	43.1		45.7					51.7		
34dab1	36.6		39.5	• • • •	64.3	54.5	49.4	47.8		50.5
2N-26W-3ddb1	17.5	19.0	19.3	19.9	20.3	20.4	21.0	23.7	• • • •	23.2
5bccl	30.2		• • • •	52.5		41.7	37.8	37.8	••••	40.0
8dbc1	34.9	39.4	38.5	49.7	50.5	47.2	44.1	42.8	• • • •	45.5
12cca1	47.6	48.6	57.6	66.1		51.6	51.7	51.5	52.4	49.0
15aad1	72.1	72.5			76.8	76.6	77.3	77.4	78.5	64.9
27bcd1	46.2	51.9	51.4	62.8	53.5	51.2	50.0		62.6	40.8
31cbc1		33.6	32.5	••••	• • • •	35.8	44.9	34.4	••••	27.9
201 2 704 2 1-1	12.1							e1 1		54 1
2N-2/W-2CCD1	43.1	24.0			40.2		26 1	22.7	13 6	30.2
Social	33.2	34.0	32.0	35.0	40.2	30.2	30.1	55.7	45.0	50.2
3N-24W-344-1	100 6	110 6	104 3			100 7		112.0	126.7	108.3
5dad1	108.0	110.0	74.3		83.0	80.6	83 0	82.8	120.1	77.8
Odaci	62 4	63.6	57 7	62 7	64 3	64 5	65.4	65.4		61.6
29222	65 3	65.7	61.3	64.3	66.0	66.2	67.3	67.2		63.3
, <i></i>	0.5	0.5.7								
3N-25W-1cdd1	133.6	135.8	131.4	134.5		135.8				134.1
2abb1	148.5	152.1	146.0	146.0			• • • •	151.2	155.6	149.4
15bba1	20.6	20.9	20.3	20.3	20.9	20.9	20.6	20.7	21.0	20.2
30abb1	28.0	32.2	29.0		40.0	37.8	35.7	34.8		38.0
326661	33.8	37.6	34.7		57.6	42.7	40.5	· 39.3		41.3
33aab1	87.0	94.7	85.0		••••					
							:			
3N-26W-12cdd1	56.2		56.6	74.2	68.1	66.6		64.1		67.5
22cdc1	68.8	68.4							• • • •	• • • •
29acb1	62.7	72.6	71.0		• • • •		71.5	71.7		75.5
3ldad1	45.2	55.2	51.1			57.0	52.6	51.5	66.0	55.2
35bab1	43.7	50.8		••••	64.3	56.3	52.1	51.2	••••	55.7
21 A CTV 1A			20.0	20.0	20.1	20.0	20.2	20.4	20.0	23.4
3N-27W-12cac1	30.4	30.9	30.9	30.3	30.1	29.9	30.2	30.4	30.9	51.4 91 1
256661	70.1		75.6		89.0	82.9	77.8	/0.0	• • • •	01.1
AN 3 AW 170 dat		25.2	25.2	26.0	26.2	26 0	202	27.5	27.6	27 7
4N-24W-17Cdd1		25.5	23.3	20.0	20.2	20.0	20.2	27.5	2.2	2.3
20daa 1	32 1	28.2	5.0	5.4	5.5	5.0	2.0	2.2	2.0	
31dda1	98.0	99.5	92.9	101.6	97.2	97.8	101.8	100.1	103.3	96.2
	2010	1								
					·					
										· · ·
4N-25W-6aaa1	58.7	58.8	59.1	59.1		59.2	57.1	58.9	59.1	59.3
11da1	11.5	12.5	13.0				13.6	12.5	12.4	11.6
15bdd1	13.5	12.8	13.5					14.7	13.8	13.4
21ddd1	42.9	42.8	43.1	43.0	43.0	43.0	43.0	43.5	43.1	43.5
24cbc1	46.5	47.4	46.6	••••	• • • •	47.0	•• •	47.1	47.2	47.2
29aaa2		18.4	18.4	20.3	20.8	19.1	20.6	20.4	20.2	19.4
32ccd1	23.7	23.7	22.6	24.2	• • • •	25.9	25.2		24.9	26.0
411 0 414 511 -				20.0	40.0	40.3	10.1			
4N-26W-5ddc1	39.3	39.6	39.7	39.8	40.0	40.1	40.1		••••	
6cdb1	46.9	46.8	47.6						A7 A	47 3
14CdCl	45.8	55.7	40.0	40.8	47.0	40.8	40.9	47.0	54 6	77.3
1/DDD1 224441	34.4	25.3	23.0	24 4	24 7	25.1	25.1	25 3	25.4	25.2
244441	23.9	23.7	20.8	21.7	24.7	21.2	21.7	21.8	22.0	21.6
290001	20 7	30.2	30.2	30.4	30.5	30.7	30.8	30.9	30.9	31.2
67665 I	27.1	50.2	50.2	50.4	50.5	50.1	50.0	50.7		
4N-27W-13cdd1	35 5		· · ·							
	55.5	1	1							
5N-24W-4ccd1	56.9		48.8				48.2	48.2	50.1	48.4
7dcd1	16.0		15.3	16.4	16.7	16.9	17.6	17.6	17.0	14.2
16ddd1	48.3	49.5		48.4		49.2	50.4		51.3	
19ddd1	10.0	12.1	7.3	5.5	8.2	10.3	11.7	8.9	8.7	6.7
	1									
5N-25W-1caa1	31.4	34.7	21.3	34.7	30.0	32.0	34.6	35.7	37.1	22.8
16cdc1	24.8	25.4	25.0	26.2	25.8	25.5	25.5	25.6	25.7	25.7
19ddd1	22.3	22.6	22.0	22.1	22.4	22.7	23.0	23.0	22.3	23.0
23ccc1	18.1	17.2	17.2	17.6			17.3	17.3	••••	17.4
27dcc1	1 22.7	1 22.8	1	1						

(feet below land-surface datum)

Table 5.--Continued

(ieet beiow inne-Suilace datum)	(feet	below	land-surface	datum)
---------------------------------	-------	-------	--------------	--------

	2nd week	3rd week	4th week	4th week	4th week	4th week	lst week	2nd week	3rd week	4th week	ī
Well	of Feb.	of April	of June	of Aug.	of Sept.	of Oct.	of Jan.	of Feb.	of April	of June	
number	1954	1954	1954	1954	1954	1954	1955	1955	1955	1955	Ļ
				ADVON CON							
			변	ARMON COUN	IIIContin	uea					
5N-26W-7dca1	23.0	32.7		. 33 1	33 7	32.8	32.7	32.5	32.8	31.7	
16daal	35.0	16 1	46.2	46.2	48.0	46 3	54 • 1	52.5	52.0	51.1	
23dbd1	4J.9	57.0	40.2	56.2	40.0	56.1			••••		L
27dbb1	62 5	57.0		50.2		60.9	61.2			61.7	
200cb1	16 1	17 4	16.0	17 4	17.8	17 3	17.0	16.2	15.4	15.4	
2 Jacor	10.1	1/14	10.7	1	1110		1,10	1010	1.500		
6N-26W-12cab1	14 3	16.0	11.4				16.4	16.7	16.0	10.9	
13dd41	56 0	56 3	54 0	55 4	57 8	56.5	56.7	56.9	57.4		L
17dcc1	30.0	17.7	36.5	55.1	5110	50.5	49.3	50.8	51.7	35.7	
34bcb1	28 7	28.0	30.5	61.2	29.3	29.3	29.7	29.0		29.6	
JADODI	20.1	20.7		01.5	27.0	23.0	27.1	2.10			
				TACKS	ON COUNTY						
								[L
2S-23W-4aa1	10.6	10.2	9.8	20.6			22.5		20.7		
8bcal	33.5		33.1	32.6	34.2	32.9	33.1		33.4		
				ļ							
1S-22W-8ccc1	26.9	29.1	24.3	28.2	29.6	30.7	31.6	31.7	32.1	26.1	
15abb1	4.7	4.1	3.7		6.4	6.4	6.5	5.3			
30dda1	12.0	8.3	6.3	15.9	16.8	17.1	17.9	17.9		7.0	
1S-23W-7dcc1	20.1	20.8	20.7	23.4	24.3	24.2	24.9	24.9	25.4	24.0	
9dcd1	65.3	65.4	65.4	65.3	65.4	64.4	64.4	65.3	65.7	65.8	1
12cdd1	48.1	48.5	47.6	••••	48.6		49.0	49.0	49.8		L
20ddc1	34.3	34.8	32.5	34.5	35.0		36.1	35.0	36.2	31.1	[
22ddc1	55.6	55.5	55.7	55.0	55.5	55.2	55.4	• 55.5	55.5	55.4	
30daa1	20.7	21.6	20.0	21.9	22.6	23.0	23.5	23.6	23.9	21.4	
33aaa1	38.7	38.7	37.6	37.8	38.2	••••			••••	••••	ŀ
1S-24W-2abb1	31.5	30.0	29.0	30.7	31.2	31.5	31.8	31.9	32.7	29.3	ļ
5bcd1	22.1	22.5		24.0	23.6	• • • •	22.7	23.6	••••	21.9	
7adc1	23.3	23.6		• • • •			••••				
10ccd1	54.9	55.1	54.5	55.1	55.4	55.6	55.9	56.1	57.0	55.8	
20add1	59.5	60.4	59.6	••••	65.7	61.8	62.1	62.1	64.2	60.8	
21bcd1	63.6	64.7	63.7	••••	70.9	66.0	66.4	66.3	• • • •	65.2	
						0					
IS-25W-13ccc1	75.6	76.6	76.0	78.7	79.2	77.0	76.5	76.2	79.7	76.4	
					10.0		10.0		10.2	0.1	
1N-22W-11cbc1	8.9	9.1	7.6		17.8		18.0	••••	10.2	9.1	
18aab1	43.5	43.5	41.1			43.0			••••	42.7	
26aad1	12.7	13.4	11.7	12.3	12.7	12.9	13.4	13.0	••••	14.2	
32 DC D1	14.7		••••	13.9	14.4		17.0	10.1		14.5	
IN 22W 10551	28.2	20.0	22.2	26.9	27.0	203	31 5	29.7		24.6	
114-25%-100001	20.2	29.0	25.5	36 7	37 3	37.8	383	38.6	39.2 -	37.0	[
104441	37.0	30.3	33.2	50.7	26.7	57.0	50.5	50.0	27.6	24 7	
170001 22bcc1	23.3	50 5	50.2	50.8	51 1	51.2	54 3	51 3	57.0		
220001	30.9	33.3	18 3	24.9	25 0	26.7	27.0	26.7	26.5	19.4	
214441	42.3	44.6	10.5	41.0	L.J.	46.2	47.9	47 3	48.2	44.8	
34dcd1	43.7	26.0	25 4	27.6	28 3	+0.2	77.02	11.0	1012		
344041	25.9	20.9	23.4	27.0	20.5		• • • • •		••••	1	
2N-22W-4daa1	56 9	71 7	63.5		83.5	87.8	65.4	63.0	74.6		l
8dda 1	35.2	37.4	35.2	41.4	41.6	39.9	40.4	39.7	43.0	40.7	ł
22abb1	00.2	24.5	24.0	24.2		24.5	24.7	24.7	24.9		
36bcc1	38 1	38.4	37.9	37.9	38.0	38.0	38.3	38.2		38.2	
000001		1	1	1		1			-		
2N-23W-1cbd1	36.9	42.1			56.3	49.2	44.9	50.1		36.7	1
2bcb1	27.2	27.8	25.5	30.7	30.5	29.7	29.0	33.8		24.7	
3ccal	31.5	32.0	29.3		1	35.5	34.0	33.2	••••	31.6	ł
10dbd1	18.9	19.8	17.5		23.4	21.7	20.8	20.4		17.3	
12 bbd 1		37.9	34.0	63.2	52.4	45.1	41.0	39.4	46.6	33.4	l
12aa1	33.4	36.3	35.3	47.2	43.6	42.9	39.0	37.9	••••	36.4	
16aba1	30.6	31.7	30.5	37.4	35.7		32.9	30.7		26.5	
21ahh1	1	33.0		1	34.8	33.9	33.5	33.1	36.2	29.1	
212221	27 7	20.3	25 4	1	32.0	31.1	30.7	30.3		25.6	
24hhh1	38.5	380	35.6	36.8	37.6	38.4	39.5	39.8	40.3	37.6	
240001	10.2	30.7	42 0	30.0	40 0	47 5	46 6	46 7			
274001	44.0	76 5	72.7	76 4	75.0	75 7	76.6	76.7	77 4	69.9	l
35deel	10.2	67.2	62 7	10.4	69.2	1 13.1	10.0	67.3	68.0		ł
Jucci	00.5	01.2	02.1		07.0			0,,0			1
3N-22W-27=41	7 0	0 1	6.1	9.1	10.3	10.6	10.2	10.5		5.5	
32chb1	43 0	47.1	44.3	48.9	48.4	48.6	48.8	47.9	50.3	48.6	l
020001	-3.0										
3N-23W-19bbb1	81.8	83.4	79.6	83.6	84.3	84.2	84.5	84.4	87.0	82.7	
26aad1	58.1	63.4	56.6	77.1	77.2	77.2	65.3	63.5		57.5	ļ

Table 5.--Continued

	2nd week	3rd week	4th week	4th week	4th week	4th week	1st week	2nd week	3rd week	4th week
Well	of Feb.	Feb. of April of June		of Aug.	of Sept.	of Oct.	of Jan.	of Feb.	of April	of June
number	1954	1954	1954	1954	1954	1954	1955	1955	1955	1955
				JACKSON	COUNTYCo	ntinued				
3N-23W-27dad1		50.7	40.9		65.0	54.3	47.4	45.8	60.6	42.9
27aad1	46.1	50.9	44.0		68.1	59.9	54.3	50.6		47.4
27cdd1	30.8		20.3			42.3	36.2	34.6		29.8
30daa1	24.4	27.7	23.1		29.7	29.3	27.5	27.2	35.8	27.2
31bca1	25.9	26.3	24.0	29.7	• • • •	26.6	26.7	26.4		25.4
32aab1	34.1	36.4	31.8		46.2		38.8			
35bdb1		39.3	35.8		39.4	39.9	40.6	40.9	41.0	34.3
36aac1	44.5	45.4	48.6	46.0	47.3	46.6	47.5	47.7	48.8	45.1

(feet below land-surface datum)

The flow of Salt Fork increases as the stream crosses the outcrops of the Dog Creek Shale and Blaine Formation in the report area and then decreases rapidly as the stream progresses eastward across the outcrop of the Flowerpot Shale. Apparently the stream gains more water by seepage from the Dog Creek and Blaine than is lost along that part of its channel by evaporation and transpiration.

<u>Springs.</u>--Ground water discharges from springs at many places in the area. Of the 16 springs visited, the discharges range from mere trickles to an estimated 300 to 400 gpm. The largest spring flows from a large opening in gypsum rock in the $NW_4^{\frac{1}{4}}$ sec. 16, T. 1 N., R. 23 W., and contributes to the flow of Gypsum Creek. Old settlers of the area report that at one time some of the springs had greater flows, especially the large spring mentioned above.

Concrete and stone reservoirs have been constructed to collect the water from some of the springs in sec. 25, T. 6 N., R. 24 W., and in sec. 31, T. 6 N., R. 23 W. Clark Stowe hauls water from his springs in sec. 25 to rural residents in the vicinity. Several small springs issue from the alluvium and terrace deposits northeast of Mangum; the water flows north into Elm Fork.

A few springs flow into Salt Fork along its eastward course through the area. Water issuing from the spring in the W_2^1 sec. 7, T. 4 N., R. 26 W., flows northward into sec. 6, and supplies more than the 240 gpm that is pumped for irrigation in the SW_4^1 sec. 6. In 1954 the Oklahoma Game and Fish Commission built a reservoir for recreation in the SE_4^1 sec. 10, T. 4 N., R. 26 W. This lake, when full, covers about 50 acres and has a capacity of about 300 acre-feet. The spring-fed stream that supplies the reservoir had a measured flow of 360 gpm; according to the former owner of the springs, this was the smallest flow on record. Before 1948, springs in secs. 18, 19, and 20, T. 4 N., R. 25 W., were the only source of water used by Hollis, but now they furnish only a part of the supply. Several other small springs flow into the south side of Salt Fork in the vicinity of Mangum, and some of them furnish enough water for stock needs.

Evaporation.--Where the water table is near the land surface ground water may be discharged into the air by evaporation. In this area such losses probably are significantly large in only small areas of the terrace deposits and alluvium. Factors governing the rate of evaporation of ground water are temperature, wind velocity, humidity, type of soil, and depth to water. White (1932, p. 8) found by experiment that the depth to the water table is the principal controlling factor. He compared evaporation at different depths with evaporation from a free water surface, and expressed the evaporation at a given depth as a percentage of the evaporation from a free water surface. Evaporation was found to decrease progressively from 80 percent at a water-table depth to 5 inches to 2 percent at a water-table depth of 85 inches. As the depth to water in this area generally is greater than 85 inches, the amount of water evaporated from the water table probably is small. On the other hand, the loss by evaporation from the belt of soil moisture may be rather large; most of the water thus discharged does not come from the zone of saturation.

<u>Transpiration</u>.--Loss of water into the atmosphere by growing plants is called transpiration. Although the roots of most plants absorb water from only the belt of soil moisture, the roots of some water-loving plants, or phreatophytes, absorb water from the capillary fringe or from the zone of saturation itself. Salt cedar, willow, and other phreatophytes grow in some of the principal valleys of the report area. Locally, the loss of ground water by tranpiration may be large, but in most of the outcrop areas of the Dog Creek Shale and Blaine Formation the depth to water is so great that the discharge of ground water by plants is negligible.

<u>Subsurface flow.--Where two aquifers are in contact, water may percolate</u> from one into the other. In the part of the area where saturated terrace deposits overlie Permian bedrock, water moves downward from the terrace deposits into the bedrock wherever the hydrostatic head of the water in the bedrock is less than that of the water in the terrace deposits. Also, where alluvium abuts the Permian bedrock that forms the valley walls, water moves laterally out of the bedrock into the alluvium. With the exception of the Gypsum Creek irrigation area, the upper end of all the irrigation areas is in or near rather extensive terrace deposits. As shown by plate 2, these terrace deposits are so situated that some of the water percolating from them into the bedrock probably moves into the irrigation areas and replaces the water pumped for irrigation.

<u>Pumpage</u>.--Annual pumpage of ground water for irrigation has increased steadily since irrigation was begun in the 1940's. Information obtained in interviews with the irrigators indicates that about 49,000 acre-feet of water was pumped for irrigation in 1954. This amount is about 30 percent greater than the amount reported by the irrigators in replies to an official questionnaire of the Oklahoma Planning and Resources Board (Husky, 1956).

Municipal records show that pumpage totals about 926 acre-feet of water per year for the public supplies and it is estimated that pumpage for stock is about 110 acre-feet. The amount of water used for domestic purposes in rural areas is practically negligible, because of the generally poor quality of the water in most of the water in most of the area.

The total pumpage of ground water in the area of this investigation in 1954, therefore, was about 50,000 acre-feet.

Utilization

Most of the water used in this area is ground water. During this investigation, pertinent data were obtained for 654 wells and 127 test holes. Of the wells, 141 are unused, 14 are domestic wells, 152 are stock wells, 20 are public-supply wells, 326 are irrigation wells, and 1 is a recharge well. Wells used for both domestic and stock supplies are classified as stock wells. Data pertaining to the wells and test holes are tabulated in appendix B; the locations of wells and test holes are shown on plate 2.

Domestic supplies

Domestic wells are the privately owned wells that supply water for home use, such as cooking, washing, and sanitation. Because of the poor chemical quality of the water available in most of this area, there are not many domestic wells. Most of the water used for domestic purposes is hauled from the three towns in the area; also, some is hauled from privately owned springs in the vicinity of Reed. No attempt was made to determine the amount of ground water pumped from domestic wells because the amount is small in comparison with the amount used for other purposes.

Most domestic wells in the area are drilled, are cased with a smalldiameter galvanized-iron casing, and generally are equipped with a cylinder pump. Relatively few automatic water systems are used. Some of the unused wells that were inventoried are abandoned domestic-supply wells. The abandoned wells reflect the decline in rural population that is evident from census records.

Stock supplies

A count was made of the number of stock wells in three townships during this study. A total of 27 were found in T. 2 N., R. 24 W.; 98 in T. 2 N., R. 26 W.; and 37 in T. 5 N., R. 26 W. Most of the stock wells are drilled, cased with 6-inch casing, and equipped with a cylinder pump and windmill. Because of its location with respect to land use, soil type, and general stock-water needs, T. 2 N., R. 24 W., is regarded as a typical and average township in the use of stock water; therefore, this township was selected for an inventory of the pumpage for stock use. About one million gallons of water was used in that township in 1953 (Roberts and Bunch, undated). The average annual pumpage for stock use was estimated by multiplying the amount used in the one township by the number of townships in the area. Annual use for stock in the project area is about 110 acre-feet. Much of the stock water of the area is obtained from privately owned ponds.

Public supplies

Public-water supplies of the cities of Mangum, Eldorado, and Hollis and the towns of Duke, Gould, and Olustee are obtained from wells. Several scattered wells in the area were dug for public supplies by the W.P.A. in the 1930's. Water for the city of Mangum, near the northeast corner of the area, formerly was obtained from terrace deposits just outside the city limits but in recent years has been obtained from terrace deposits about 17 miles farther north, outside the project area. Duke.--In 1953 Duke had two wells tapping the Blaine Formation in sec. 12, T. 2 N., R. 23 W. The first well was drilled in 1946 and was tested at about 650 gpm. The second well was drilled in June 1952 as a standby and safety measure; however, both are used. Annual pumpage is estimated to be about 14,000,000 gallons, or about 43 acre-feet.

Eldorado.--In 1953 Eldorado had five wells that tapped water in the Dog Creek Shale or Blaine Formation. Two of these, in sec. 28, T. 1 S., R. 23 W., are dug wells and until the mid-1940's were the town's only source of water. Later three new wells, one dug and two drilled, were developed in the city in sec. 18, T. 1 S., R. 23 W., to supplement the inadequate supply of the first two wells. The city pumps about 70,000 gpd, or about 80 acre-feet per year. More recently the city has tested terrace deposits west and southwest of the city in search of a supply of suitable water, because the quality of water from the city wells is not suitable for most domestic needs.

<u>Gould.--In 1953</u> Gould had two wells tapping the terrace deposits in sec. 18, T. 4 N., R. 24 W., about 10 miles north of town. The wells also supply a large part of the domestic needs of nearby rural residents who haul water from the town. The two wells cannot supply an adequate amount of water for the town in a season of peak use; therefore, hauling of water for domestic needs in the surrounding vicinity is sometimes limited. Gould's annual water use is estimated to be about 18 million gallons, or about 55 acre-feet.

Hollis.--Until 1948 the only sources of supply for the city of Hollis were the springs in secs. 18, 19, and 20, T. 4 N., R. 25 W., but this supply was supplemented by a well drilled in 1948 and by two additional wells drilled in 1951. The three wells tap terrace deposits in sec. 20, T. 4 N., R. 25 W., and have yields of 165, 225, and 265 gpm. In October 1955, another well was drilled near the first three wells to a depth of 200 feet into what could be an old stream channel now filled with terrace deposits. The well was tested in November 1955 at about 450 gpm.

Hollis pumps about 217 million gallons, or about 666 acre-feet per year, to supply its municipal needs and the domestic needs of nearby rural residents. In addition, in 1953, the Lone Star Gas Co. bought 14.5 million gallons of water for its gasoline plant about 2 miles northwest of town, making the total amount of water pumped by Hollis in 1953 about 230 million gallons, or 710 acre-feet. The gasoline plant was closed permanently in the early part of 1954.

<u>Olustee.--In 1953</u> Olustee had one well in the $NE\frac{1}{4}$ sec. 20, T. 1 N., R. 21 W., tapping either the Flowerpot Shale or the Duncan Sandstone. The well yields about 13,000 gpd (gallons per day), which is only a small fraction of the daily need of the town. Most of the municipal supply was taken from Turkey Creek by facilities constructed in about 1924. In August 1954 a new well was drilled to tap the alluvium in the $SE\frac{1}{4}SE\frac{1}{4}SE\frac{1}{4}$

41

sec. 16, T. 1 N., R. 21 W.; it was tested at about 300 gpm. The town consumes 125,000 to 150,000 gpd at the peak summer rate but only about 25,000 gpd at the lowest winter rate. The annual use of water is estimated to average 27 million gallons, or about 83 acre-feet.

Irrigation supplies

In this area the seasonal distribution of rain may mean an excess early in the growing season followed by a deficiency. Therefore, irrigation frequently means the difference between economic success and failure, or between a bumper crop and a mediocre one.

A total of 326 irrigation wells have been inventoried. Except for the five irrigation wells that tap terrace deposits (four northeast of Mangum and one east of Olustee, outside the principal irrigation areas) all the irrigation wells tap either the Dog Creek Shale or Blaine Formation, or both, and all are grouped and roughly centered within the drainage basins of the major creeks in the area. An attempt was made to keep an up-to-date inventory of all irrigation wells in the principal irrigation areas while peronal interviews were being conducted to obtain records of 1954 pumpage. Because the process of interviewing the irrigators was not finished until early 1955, some wells that were drilled as late as 1955 were inventoried and are included in appendix B.

Most of the irrigation wells were drilled with percussion drilling machines, and are partly or entirely cased. Many were drilled to their full depth before any casing was installed, but some had to be cased while the hole was being drilled to prevent caving of the unconsolidated upper sediments. When surface casing was required, it generally was 20 inches in diameter and commonly was left in the well even after the finished casing, or "liner," had been set. Only a few wells have no casing.

The following paragraphs summarize facts about the principal irrigation areas and wells within the areas.

Buck Creek irrigation area.--The Buck Creek area is in the Buck Creek drainage basin in the southwest corner of the area. Consisting of only 6 square miles, it is the smallest of the five principal irrigation areas that are described in this report, but it is actually part of a large area lying mostly in Texas. However, the pumpage from the 11 wells--1,700 acrefeet--is much greater than from all the wells in the Gypsum Creek and Mulberry Creek irrigation areas combined. The water level in the area responds rapidly to discharge and recharge, and an irregular but definite decline from 1950 to 1956 is shown by records from three wells. Because most of the arable land in the Buck Creek area is already under irrigation, the annual rate of ground-water withdrawal is not likely to increase significantly in the future. However, if irrigation wells were to be drilled outside the boundaries of the irrigation area, the total withdrawal from the enlarged area would be correspondingly greater. <u>Gypsum Creek irrigation area</u>.--The Gypsum Creek irrigation area is north of Eldorado and southwest of Duke in the drainage basin of Gypsum Creek, mostly in Jackson County. It is nearly oval and consists of about 30 square miles. The 30 square miles in this area makes it the third largest of the five principal irrigation areas, but the 100 acre-feet of water pumped from the two irrigation wells in use in the area in 1954 was the smallest amount pumped in any of the irrigation areas and was too small to cause any significant water-level fluctuations. Measurements made in 1954 show that the water level responds rapidly to recharge.

Lebos Creek irrigation area. -- The Lebos Creek irrigation area is long and narrow, extending from northwest of Hollis to southeast of Eldorado The irrigation area extends a short distance into Texas, but is mostly within Oklahoma. It contains about 170 square miles and is the largest irrigation area described in this report. Since 1946, when the first irrigation well was drilled in the area, there has been continuous development. The development probably will continue, not so much as an expansion of the area but as an increasing concentration of wells within the area. Although lack of water probably will be the greatest controlling factor in the future expansion of the area, the quality of the water will be an additional controlling factor in some parts of the area. The maximum depth to which wells should be drilled is dependent on the depth to the bottom of the water-bearing strata in the Dog Creek Shale and Blaine Formation. The depth to which wells should be drilled will be limited also by the water of poor quality that is present, locally, in these formations and in the underlying formation-especially at depths greater than 400 feet below the land surface.

The yields of the 210 irrigation wells inventoried ranged from less than 100 gpm to a few thousand gallons per minute. The 30,000 acre-feet pumped in 1954 was almost twice the combined pumpage in the other four irrigation areas. Monthly water-level measurements made from February 1954 to June 1955 show that the water level responds very rapidly to discharge and recharge, and also that a difference in the rate of response occurs in certain parts of the area.

<u>Mulberry Creek irrigation area</u>.--The Mulberry Creek irrigation area is mostly in the Mulberry Creek drainage basin a few miles west of Mangum. In 1954 about 540 acre-feet of water was pumped for irrigation from eight irrigation wells in this 13 sq mi area. Available records do not indicate such a rapid response to discharge and recharge as is apparent in the other areas; however, the apparently slower response may result from inadequate water-level records.

<u>Turkey Creek irrigation area</u>.--The Turkey Creek irrigation area is in the drainage basin of Turkey Creek, near the center of the project area. It lies partly in Greer County, partly in Harmon County, and partly in Jackson County. This area now covers about 90 square miles and is the second largest of the five principal irrigation areas, with respect to

43

both area and the amount of water pumped. Since 1942, when the first irrigation well was drilled, development and expansion of the area has been continuous; however, the limit of lateral expansion probably has been almost reached, and future development probably will consist of drilling additional wells within the area. As in the Lebos Creek irrigation area, water too highly mineralized for use has been tapped in several places. The quality of water will limit the size of the irrigation area and depth of wells. In 1954 the pumpage from 84 wells in the area totaled about 14,000 acre-feet. Water-level records for the period from February 1954 to June 1955 show that the water level responds very rapidly to discharge and recharge and that the fluctuations are greatest where the largest amounts of water are pumped. Water-level records for the period 1949-56 show an irregular but definite decline.

Yield of wells

The yield of a well that taps the Dog Creek Shale or Blaine Formation is governed by the size and (or) the number of water-filled solution cavities penetrated in drilling the well. Because the strata constituting these two formations not only differ in lithology from place to place but have been affected by solution activity in varying degree from place to place, the yields of wells differ appreciably.

Many of the existing wells yield more than 1,000 gpm and a few yield more than 2,000 gpm. One well in southern Greer County was pumped at a rate of about 2,550 gpm in May 1952 but for only a short period. Five other wells in the Lebos Creek irrigation area are reported to yield more than 2,000 gpm. Two of these five wells are reported to have yielded more than 2,000 gpm (the pumps' capacities) with less than 20 feet of drawdown and therefore are capable of yielding at a greater rate. Many of the wells yield between 500 and 1,000 gpm, but many others yield less than 10 gpm.

Most of the irrigation wells of low yield and others that failed to produce enough water for irrigation are near the edges of the principal irrigation areas. Therefore, yields are expected to be generally lower in the fringe areas than nearer the middle of the basins, where solution channels are better developed.

Transmissibility and Storage

The amount of water a well will yield depends on the hydraulic properties of the aquifer. The coefficient of transmissibility is defined as the rate of flow of water in gallons per day through a vertical strip of the aquifer 1 foot wide and extending the full saturated height, under a hydraulic gradient of 1 foot per foot at the prevailing temperature of the ground water. The coefficient of storage, S, of an aquifer is defined as the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that aquifer.

These properties of an aquifer generally are determined by aquifer tests. An aquifer test consists of pumping a well at a known rate for a given length of time and of measuring the depth to water in observation wells near the pumped well during the period of pumping and during the following period of water-level recovery. The test methods and the formulas for analyzing the data collected are based on several assumptions about the aquifer to be tested. As many of the necessary assumptions do not hold in the area described in this report, aquifer tests at individual well sites were not considered practicable.

Consideration was given to making a flow-net analysis, as has been done by others (notably Bennett and Meyer, 1952; and Taylor, 1948), to obtain values for the coefficients of transmissibility and storage of the major aquifer in the area. However, because so little is known about the detailed movement of flow induced by heavy pumping in the irrigation areas and because water-level fluctuations in one irrigation area seem not to be related to those in another, it was concluded that the porosity and permeability of the aquifer vary too widely from place to place for a flow-net analysis to be practicable.

Attempts were made to analyze the aquifer in the irrigation areas on a massive or regional basis. Plate 6 was used as a basic tool in determining the aquifer coefficients by this method. The pumpage from six selected areas was determined for a period of 87 days in the 1954 irrigation season. These areas are outlined on plate 6 by arcs of circles and the interconnecting segments of the irrigation-area outlines. The water pumped from the aquifer in each area was assumed to have been pumped at a continuous, uniform rate from a "single well" approximately at the center of pumping in that area, or at the intersection of the straight dashed lines in each of the circular areas. Lines were drawn to represent the change in water level due to pumping during the 87-day period between June and September 1954. "Observation wells" were assumed to be located at those points where the dashed lines intersect contours representing change in water level. Thus, the water-level drawdown in the observation wells at the end of the pumping period was the change in water level represented by the net-change line passing through the well.

The data thus obtained were analyzed by both the Theis nonequilibrium method and the Thiem method for determining the coefficients of transmissibility and storage of an aquifer (Wenzel, 1942), no corrections being made for interference of one area of pumping with another or for more than one of the apparent geologic semiboundaries. Because of the assumptions made, refinement of the calculations was not justified. The calculated coefficients of transmissibility ranged from 1.2×10^5 to 4.6×10^5 gpd/ft.

45

and averaged 2.6 x 10^5 . The coefficients of storage ranged from about 4×10^{-4} to about 3×10^{-2} , and averaged 1.6×10^{-2} . These values are believed to be reasonable for the coefficients of transmissibility and storage of the aquifer in the areas where solution channels are best developed, but they probably are several times too great for the aquifer throughout the irrigation areas and much too great for the aquifer as a whole. A reasonable value for the coefficient of storage for the part of the aquifer outside the irrigation areas is assumed to be one-third of that inside the irrigation areas, or about 5×10^{-3} , and the average coefficient of storage for the parts of the aquifer affected by pumping for irrigation is assumed to be half way between the two values, 1.0×10^{-2} .

The amount of available water in storage in the Dog Creek Shale and Blaine Formation was calculated by multiplying the areal extent by the estimated average thickness, and by the average storage coefficient of the aquifer. The extent of the infiltration area is about 400,000 acres. The thickness of the aquifer--that is, the average total thickness of anhydrite, dolomite, gypsum, limestone, and cavities in 69 test holes and wells that are judged to penetrate the aquifer fully--ranges from about 65 feet in the eastern part of the area to about 90 feet in the western part, and averages about 80 feet for the whole area. The total amount of water in storage is 400,000 x 80 x .01 = 320,000 acre-feet. Because the irrigation wells are concentrated where the aquifer is most productive, only a part, perhaps one-third or less, of the water in storage is available for pumping.

From July 1 to September 15, 1954, several wells declined in yield. However, the yield from some of these wells was increased by making a deeper pump setting or by deepening them and lowering the pump. The yields of other wells, generally those near the edges of the principal irrigation areas, declined but could not be increased successfully. Near the streams and in the central part of the irrigation areas, solution channels in the gypsum beds may be larger, extend to greater depth, and be more numerous than at the edges of the irrigation areas some distance from the streams. Thus, when the safe yield of an irrigation area is exceeded, the irrigation wells on the edges of the area probably will be the first ones affected by the reduction in storage and the resulting lower water levels. Unless water-level changes are observed closely, the failure of outlying wells may be one of the first serious warnings that the ground-water supply is being depleted.

Precipitation in 1957 was exceptionally high and averaged about 33 inches over the area--137 percent of normal. Water levels were low at the beginning of 1957 because of the extremely dry weather and heavy irrigation pumping during 1956. By the end of 1957, water levels over the area averaged about 12 feet higher than a year earlier, owing to the heavy precipitation and small irrigation pumpage during the year. On the basis of the storage coefficients calculated above, the total volume of water stored in the aquifer in the Dog Creek Shale and Blaine Formation increased by an estimated 48,000 acre-feet in 1957. From December 1957 to January 1963 water levels throughout the area declined an average of 3.14 feet and the volume of water in the aquifer declined an estimated 13,000 acre-feet.

Annual Recharge

The replenishment of ground water in an aquifer is known as recharge, and under natural conditions an aquifer is recharged from one source or from a combination of several sources. The principal natural sources of recharge are influent streams, infiltrating precipitation, and subsurface inflow from other aquifers or areas. Recharge also may be induced by artificial means, such as recharge wells, canals, or water spreading.

When the investigation was begun, Salt Fork was considered a possible source of recharge to the Dog Creek Shale and the Blaine Formation. Discharge measurements showed that Salt Fork gains water along the first several miles of its course in the area. However, most of the gain may be due to springs issuing from the terrace deposits on the south side of the river and to inflow, on both sides of the river, from tributaries whose flow is sustained by springs issuing from the Permian rocks. Hence, it could not be determined whether the stream is influent or effluent with respect to the principal ground-water reservoir in the Dog Creek Shale and Blaine Formation along its course in the western part of the area.

Also, when the investigation was begun the water in the terrace deposits, and possibly also in the Whitehorse Group, was assumed to be perched and therefore not connected hydraulically to the zone of saturation in the Dog Creek Shale and Blaine Formation. It was believed possible that water from Salt Fork could move southward through the Dog Creek Shale and Blaine Formation to the irrigation areas, even though there is a groundwater divide in the terrace deposits between Salt Fork and those areas. To determine whether such southward movement was possible, several test holes were drilled south of Salt Fork between the State line and a line extending from Reed, so that the position of the piezometric surface in the Dog Creek Shale and Blaine Formation could be measured. It was found that eastward for 9 miles from the State line the piezometric surface is above the level of Salt Fork, that for a few miles farther east it is at about the same level, and that still farther east it is above the river level (pl. 2).

Apparently, therefore, the Salt Fork gains water in those stretches where the piezometric surface is above stream level and neither gains nor loses in the stretch where the river is gaining and, at least at low flow, practically no water is lost from the stream. Even if the stream were losing in that stretch during periods of high flow, any water leaking from the river channel would move southeastward (perpendicular to the water-level contours) and so could not possibly reach the Lebos Creek irrigation area, which is to the southwest. Furthermore, if only one or two of the several irrigation areas had a special source of recharge, it would be difficult to explain why the water-level responses to precipitation and pumping are so similar in all of them. Consideration of all the evidence leads to the conclusion that the Salt Fork is not a source of recharge to the Dog Creek Shale and Blaine Formation within the area.

Some recharge to the Dog Creek Shale and Blaine Formation probably results from percolation from the surficial terrace deposits and the Whitehorse Group in the northwestern part of the area and from the less extensive terrace deposits and alluvium elsewhere in the area. The surficial deposits are highly porous and permeable and they catch and hold a large percentage of the water that falls on their surfaces. Although leakage from the zone of saturation in these deposits probably is a source of recharge to the older rocks, the amount and extent of such recharge cannot be estimated from available data. It is not believed to be the major source of recharge to the ground-water reservoir in the irrigation areas.

Infiltrating precipitation probably is the major source of recharge to all the ground-water reservoirs in the area. The water level rises rapidly as a result of precipitation in the immediate vicinity (pl. 7), and it is believed that precipitation on the gypsum beds, where they crop out to the northwest of this area, is another important source of recharge to the principal aquifer. At least it is reasonable to assume that if the water in the Dog Creek and Blaine beneath the terrace deposits in the northwestern part of the area is not all derived from the overlying terrace deposits, then some of it must be from recharge in the outcrop area of the rocks.

After rains, water can be observed flowing into the many sinkholes. Some sinkholes receive all the runoff from several acres, whereas others receive runoff from much smaller areas. Organic matter pumped from wells is evidence that some water enters the aquifer without first being filtered through fine-grained materials. Other natural depressions, some of which may be sinks that have become plugged, contain shallow lakes in seasons of heavy precipitation. Although much of the lake water is evaporated, some probably infiltrates to the zone of saturation. Unless the water that enters the aquifer through sinks or by seepage from lakes is withdrawn from the aquifer by pumping from wells, it moves generally southeastward and discharges into Salt Fork and its tributaries. The percentage of the precipitation that infiltrates through sinkholes and from lakes obviously differs appreciably from place to place; therefore, no attempt was made to estimate the amount of recharge by this particular method.

Attempts have been made to recharge the ground-water reservoir artificially by introducing water into wells in at least two places in the area. One recharge well, about 3 miles west northwest of Duke, was drilled to drain an area of farmland; another recharge well is an abandoned irrigation well, about 4 miles west of Hollis, that also drains an area of farmland. The amount of water introduced by artificial recharge has been negligible, but with proper engineering design and operation, a system of recharge wells might be feasible.

The ground-water aquifers in this area are recharged principally by infiltrating precipitation and by subsurface flow. Annual pumpage for irrigation has increased rapidly since 1950. As a result of the pumping and also because precipitation was less than normal, the water level in the irrigation areas declined annually from 1950 to late 1955. The fall rains in 1955 were heavy enough to boost the total precipitation for the year to slightly above normal, and as a consequence the water levels in the irrigation areas were, on the average, about 2 feet higher in February 1956 than they were the previous February. It is concluded, therefore, that under normal conditions of rainfall and natural recharge, the 1955 rate of pumping did not exceed the average annual rate of recharge from precipitation.

In making the first of two estimates of the percentage of precipitation that recharges the Dog Creek Shale and Blaine Formation, the following assumptions were made: (1) Direct infiltration is the only significant source of recharge to the aquifer; (2) the percentage of precipitation infiltrating to the aquifer by each of the several routes consistently constitutes the same proportion of the total recharge; and (3) each time rain falls, the same percentage reaches the ground-water reservoir. Inasmuch as most of the rainfall occurs in the late spring and early fall, the evaporation rate would be about the same each time. Although the soil-moisture deficiency differs considerably from season to season, it is not considered to be a determining factor in the long run.

The extent of the irrigation areas, as shown on plate 6, is about 200,000 acres, and the catchment area that contributes recharge to the irrigation areas is estimated to be about twice that size--400,000 acres. The average precipitation at Eldorado, Hollis, and Mangum between February 1954 and February 1955 was about 1.24 feet (62 percent of normal), and from February 1955 to February 1956 was about 2.37 feet (118 percent of normal). From February 1954 to February 1955 the water level in the irrigation areas declined an average of about 5 feet and outside the irrigation areas it declined an average of about 1.5 feet. Total pumpage from the aquifer in 1954 is estimated to have been about 50,000 acre-feet and in 1955 to have been about 55,000 acre-feet. The loss of ground water to streams, evaporation, and transpiration is estimated to have been about 6,000 acre-feet per year. The storage coefficient of 0.016, determined from the regional aquifer tests, is assumed to be correct for the irrigation areas, and, as indicated previously, the coefficient for other areas is estimated to be about 0.005.

On the basis of these figures, the percentage of precipitation that became recharge in 1954 (R 54-1) and in 1955 (R 55-1 was calculated according to the following formula:-

$$R = \frac{D_t \pm S_i \pm S_o}{P_+} 100$$

Where: R = percent of precipitation reaching the zone of saturation, Dt = total discharge (natural discharge and pumpage), in acre-feet; Si = change in storage inside irrigation areas, in acre-feet; So = change in storage outside irrigation areas, in acre-feet; Pt = total volume of precipitation (falling on the catchment area), in acre-feet.

Then:

$${}^{R}54-1 = \frac{(50,000+6,000) - (5x0.016x200,000) - (1.5x0.005x200,000)}{1.24x400,000} 100 = 7.8\%,$$

and

$${}^{R}55-1 = \frac{(55,000+6,000)+(2x0.016x200,000)+(2x0.005x200,000)}{2.37x400,000} = 7.3\%.$$

If the figures for pumpage in 1954 and 1955 are too large (and evidence suggests they may be at least 130 percent of actual pumpage), then the amount of recharge as determined above is too large and perhaps should be 5.5 percent to 6 percent.

The second estimate of the percentage of precipitation that becomes recharge was made in the following manner. It was calculated, from hydrographs and water-level records, that the water level would have risen an average of 3 feet during April and May 1954 and 5 feet during May and June 1955 if no water had been pumped from the aquifer. Twenty percent of the total rise was assumed to have been due to filling of cones of depression after pumps were stopped. The other 80 percent was assumed to come from the infiltration of precipitation from the heavy rains during those periods. The formula used for the second recharge estimate for 1954 (R 54-2) and 1955 (R 55-2) was:

$$R = \frac{F \times H \times S}{P} 100$$

Where: R = percent of precipitation reaching the zone of saturation

- F = percent of water-level fluctuation resulting from infiltration
 of precipitation
- H = change in water level, in feet
- S = average coefficient of storage inside and outside the irrigation areas (1×10^{-2})
- P = precipitation during period of water-level rise, in feet

Then:

$$R_{54-2} = \frac{0.80 \times 3 \times 0.01}{0.75} 100 = 3.2\%$$

and

$$R_{55-2} = \frac{0.80 \times 5 \times 0.01}{1.06} 100 = 3.8\%$$

The above formula, the average of the second recharge estimate (0.035), and the estimated discharge for the area can be used to calculate the waterlevel decline between February 1954 and February 1955. Based on this reasoning, the decline of water level should have been 9.7 feet:

s = (decline due to discharge) - (rise due to recharge)

$$= \frac{50,000 + 6,000}{400,000 \times 0.01} - \frac{1.24 \times 0.35}{0.01} = 14.0 - 4.3 = 9.7 \text{ ft.}$$

Inasmuch as the decline in water level in the irrigation areas was only about 5 feet, the second estimate of recharge evidently is too small. However, if the pumpage figure was 130 percent of actual pumpage (as suggested earlier), the computed decline based on actual pumpage would have been 6.3 feet. This is still substantially greater than observed declines; consequently the second recharge estimates are believed to be less reliable than the first estimates.

A rough check of the recharge estimates can be made by applying them to the 5-year period 1958 through 1962, when precipitation was approximately normal. During this period the total precipitation, averaged, for the three stations, was 124.4 inches, or 24.88 inches annually (103 percent of normal). Based on the 7 percent estimate derived above, annual recharge would have averaged 1.74 inches, or 58,000 acre-feet for the area.

Because precipitation was near normal, pumpage for irrigation is estimated to have been only about 1 acre-foot per acre irrigated, or about 35,000 acre-feet annually. Other pumpage has been estimated to be about 1,000 acre-feet per year and natural discharge to be about 6,000 acre-feet. Thus, the total discharge of ground water in the area is estimated to have averaged about 42,000 acre-feet annually during the 5-year period.

Water levels in observation wells in the area in January 1963 averaged about 3.14 feet lower than in December 1957. Using the storage figures previously developed, this change in water level means that in 1963 the ground-water reservoir contained about 12,500 acre-feet less water than 5 years earlier. The average decline in storage for the period was about 2,500 acre-feet annually.

A comparison of the recharge, discharge, and estimates of change in storage for the 5-year period indicates that the recharge estimate of 7 percent of total precipitation is too large, or the estimate of discharge from the reservoir for the period is too small, or both. If the recharge estimate were 6 percent, instead of 7 percent, then the annual recharge for the period would have averaged about 50,000 acre-feet.

Chemical Quality of the Water

Natural water contains variable amounts and kinds of dissolved constituents as a result of the solvent action of water on minerals and rocks. Within reasonable limits, the presence of minerals in water adds to the value of the water for irrigation use and human consumption. The minerals not only add certain plant nutrients to the soil, but improve the palatability of water for drinking. If no minerals were dissolved in water, it would have the flat taste of rainwater. Chemical analyses of 43 samples of ground water and 6 samples of spring water are listed in table 6, and the locations of the sampling points are shown in figure 7. Other data on the quality of water in streams in this area have been published (Walling, Schoff, and Dover, 1951; U.S. Geological Survey, 1952; Dover, 1953, 1954, 1956, 1958, 1959; Murphy, 1955; Pate, Murphy, and Orth, 1961; Cummings, 1963).

Because the wells chosen for sampling are scattered widely, the analyses are believed to represent nearly the full range in quality that may be expected. The 43 ground-water samples that were analyzed consist of 29 from wells in the Dog Creek Shale and Blaine Formation, 8 from wells in the Blaine Formation, 4 from wells in the terrace deposits, 1 from a well in the Whitehorse Group, and 1 from a well that tapped three or more formations of Permian age.

Suitability for Drinking

Standards for judging the suitability of water for drinking purposes have been established by the U.S. Public Health Service (1962). According to those standards, the maximum concentrations of certain constituents allowed in water that is provided for passenger use on carriers subject to Federal quarantine regulations are those given in the following table:

Constituent	Parts per million $\frac{1}{}$
Iron (Fe)	0.3
Fluoride (F)	1.6
Chloride (Cl)	250
Sulfate (SO_4)	250
Dissolved solids	500 (1,000 accepted)
Nitrate (NO ₃)	45

1

A part per million (ppm) represents a unit weight of the substance dissolved in a million unit weights of water, such as a pound of calcium in a million pounds of water.

Figure 7 .--- Map showing where samples of water were collected for chemical analysis.

Table 6.--<u>Chemical analyses of water from wells and springs in Harmon County, and adjacent parts of Greer and Jackson Counties, Oklahoma</u>

Location: See text p. 7 for explanation of numbering system; well locations shown on pl. 2.

Geologic source: Qt, terrace deposits; Pw, Whitehorse Group; Pdc, Dog Creek Shale; Pb, Blaine Formation

į.

Class of irrigation water: See text p. 56 for explanation.

(Analytical results in parts per million except as indicated)

																Dissolved	i solids	Hardness	as CaCO3	Don	Specific		Sedium		
Location	Depth of well (feet)	Geologic source	Date of collection	Tem- pera- ture (°F)	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Mag- nesium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sulfate (S0 ₄)	Chloride (Cl)	Fluo- ride (F)	Nitrate (NO ₃)	Residue on evaporation at 180 C	Calcu- lated	Calcium, magnesium	Noncar- bonate	cent so- dium	(micromhos at 25°C)	рН	adsorp- tion ratio (SAR)	Class of irrigation water	Boron (B)
1S-23W-28adb1&2 1S-24W-20add1 1S-25W-2abb1	45, 45 165 86	Pdc, Pb Pdc, Pb Pdc, Pb	7-17-52 9- 3-53 9-25-53	 65	16 16 13	0.00 .00 .00	340 716 710	99 146 151	67 913 883	3.4 9.1 12	269 225 217	949 2,050 2,070	109 1,440 1,400	0.5 .5 .7	16 22 15	1,840 5,770 5,640	5,420 5,360	1,260 2,390 2,390	1,040 2,200 2,210	 45 44	2,180 7,270 7,160	7.1 7.1 7.2	0.8 8.1 7.8	C3-S1	0.83 1.4
1N-21W-20add1 1N-23W-10bbb1 1N-24W-20ddd1 1N-25W-11baa1 1N-25W-113dcc1 1N-26W-5bd1	92 140 180 120 102	Qt Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb	7-17-52 9-16-53 9-18-53 9-30-53 8-13-52 8-12-52	 65 64 65 65	13 15 15 16 	.05 .00 .00 .00	87 608 704 596 626 608	12 79 170 114 134 130	20 38 1,190 97 31 12	8.3 4.3 15 5.2 22	106 178 184 188 219 199	188 1,630 2,270 1,730 1,890 1,810	27 50 1,780 115 565 185	.3 .3 .7 .7	1.8 12 3.2 6.4 8.5 12	421 2,760 6,580 2,970 4,000 3,260	2,530 6,240 2,770 3,720 2,960	266 1,840 2,460 1,960 2,110 2,050	180 1,700 2,300 1,800 1,930 1,890	 4 51 10 28 11	632 2,730 8,580 3,040 4,670 3,350	7.2 7.3 7.2 7.2 7.3 7.2	.1 .4 10 1.0 3.6 1.2	C2-S1 C4-S1 C4-S1 C4-S1 C4-S2 C4-S1	.70 1.4 .58
2N-22W-5dcb1 2N-23W-12bbd1 2N-23W-12bda1	135 200	РБ { РБ {	4- 7-50 8-14-52 6-10-48 8-13-52	65 65 65 65	····· ·····	···· ···· ····	624 620 584 610	159 141 75 89		31 33 36 39	201 186 55 199	1,840 1,810 1,610 1,670	370 312 122 123		3 6.6 18 7.5	3,650 3,510 2,740 2,910	3,280 3,140 2,500 2,690	2,210 2,130 1,770 1,890	2,050 1,970 1,720 1,720	15 14 8 9	3,830 3,700 2,780 3,020	7.2	1.7 1.5 .7 .9	C4-S1 C4-S1 C4-S1 C4-S1	·····
and 12bdd1 2N-25W-23abb1 2N-25W-31dad1 2N-26W-2cba1 2N-26W-2cba2 2N-26W-3dbc1	83 130 201 102 189 450	Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb	7-17-52 8-12-52 10-15-53 10-2-53 10-2-53 3-5-55	 65 65 65 65	16 13 16 16 	.00 .00 .00 .00	614 592 606 612 596 2,250	92 164 79 149 135 2,330	94 2 43 106 81 49,3	5.4 53 5.1 5.1 4.8	217 236 134 236 212 76	1,670 2,010 1,620 1,810 1,790 2,160	130 288 66 159 104 85,000	.5 .5 .7 .7	9.2 11 5.8 26 17 6.2	2,920 3,710 2,680 3,220 3,050 144,000	3,430 2,510 3,000 2,850 141,000	1,910 2,150 1,840 2,140 2,040 15,200	1,730 1,960 1,730 1,950 1,870 15,000	20 5 10 8 88	3,020 4,020 2,680 3,320 3,080 140,000	7.3 7.2 7.2 7.0 7.2 7.3	.9 2.4 .4 1.0 .8 174	C4-51 C4-51 C4-51 C4-51 C4-51 	 1.1 .70 .70
3N-23W-2bdd1 3N-23W-16cab1 3N-23W-17aa1 3N-23W-17dda1 3N-23W-27dab1 3N-23W-27dab1 3N-23W-33bdd1	90 152 189 120 118 75	Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb	5-16-52 8-14-52 8-12-52 8-12-52 4-6-50 4-7-50	64 65 65	· · · · · · · · · · · · · · · · · · ·	···· ···· ····	600 600 602 598 600 634	102 141 149 184 113 137	8 14 12 56 9 22	1 2 39 37 36 4 2	251 277 290 165 263 257	1,690 1,840 1,850 2,250 1,720 1,840	81 172 150 710 109 350	· · · · · · · · · · · · · · · · · · ·	21 20 19 .4 7.7 10	2,920 3,280 3,310 4,690 3,110 3,690	2,700 3,060 3,040 4,390 2,770 3,320	1,920 2,080 2,110 2,250 1,960 2,150	1,710 1,850 1,880 2,110 1,750 1,940	9 13 12 35 9	2,990 3,460 3,460 5,490 3,090 3,940	7.2 7.1 7.2 7.4	.8 1.4 1.2 5.2 .9 2.1	C4-S1 C4-S1 C4-S1 C4-S1 C4-S1	·····
3N-24W-5dad1 3N-24W-29aaa1 3N-25W-1cdd1 3N-25W-32acd1 3N-26W-11dd1 3N-26W-29cc1	155 169 156 140 110	Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb Pdc,Pb	8-14-52 $10-5-53$ $10-13-53$ $1-5-54$ $10-9-53$ $10-2-53$ $10-2-53$	65 65 65 65 66	16 16 13 15 16 15	.00.00. 00.00.00. 00.00.00	614 584 761 590 590 596	142 219 413 156 142 179 156	29 274 3,220 536 173 159 152	9 6.6 70 14 6.0 6.2 6.9	251 292 135 229 263 257 228	1,910 2,210 3,440 2,250 1,910 2,000 1,910	398 260 4,810 455 142 155 180	.7 .7 .5 .7	14 14 21 15 12	3,730 3,960 13,300 4,370 3,330 3,450 3,370	3,500 3,730 12,800 4,110 3,130 3,250 3,140	2,120 2,360 3,600 2,050 2,060 2,210 2,130	1,910 2,120 3,490 1,860 1,840 2,000 1,940	23 20 66 36 15 13	4,160 4,190 17,700 4,890 3,460 3,580 3,480	7.2 7.2 7.4 7.3 7.1 6.9 7 4	3.2 2.6 23 5.1 1.6 1.5	C4-SJ C4-S2 C4-S2 C4-S1 C4-S1 C4-S1	2.2 13 4.5 1.9 1.3
4N-23W-20dd1 4N-23W-33dab1 4N-24W-18abc1	 155	Pdc,Pb Pb { Pdc, Pb	12-10-48 4- 5-50 5-15-52	 	••••	····	620 606 596	146 128 137	8 5 5	4 2 6	270 260 258	1,910 1,760 1,780	79 66 64	· · · · · · · · · · · · · · · · · · ·	10 17 21	3,340 3,060 3,020	2,980 2,760 2,780	2,150 2,040 2,050	1,930 1,830 1,840	8 5 6	3,030 2,970 3,060		.8 .5 .5	C4-S1 C4-S1 C4-S1 C4-S1	
and 18acb1 4N-25W-20bca1 and 20bc1	102,110	Qt Qt	10-23-51 8-10-50	 	19 	.00 .00	84 72	21 17	53	1 9 1	357 284	60 54	16 14	.5	29 32	458 410	459	296 250	4 17	27 	733 619	7.5	1.3 1.1	C2-S1 C2-S1	
5N-23W-138881 5N-23W-228881 5N-24W-14ccb1 5N-25W-21cbb1	35 135 44 42	Qt Pdc,Pb Pdc,Pb Pw	12-23-53 4- 6-50 8-14-52 12-22-52 1-19-54	63 65 65 62	9.4 13 18	.06 .00 .00	53 614 594 608 588	19 121 125 80 101	40 6 10 54 94	2.4 2 3.4 3.3	302 174 175 287 179	19 1,720 1,750 1,590 1,740	8 171 172 38 38	.5 .5 1.3	17 6.8 12 19 75	315 3,150 3,090 2,730 2,900	318 2,790 2,840 2,750	210 2,030 2,000 1,850 1,880	0 1,890 1,850 1,610 1,740	29 7 10 10	409 3,120 3,320 2,790 2,940	7.9 7.1 7.3 7.4	1.2 .7 1.0 .5 .9	C2-S1 C4-S1 C4-S1 C4-S1 C4-S1 C4-S1	.20
6N-26W-17dcc1 SPRINGS	116	Pđc,Pb	1-19-54	62	15	.00	600	101	29	3.8	230	1,690	8.8	.7	4.9	2,760	2,570	1,910	1,720	3	2,690	7.4	.3	C4-S1	.98
2S-24W-13			3-10-50				88	36	15	2	363	116	186		20	814		368	70	47	1,340				
4N-22W-18cbb 4N-23W-9bba	·····	·····	12-16-53 2- 9-54	53 58	18 15	.00	453	54	36	3.3	225	1,130	29	.5	20	1,970	1,860	1,350	1,770	5	2,110	7.6	.4	C3-S1	.40
4N-26W-6c		·····	2- 9-54	65	16	.00	80	26	40 77	2.3	337	1,140	24 28	.5 .5	18 24	2,000	1,880	1,400	1,210	6	2,140	7.5	.5	C3-S1	.40
6N-23W-31aaa 6N-26W-11cad		•••••• •••••	12-16-53 6-21-59	39 61	14 	.00	62 1,480	32 2,000	46 120	2.7	400 38	28 7,720	7.2 190,000	7	17 	397 268,000	407	286 11,900	0	26 96	667 210,000	7.8	1.2	C2-S1	.34
																								And and a second s	

45

Composite sample from wells indicated

Most of the above standards are recommended on the basis of taste and the others are the upper limits regarded as wholly safe for human consumption.

Compounds of iron present in ground water usually precipitate as oxides when exposed to the air, and concentrations exceeding about 0.3 ppm will cause stains and discolorations on fabrics and porcelain fixtures. Of the 26 analyses that show iron content, none indicates an objectionable amount.

Fluoride in water, in small concentrations, helps to prevent dental cavities in children who drink the water during the years of formation of permanent teeth. Dean (1936) and others have shown that the teeth of children who habitually drink water containing more than about 1.5 ppm fluoride are likely to be mottled or stained. Fluoride determinations made in 25 of the analyses reported in table 6 show that the concentration ranged from 0.3 to 1.3 ppm. All were below the Public Health Service maximum of 1.6 ppm, and all were below the range that is likely to cause disfiguration of teeth.

Nitrate in water is considered to be the final oxidation product of nitrogenous material and generally has little effect on the suitability of water for ordinary uses. In high concentrations, nitrate has been known to cause methomoglobinemia (commonly referred to as "blue baby" disease, Waring, 1949, p. 147), if the water is drunk or used to prepare the infant's formula. The U.S. Public Health Service considers water containing less than 10 ppm of nitrate nitrogen (about 45 ppm when reported as nitrate) to be safe. Only one analysis, that of water from a well capping the Whitehorse Group, had nitrate exceeding 45 ppm.

The limits listed for sulfate, chloride, and dissolved solids in the water are based mainly on the taste of the water. A water having a since chloride content exceeding about 250 ppm has a salty taste. Large amounts of calcium and magnesium impart a bitter taste to water and excessive amounts of magnesium sulfate (epsom salts) will cause temporary stomach disturbances. Water having a mineral content exceeding 500 ppm is unpleasant to the taste of someone who is accustomed to water of much lower mineral content.

The four samples of water from the terrace deposits meet all the standards set forth by the U.S. Public Health Service, but all samples from the Dog Creek Shale and the Blaine Formation and from the Whitehorse Group are too highly mineralized.

Californic institute of restantes, (1248 - 114)

³Note: Most Àuts is this listed of the course war subject from D.G. Salihity Espected Stoff, 1951, 96ar the course for execution of helios was alkali socks: D.C. Ospon af Approxications, for each or a form of an

Suitability for Livestock

At the present time no definite standards have been set for the salinity of water consumed by farm animals. As animals apparently tolerate greater mineral concentrations than humans, water suitable for humans is assumed to be suitable for livestock. The Department of 1/ Agriculture and Government Chemical Laboratory of Western Australialists thresholds of salinity tolerated by livestock in that area as shown in the following table:

Animals	Salinity (ppm)
Poultry	2,860
Pigs	4,290
Horses	6,435
Dairy cattle	7,150
Beef cattle	10,000
Adult dry sheep	12,900

Suitability for Irrigation

The total amount of dissolved minerals that can be tolerated in an irrigation water varies considerably with the type of soil being irrigated, the crop grown, the drainage of the land, and the amount of rainfall². In general, the higher the mineral content of an irrigation water the greater is the tendency for the minerals to accumulate in the soil. If a soil contains a high accumulation of salts, more water than is needed for crop growth must be applied in order to leach the accumulated salts from the soil. Of the various minerals generally present in natural water, the concentration of sodium and its relative ratio to calcium and magnesium, commonly referred to as the "sodium adsorption ratio (SAR)," is the most critical because of the tendency of sodium to impair the soil's permeability. This ratio is defined by the equation:

$$SAR = \frac{Na^{+1}}{\frac{\sqrt{Ca^{+2} + Mg^{+2}}}{2}}$$

Where the concentrations of Na^{+1} , Ca^{+2} , and Mg^{+2} are expressed in equivalents per million. To convert the concentrations of the sodium, calcium, and

¹California Institute of Technology (1952, p. 154)

²Note: Most data in this section of the report were adapted from U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture, Agriculture Handb. 60.

magnesium ions from parts per million to equivalents per million they must be multiplied by 0.0435, 0.0499, and 0.9822, respectively. Values for the SAR of ground water analyzed from this area are given in table 6.

Figure 8 is a diagram for the classification of irrigation water based on the specific conductance and the sodium-adsorption ratio. The specific conductance of a water is a measure of the salinity hazard of the water, and the sodium-adsorption ratio is a measure of the sodium or alkali hazard of the water. If a point corresponding to the values for conductivity and SAR of a water is plotted, its position on figure 8 determines the quality classification of the water.

Low-salinity water (CJ) can be used for irrigation of most crops on most soils with little likelihood that soil salinity will develop. Some leaching is required, but this occurs under normal irrigation practices except in soils of extremely low permeability.

<u>Medium-salinity water</u> (C2) can be used if a moderate amount of leaching occurs. Plants with moderate salt tolerance generally can be grown without special practices for salinity control.

High-salinity water (C3) cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

Very high salinity water (C4) is not suitable for irrigation under ordinary conditions but may be used under special circumstances. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching, and very salt-tolerant crops should be selected.

Low-sodium water (S1) can be used for irrigation on almost all soils with little danger of the accumulation of harmful quantities of exchangeable sodium. However, sodium-sensitive crops such as stone-fruit trees and avocados may accumulate injurious concentrations of sodium.

Medium-sodium water (S2) will present an appreciable sodium hazard in fine-textured soils having high cation-exchange capacity, especially under low-leaching conditions, unless gypsum is present in the soil. This water may be used on coarse-textured or organic soils with good permeability.

High-sodium water (S3) may produce harmful quantities of exchangeable sodium in most soils and will require special soil management--good drainage, high leaching, and additions of organic matter. Gypsiferous soils may not develop harmful levels of exchangeable sodium from such waters. Chemical amendments may be required for replacement of exchangeable sodium, except that amendments may not be feasible with water of very high salinity.

FIGURE 8-- Diagram showing the classification of water for irrigation.

<u>Very high sodium water</u> (S4) is generally unsatisfactory for irrigation purposes except at low and perhaps medium salinity, where the solution of calcium from the soil or use of gypsum or other amendments may make the use of this water feasible.

The quality classification based on salinity and alkali hazards is shown in table 6 for each of the analyses. The four analyses of water from terrace deposits indicate a medium salinity and a low-sodium hazard. However, most of the water available for irrigation in this area comes from the Dog Creek Shale and Blaine Formation and is highly mineralized. Samples of water from these formations indicate a water of very high salinity, but having a low-sodium hazard. Although classified as of unsatisfactory quality for irrigation on the basis of the salinity hazard, the water has been used continuously for irrigation of some lands for nearly 20 years without apparent ill effect. The good soil drainage and the low-sodium hazard of the water doubtlessly account for the successful use of the water. Continued use of the water for irrigation will provide some interesting data in regard to the high-salinity tolerance of crops, such as cotton, small grains, alfalfa, and truck crops, when the sodium hazard of the applied water is low.

In addition to the salinity and alkali hazards of an irrigation water, the boron content of the water is important. Boron in small quantities is essential to the normal growth of all plants, but in large quantities it is toxic. The permissible limits of boron for several classes of irrigation water, as proposed by Scofield (1936, p. 275-287), are less than 0.33 to 1.25 ppm for sensitive crops and 0.67 to 3.75 ppm for semitolerant and tolerant crops. Of the 20 determinations of boron in table 6, 18 were less than 3.75 ppm and of these 17 were less than 1.25 ppm. With two exceptions, the concentrations would indicate suitability of water for irrigation of crops in the semitolerant and tolerant class. Crops in the sensitive group, which would be damaged by the amount of boron in some of the water, include citrus and other fruit trees and a number of other deciduous trees, none of which are grown in the area studied. Of the crops commonly irrigated in the area, melons are sensitive, cotton and small grains are semitolerant, and alfalfa is tolerant to boron.

CONCLUSIONS

The aquifer developed in the Dog Creek Shale and Blaine Formation in Harmon County and adjacent parts of Greer and Jackson Counties ranks among the best solution-channel aquifers in the State. Yields of individual wells differ widely because they depend to a large extent on the number, size, and degree of interconnection of solution channels in the aquifer at the well site. Most of the irrigation wells are grouped along the major creeks where solution channels seem to be most numerous. Some wells do not yield enough water for livestock but others yield several thousand gallons per minute. Most of the irrigation wells yield between 500 and 1,000 gpm.

The average coefficients of transmissibility and storage of the aquifer underlying the irrigation areas were computed to be about 2.6 x 10^5 and 1.6×10^{-2} . The coefficient of storage outside the irrigation areas was estimated to be about 0.5 x 10^{-2} . From these values and the thickness and extent of the aquifer, the volume of water in storage was calculated to be about 336,000 acre-feet--nearly 6 times the volume discharged annually from the aquifer.

In 1954, the 50,000 acre-feet of water pumped from wells was about equal to the average annual recharge to the aquifer. However, because precipitation in 1954 was below normal, the amount of water pumped for irrigation probably was somewhat greater than normal. Because the precipitation was below normal, recharge also was less than normal and the water levels at the end of the year were lower than they had been at the beginning. Despite the decline in water levels, it is concluded that the groundwater resources were not yet fully developed in 1954 because the amount withdrawn would have been less than the recharge if precipitation had been more nearly normal.

Several new irrigation wells were put into use during 1955. However, because the precipitation that year was above normal, the withdrawal was less than it would have been if precipitation had been normal. Although the estimated 55,000 acre-feet that was withdrawn exceeded the average annual recharge the year-end water levels were higher than those at the beginning of the year because actual recharge exceeded the withdrawals.

Under average conditions, the wells now in use would be likely to withdraw more than the recharge and thus would cause a progressive lowering of water levels. It is concluded, therefore, that the ground-water resources have been slightly overdeveloped, as only by balancing the average annual rate of withdrawal and the recharge can the resource be maintained indefinitely. Although the amount of water available might be increased by artificially recharging the ground-water reservoir, techniques to accomplish this need further refinement. A large increase in the number of wells would doubtless result in an eventual reduction in the yield per well and the necessity to abandon some wells.

The annual recharge of the area is estimated to average about 50,000 acre-feet. or about the amount of water pumped for irrigation in 1954. Although the amount of water in storage is about 6 times the annual recharge, it should not be assumed that withdrawals at the 1954 rate could be continued for 6 years in the absence of recharge. In actual practice, probably only about a third of the water in storage actually could be withdrawn at that rate from the existing wells. Because the rate of recharge in the years of worst drought probably is about half the rate of recharge in a year of normal precipitation, it is estimated that annual withdrawals at the 1954 rate could be continued through an intensive drought period of 4 successive years. The number of irrigation wells in the area has increased greatly since 1954 and if all the wells now in use were to be pumped at such a rate that the average pumpage per well equaled that of 1954, the recharge rate would be exceeded significantly. Thus, the inescapable conclusion is that the ground-water resources of the area have been overdeveloped and that, for practical purposes, a drought of only 2 or 3 years' duration would seriously curtail irrigation in much of the area.

Water from the Dog Creek Shale and Blaine Formation is so highly mineralized that it is not generally usable for domestic or municipal supplies. However, it has been used throughout the area for irrigation, despite its high salinity, without apparent ill effects to the soil or crops. Because of the possible increase in mineralization that might result from return seepage of water applied for irrigation, it is desirable that the quality of water in the aquifer be monitored regularly. This is desirable also because of the salt water known to underlie the area at shallow depth. Some of the salt water may be drawn into the principal aquifer as a result of the intensive pumping for irrigation.

REFERENCES

Aurin, F. L., Officer, H. G., and Gould, C. N., 1926, The subdivision of the Enid formation: Am. Assoc. Petroleum Geologists Bull., v. 10. no. 8, p. 786-799. Barclay, J. E., and Burton, L. C., 1953, Ground-water resources of terrace deposits and alluvium of western Tillman County, Oklahoma: Oklahoma Plan. and Resources Bull. 12. Bennett, R. R., and Meyer, R. R., 1952, Geology and ground-water resources of the Baltimore area: Maryland Dept. Geology, Mines and Water Res. Bull. 4, 573 p. California Institute of Technology, 1952, Water quality criteria: California Water Pollution Control Board Pub. 3, 512 p. Clifton, R. L., 1928, Oil and gas in Oklahoma, Geology of Harmon, Greer, Jackson, and Tillman Counties: Oklahoma Geol. Survey Bull. 40-Y, 24 p. 1930, Oil and gas in Oklahoma, Harmon, Greer, Jackson, and Tillman Counties: Oklahoma Geol. Survey Bull. 40, v. 3, p. 191-206. Cragin, F. W., 1896, The Permian system in Kansas: Colorado Coll. Studies, v. 6, p. 1-48. Cummings, T. R., 1963, Chemical character of surface waters of Oklahoma: Oklahoma Water Resources Board Bull. 19. Davis, L. V., 1955, Geology and ground-water resources of Grady and northern Stephens Counties, Oklahoma: Oklahoma Geol. Survey Bull. 73, 184 p. Dean, H. T. 1936, Chronic endimic dental fluorosis: Am. Med. Assoc. Jour., V. 107, p. 1269-1272. Dole, R. B., 1906, Use of fluorescein in the study of underground waters: U.S. Geol. Survey Water-Supply Paper 160, p. 73-85. Dover, T. B., 1953, Chemical character of surface waters of Oklahoma, 1950-1951: Oklahoma Plan. and Resources Board Bull. 7. 1954, Chemical character of surface waters of Oklahoma, 1951-1952: Oklahoma Plan. and Resources Board Bull. 10. 1956, Chemical character of surface waters of Oklahoma, 1953-1954: Oklahoma Plan. and Resources Board Bull. 14. 1958, Chemical character of surface waters of Oklahoma, 1954-1955: Oklahoma Plan. and Resources Board Bull. 15. 1959, Chemical character of surface waters of Oklahoma. 1955-1956: Oklahoma Water Resources Board Bull. 16. Fay, R. O., 1958, Permian stratigraphy of Blaine County, Oklahoma--a preliminary report: Oklahoma Acad. Sci. Proc., v. 38, p. 82-86. Gould, C. N., 1902, General geology of Oklahoma: Oklahoma Dept. Geology and Nat. History Bienn. Rept. 2 (1906). 1905, Geology and water resources of Oklahoma: U.S. Geol. Survey Water-Supply Paper 148, 178 p. 1924, A new classification of the Permian red beds of southwestern Oklahoma: Am. Assoc. Petroleum Geologists Bull., v. 8, no. 3, p. 322-341. Ham, W. E., 1958, Stratigraphy of the Blaine Formation in Beckham County. Oklahoma: Oklahoma Acad. Sci. Proc., v. 38, p. 88-93.

Husky, I. C., 1956, A report on irrigation in Oklahoma covering calendar years 1953, 1954, 1955: Oklahoma Plan. and Resources Board, mimeo. rept.

Locke, R. H., Koop, C. H., and Reed, Clem, 1934, Report on surface and ground water of Oklahoma: Emergency Relief Administration of Oklahoma, typewritten report, 443 p.

Meinzer, O. E., 1923, Outline of ground-water hydrology, with definitions: U.S. Geol. Survey Water-Supply Paper 494, 71 p.

Miser, H. D., 1954, Geologic map of Oklahoma: U.S. Geol. Survey and Oklahoma Geol. Survey.

Murphy, J. J., 1955, Chemical character of surface waters of Oklahoma, 1952-1953: Oklahoma Plan. and Resources Board Bull. 11.

Oklahoma Department of Commerce and Industry, 1959, Directory of Oklahoma Manufacturers, State of Oklahoma, Oklahoma City.

Pate, C. O., Murphy, J. J., and Orth, R. P., 1961, Chemical character of surface waters of Oklahoma, 1956-1957: Oklahoma Water Resources Board Bull. 18, 140 p.

Reed, E. W., Mogg, J. L., Barclay, J. E., and Peden, G. H., 1952, Groundwater resources of the terrace deposits along the northeast side of the Cimarron River in Alfalfa, Garfield, Kingfisher, and Major Counties, Oklahoma: Oklahoma Plan. and Resources Board Bull. 9, 101 p.

Roberts, Edd, and Bunch, C. E. /undated/, Water in Oklahoma: Oklahoma Agr. and Mech. Coll. Ext. Div. Circ. 628.

Schoff, S. L., 1948, Ground-water irrigation in the Duke area, Jackson and Greer Counties, Oklahoma: Oklahoma Geol. Survey Mineral Rept. 18.

Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1953, p. 275-287.

Scott, G. L., Jr., and Ham, W. E., 1957, Geology and gypsum resources of the Carter area, Oklahoma: Oklahoma Geol. Survey Circ. 42, 64 p.

Sears, J. M., 1951, The Hollis basin, southwestern Oklahoma: Oklahoma Univ. Master's Thesis.

Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1933, The geology of Texas, v. 1, Stratigraphy: Texas Univ. Bull. 3232, 1007 p.

Snider, L. C., 1913, The gypsum and salt of Oklahoma: Oklahoma Geol. Survey Bull. 11, 214 p.

Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., 16th Ann. Mtg., pt. 2, p. 519-524.

Thornthwaite, C. W., 1941, Atlas of climatic types in the United States, 1900-1939: U.S. Dept. Agriculture Misc. Pub. 421, pl. 3.

U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60.

U.S. Geological Survey, issued annually, Surface water supply of the United States, pt. 7, Lower Mississippi River Basin: U.S. Geol. Survey Water-Supply Papers.

1952, Chemical character of surface waters in Oklahoma, 1949-1950: Oklahoma Plan. and Resources Board Bull. 6.

- U.S. Public Health Service, 1962, Drinking water standards, 1962. Public Health Pub. 956, 61 p.
- Walling, I. W., Schoff, S. L., and Dover, T. B., 1951, Chemical character of surface waters in Oklahoma: Oklahoma Plan. and Resources Board Bull. 5.
- Waring, F. H., 1949, Significance of nitrates in water supplies: Am. Water Works Assoc. Jour., v. 41, no. 2, p. 147-150.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods, with a section on Direct laboratory methods and a bibliography on permeability and laminar flow, by V. C. Fishel: U.S. Geol. Survey Water-Supply Paper 887, 192 p.
- White, W. N., 1932, A method of estimating ground-water supplies based on discharge by plants and evaporation from soil--results of investigations in Escalante Valley, Utah: U.S. Geol. Survey Water-Supply Paper 659-A, p. 1-105.

APPENDIX A. -- MEASURED STRATIGRAPHIC SECTION OF EXPOSED PERMIAN ROCKS IN

GREER, HARMON, AND JACKSON COUNTIES, OKLA.

Section of Permian strata exposed in $NW_4^{\frac{1}{4}}NW_4^{\frac{1}{4}}$ sec. 14 and in $NE_4^{\frac{1}{4}}NE_4^{\frac{1}{4}}$ sec. 15, T. 4 N., R. 22 W., Greer County

 \dot{Q}_{i}

Blaine Formation:	Thickness
Mangum Dolomite Member:	(feet)
Limestone, gray, crystalline, porous; ledge-	
forming	2+
Unnamed member:	
Shale, reddish-brown and gray in alternating layers	28
Collingsworth Gypsum Member:	
Gypsum (alabaster), gray, nodular to platy; ledge-	
forming	1
Shale, reddish-brown and gray in alternating layers	;
earthy to starchy fracture	1
Gypsum (alabaster), gray and white, argillaceous,	
soft; weathered to a gentle slope	9
Unnamed member:	
Limestone, gray, gypsiferous, porous	
Dolomite, light-gray, dense, massive, calcareous;	_
ledge-forming	
Limestone, brownish-gray with thin reddish-brown	
layers; platy and porous; ledge-forming	1.5
Shale, gray, earthy to starchy fracture	2
Shale, reddish-brown with gray streaks; starchy	0
Iracture	···· 8
Cenartop Gypsum Member:	
Gypsum (alabaster) and annyurite, white and bluish-	7
gray; many small solution cavities, ledge-forming.	•••
Shale gray earthy to starchy fracture	2
Shale, glay, calling to statchy fracture	2
Havstack Cupsum Member.	••• 15
Gynsum (alabaster) white nodular argillaceous:	
ledge_forming	4
Gynsum (alabaster) white: clay brown and gray.	•••
weathered to a gentle slope	6
Gynsum (alabaster) and anhydrite white clay-filled	•••
fissures: ledge-forming	5
Anhydrite dark-gray shows bedding planes	
Gypsum (alabaster) and anhydrite, grav and white	
massive	1

Blaine Formation.--Continued

Unnamed member:	
Shale, olive-drab to gray, fissile	.5
Shale, gray, calcareous and gypsiferous	.2
Shale, olive drab to gray, calcareous and	
gypsiferous	1.5
Gypsum (alabaster), and anhydrite, brownish-gray	
to white	.2
Shale, reddish-brown and gray in alternating layers,	
 calcareous and gypsiferous 	6.5
Gypsum (alabaster) and anhydrite, gray and white;	
<pre>ledge-forming</pre>	.7
Shale, reddish-brown and gray alternating layers,	
several thin beds of gypsum 1 to 2 inches thick	6.3
Gypsum (alabaster) and anhydrite, bluish-gray to	
white; ledge-forming	.5
Shale, reddish-brown and gray	2.7
Shale, reddish-brown, fissile to blocky, many veins	
of satinspar and selenite less than 2 inches thick	5.5
Shale, gray, platy to fissile, gypsiferous	5.1
Anhydrite, gray, and thin layers of shale; ledge-	
forming	7
Shale, reddish-brown and gray in alternating layers,	
fissile to blocky, gypsiferous	6.6
Sandstone, gray, fine-grained, platy	.2
Shale, reddish-brown and gray in alternating layers;	
many veins of satinspar and selenite	7.5
Chaney Gypsum Member:	
Gypsum (alabaster) and anhydrite, bluish-gray and	_
white, clay-filled fissures	2

Flowerpot Shale:

Unnamed member:

Shale, reddish-brown and bluish-gray in alternating	
layers, fissile to blocky, calcareous 6	. 8
Shale, bluish-gray, and thin plates of selenite 1	
Gypsum (satinspar), reddish-brown, platy; alter-	
nating with reddish-brown calcareous shale 1	
Shale, reddish-brown and bluish-gray in alternating	
layers, in part calcareous; many beds of alabaster,	
mostly nodular and less than 6 inches thick, and a	
few thin veins of selenite	
	-

Total section measured 210.2

Section of Permian strata exposed in $NE_{4}^{\frac{1}{4}}NE_{4}^{\frac{1}{4}}$ sec. 8, T. 5 N., R. 23 W., <u>Greer County</u>

Blaine Formation:	
Unnamed member:	
Limestone, gray, massive to porous; lies on top	
of hill 1	+
Shale, reddish-brown and gray in alternating layers 10)
Cedartop Gypsum Member:	
Gypsum (alabaster), gray to white	
Unnamed member:	
Shale, reddish-brown and gray in alternating layers 13	;
Haystack Gypsum Member:	
Gypsum (alabaster), gray to white, some anhydrite in	
lower 6 feet, upper 6 feet argillaceous 12	
Unnamed member:	
Shale, reddish-brown and gray in alternating layers;	
thin gypsum (alabaster) beds	.2
Shale, reddish-brown, gypsiferous	.5
Shale, reddish-brown and gray; gypsum veins	
(selenite) 2	,
Siltstone, reddish-brown and gray	
Shale, reddish-brown and gray in alternating layers;	
gypsum veins (selenite)11	•
Chaney Gypsum Member:	
Gypsum (alabaster) and anhydrite, argillaceous	.5
Flowerpot Shale:	
Shale, reddish-brown and grav in alternating lavers:	
thin beds and veins of gypsum	4
Total section measured 110	.2
Section of Permian strata exposed in $NW_{1}^{\frac{1}{2}}NW_{2}^{\frac{1}{2}}$ sec. 27. T. 6 N., R. 2	5 W
Greer County	
Dog Creek Shale:	
Limestone, gray, dense to crystalline, porous; layers	
of light-gray dense dolomite about one-fourth inch	
thick	+
Gypsum (alabaster), gray to white	
Blaine Formation:	
Mangum Dolomite Member:	
Limestone, gray, crystalline, porous; layers of light-	
gray, dense dolomite about one-fourth inch thick 4	
Unnamed member:	
Shale, reddish-brown and gray in alternating lavers 17	
Collingsworth Gypsum Member:	
Gypsum (alabaster) and anhydrite. tan to white	
· · · · · · · · · · · · · · · · · · ·	

Blaine Formation. -- Continued. Unnamed member: Shale, reddish-brown and gray in alternating layers.... 15 Cedartop Gypsum Member: Gypsum (alabaster) and anhydrite, tan to white..... 16 Unnamed member: Dolomite, light-gray, dense..... 1 Shale, reddish-brown and gray in alternating layers..... 6 Haystack Gypsum Member: Gypsum (alabaster) and anhydrite, tan to white..... 7 Dolomite, light-gray, argillaceous, calcareous, dense... 1 Gypsum (alabaster) and anhydrite, tan to white..... 7 108.0 Total section measured Section of Permian strata exposed in $NE\frac{1}{4}NW\frac{1}{4}SW\frac{1}{4}$ sec. 12, T. 6 N., R. 26 W., Harmon County Blaine Formation: Mangum Dolomite Member: Limestone, gray, coarsely crystalline, massive to very porous..... 2 Limestone, gray, dense, platy..... .5 Dolomite, light-gray, dense, platy..... .5 Unnamed member: Shale, reddish-brown and gray in alternating layers.... 13 Collingsworth Gypsum Member: Gypsum (alabaster) and anhydrite, white to light-gray... 16 Unnamed member: Limestone, gray to buff, finely crystalline, very porous..... 2 Shale, reddish-brown and gray in alternating layers..... 9 Cedartop Gypsum Member: Gypsum (alabaster), gray, argillaceous..... 18 Unnamed member: Limestone, gray and brown, very porous..... 1 Shale, reddish-brown and gray in alternating layers.... 6 Haystack Gypsum Member: Gypsum (alabaster), gray to white, argillaceous..... 12 Gypsum (alabaster) and anhydrite, white to light-gray... 6 Unnamed member: Shale, reddish-brown and gray in alternating layers; gypsum (selenite) in thin sheets..... 14 Kiser Gypsum Member: Gypsum (alabaster and selenite), gray, argillaceous..... 2 Shale, reddish-brown and gray in alternating layers.... 12.5 Chaney Gypsum Member: Gypsum (alabaster and selenite), greenish-gray to white, thin-bedded, argillaceous..... 2
Flowerpot Shale: Unnamed member: Shale, reddish-brown and gray in alternating layers.... Gypsum (alabaster), gray to white..... 2 Shale, reddish-brown and gray in alternating layers; thin layers of selenite..... 20+ Total section measured 145.5 Section of Permian strata exposed in $NE\frac{1}{4}SW\frac{1}{4}$ sec. 30, T. 1 N., R. 22 W., Jackson County Blaine Formation: Mangum Dolomite Member: Limestone, gray, granular to crystalline, massive to thin bedded; some layers of light-gray dolomite about one-quarter inch thick. Solution cavities in upper 2 feet and along bedding planes; ledge-forming.. 7 - Unnamed shale member: Shale, reddish-brown and gray in alternating layers, Collingsworth Gypsum Member: Gypsum (alabaster); white where freshly exposed, gray where weathered; ledge-forming..... 12 Unnamed member: Clay, brown..... .5 Dolomite, light-gray, massive..... 1.5 Shale, reddish-brown and gray in alternating layers, gypsiferous..... 12 Cedartop Gypsum Member: Anhydrite, gray to white..... 2 Gypsum (alabaster), gray, soft, argillaceous..... 5 Unnamed member: Shale, reddish-brown and gray in alternating layers, Haystack Gypsum Member: Gypsum (alabaster), white to gray, argillaceous..... 10+

Total section measured

Appendix B.--Records of wells and test holes in Harmon County and adjacent parts of Greer and Jackson Counties, Okla.

Well number: For explanation see text p. 7; well location's shown on plate 2.

Geologic source: Qal, alluvium; Qt, terrace deposits; Pw, Whitehorse Group; Pdc, Dog Creek Shale; Pb, Blaine Formation; Pf, Flowerpot Shale.

Type of well: B, bored, Dd, drilled; Dg, dug.

Pump and power: C, cylinder: Cf, centrifugal, J, jet; N, none; R, rope and bucket; T, turbine; b, butane; E, electric; g, gasoline; h, hand; ng, natural gas; w, windmill.

Use: D, domestic; I, irrigation; N, none (includes unused or destroyed wells); P, public supply; R, recharge; S, stock.

Other data: C, chemical analysis shown in table 6; L, well log shown in appendix C.

·										Water	level	
		Date	Altitude of	Geologic	Depth of	Type of	Pump and			Depth below	Date of	Other
		completed	land surface	source	well	well	Dower	Use	Yield	land surface	measurement	data
Well number	Owner or tenant	compieted	(foot)	304100	(feet)		power	•	(gmm)	(feet)		
			(reer)	ļ	(leet)				СБрал	(1221)		
GREER COUNTY												
3N-21W-6bb1				Ot	13	Dg	N	N		8.13	12-16-53	
51-211-0001						-0						
			1 608	DE	37	De		c		12.99	2- 9-54	
3N-22W-3DDD1 9aad1	T. K. Underwood		1,508	Ot	19	Dg	J, e C. w	N		13.46	12-16-53	
12ddd1				Qt	19	Dg	N	N		13.66	12-16-53	
13baa1	L. T. Ray		1,438	Qt	17	Dg	C, w	S		12.52	2- 9-54	••••
16dac1			1,459	PI	20	Dg	C, W	3		10.25	2 34	
3N-23W-1aad1		1947		Pb	15	Dg	C, w	S		8.9	2-22-52	
2bdd1	W. and E. Hurst	1952	1,568	Pb	90	Dd	Т, Б	I		63.83	2-16-54	L L
2ccc1	do.	1955	1.527	Pb		Dd	N	N				
2ccd2	do.	1954		РЪ	96	Dd	Т, Б	I	200			
3dad1	Claude Robertson		1,519	Pb		Dd	T, b	I	600	39.79	2-10-54	
3dad2	do.	1940	1,502	Pb	80	Dd	N	N				L
3aaa1	do.	1954		РЬ	94	Dđ		I		35.14	5- 6-54	L
4cbal	Claude Boyett	1948	1,527	Pb	195	Dd	T, e	I	3 50	74.40	2-10-54	L.
addi 8daal	W. W. Nelson	1953		Pb, Pdc	150	Dd	C, w	S				L
9dba1	Bob Staton	1948		Pb, Pdc	125	Dđ	Т, Б	I	1,500			
10da1	Virgil Dennis	1951		Pb Pb	130	Dd	J, e T b	S	500			L
llacc1	L. W. Beck	1951		Pb	110	Dd	N 1, 0	Ň				L
14bc1	R. V. Staton	1951	1,489	Pb	135	Dđ	т, в	I	1,250			L
16daa1	Ivan Owen	1949	1 477	Pb, Pdc	105	Dd	T, b	I	600	40.82	2-10-54	••••
16ccc1	do.	1948	1,473	Pb. Pdc	152	Dd	Т. Б	I	1.000	24.20	4-15-49	С, L
16dab1	do.	1949		Pb, Pdc	153	Dd	N	N				L
16dba1	do.			Pb, Pdc	173	Dd	T, b	I	1,000	•••••	•••••	L
16dcb1	Woods Templer	1952		Pb. Pdc	109	Dd	N N	N	1,200			L
16dca1	do.	1952		Pb, Pdc	110	Dđ	C, w	s				L
17aa1	J. O. Moore	1951	1,470	Pb, Pdc	189	Dd	T, b	N		52.86	2-10-54	C, L C. L
1700a1 17aca1	do.	1952		Pb. Pdc	127	Dd		I	32.5			
4N-22W-4aad1			1,504	Qt	13	Dg		N		6.48	2- 9-54	
11ccb1				Pf		Dd	C, W	N		29.86	12-15-53	
13bac1	W. O. Deadman			Pf	15	Dg	C, h	N	• • • •	6.32	12-16-53	
14ddd1			1 563	Pf Pf	32	Dd	C, W	N		21.40	2-19-54	
17baa1			1,739	Pb	81	Dd	C, W	s		73.95	2-10-54	
19dda1	E. C. Hill	1903	1,730	РЪ	76	Dđ	N	N		74.84	2- 9-54	
22cc1	Norman Meadow	1947		 Pf		Dd	C, W	5		16.82	12-15-53	
27cbb1			1,558	Pf	15	Dd	C, W	N		6.17	2- 9-54	
30bcc1	J. H. Olive	1933		Pb	96	Dd	C, w	S	••••	82.34	11-24-53	••••
32CDD1 35dcc1	L. E. Griffith	1953	1,650	PD	15	Da	C, W	S N		47.75	1-12-54	
36add1				Qa1	19	Dd	C, W	s		11.01	12-15-53	
AV 324 2*		1	1 712	Dh		D-		c				
11ad1	Con Hammer		1,712	Pf		Dd	C, w	N		66.40	1-27-54	
15ccc1	V. Dennis		1,662	Pb, Pdc		Dđ	C, w	S		63.36	6-23-55	
20dd1	W. H. Boyd		1 602	Pb, Pdc		Dd	N	N N		37.58	2-10-54	C
20ddd1 20ccc1	do.		1,602	Pb. Pdc		Dd	C, w			+1,70	2-10-54	
21aab1	J. C. Baity		1,627	Pb, Pdc		Dđ	C, w	S		59.57	6-16-55	
24aad1				Pb, Pdc	38	Dd		N		32.63	2-21-52	• • • •
29ccc1	Mrs. J. R. Dyer V. L. Meason			Pdc	14	Dg		N		11.35	2-21-52	
30aba1	John Woodward	1937		Pb, Pdc	235	Dd] J, e	S		flowing	1-20-54	····
32dbb1	J. T. Hurst		1.650	Pb, Pdc	210	Dd Dd	N T F	N T	670	31 17	4-16-49	L
35dcb1	W. B. Hurst	1948	1,550	Pb	70	Dd	N, 0	N		47.70	5-16-52	Ľ, Ľ
36aab1			1,648	Pb	53	Dd	N	N		49.56	2-21-52	•••••
4N-24W-10001	W T test		1	Ph Bda	50	D-4	ا ا	ç				
12ddd1	W. E. Lanrord	1935	1.676	Pb, Pdc	46	Dg	N N	P		27.03	2-10-54	
146661		1938	1,767	Qt	35	Dg	C, w	Р	••••	31.93	2-10-54	
146662	U.S. Geol. Survey	1955	1,767	Pb, Pdc	234	Da	N	N	•••••	122.13	033	L

										Water	level	
Well number	Owner or tenant	Date completed	Altitude of land surface (feet)	Geologic source	Depth of well (feet)	Type of well	Pump and power	Use	Yield (gpm)	Depth below land surface (feet)	Date of measurement	Other data
GREER COUNTY												
4N-24WContinued												
15ddd1	O. Parkley	1955	1,697	Qt Ph Pdc	20	Dd	N			14.22	2-21-52	L
26ddc1	C. R. Kerbo	1930	1,618	Pb, Pdc		Dd	C, W	s		69.85	2-10-54	
5N-22W-6ccd1	Vincil D. Costlo	1022		0t	25	De	R	s		21.95	10-14-53	
6ddc1	J. D. Gray	1913		Qt	35	Dg	, е Ј, е	s		26.14	10-15-53	
6dcc1 7bbb1	do.	1923	1.617	Qt Pf	31 18	Dg Dg	N R	S S		22.09	2- 9-54	
8dcc1	Jim. Bishy	1934		Pf	20	Dg	R	D		18.66	10-14-53	••••
8ddd1 9add1	Dennis Jones			Qt Qal	22	Dg	J,e,C,w	s		21.00	10-14-53	
9dcc1	Lee Caffey	1938		Qt	45	Dg	C, w	N		33.72	10-15-53	
90001 10dcc1	J. E. Bishop H. L. Dowdy	1920		Qt	36	Dg	J, e	s		23.73	10-14-53	
10cdd1	John Price	1927		Qt Ot	30	Dg	J, e	S D		33.30	10-14-53	
10add1	do.	1920		Qa1	18	Dg	C, W	s		14.93	10-28-53	
11dcc1	Layton Hanks	1920	1 574	Qt	50	Dg Dd	R	S N		32.48	10-13-53 2- 9-54	
11ddd1				Qt	31	Dg	N	s		26.49	10-13-53	
5N-22W-11dc=1	Lavton Hanks	1954		Qt	49	Dd	Т. е	I		33.82	4-20-55	
12bd1	Earl Wetzel			Qal	56	Dd	N	N		18.82	11-25-53	
13dbb1 13acd1	do.	····		Qt		Dđ	N	N N		29.03	7-28-53	
13adb1	do.			Qt		Dd	N	N		30.59	7-28-53	
13ddd1 13aaa1	G. S. Hall John Halford			Qt	35	Dg	, e C, h	N		27.83	10-14-53	
14bbc1	George Johnson	1011		Qt	50	Dg	N C.W	N		dry	10-14-53	
16dad1	John Vecke	1904		Qt	22	Dg	C, W	s				
16cdc1	Mrs. M. Stock	1901	1,659	Qt Ot	18	Dg Dg	C, w C, h	S D		9.67	2-10-54	
17ddc1	H. M. Powell	1944		Qt	35	Dd	J, e	s		17.58	10-15-53	
18aba1 19baa1	W. H. Griffis	1942 1942		Pf Pf	10	Dg	N C,W	N S		18,80	2- 9-54	
20aba1	B. B. Holey			Qt	29	Dg	C, W	S		27.90	10-15-53	
23acd1	City of Mangum			Qt		Dd	T, "	I				
23dbb1	do.			Qt	•••	Dd Dd	 N	I N		26.90 24.80	7-28-53 7-28-53	
23cdb1	do.			Qt		Dd	N	N			····	
23cbd1 23bad1	City of Mangum			Qt Ot		Dd Dd	N N	N N				
23baa1	do.			Qt	40	Dđ	N .	N		25.42	7-28-53	••••
5N-22W-23bdd1	do.			Qt		Dd	C, w	s				
23acb1	G. W. Johnson	1949		Qt	58 48	Dd	T, b Le	I	550	28.00	7-28-53	
25bcc1	F. R. Baker	1940	1,642	Qt	28	Dg	J, e	S		25.75	2- 9-54	••••
26aab1 35add1	C. A. Loftie Mrs. Fred Parker	1953		Qt Pf	58 33	Dd Dd	J, e R	s s		23.45	10-27-53	
CV 02W 14441				DE	20	Da	. D	e		15 50	10-14-53	
5N-23W-10001 1aaa1	A. W. Stone Rip Beck			Qa1	12	Dg	Ċ, w	s		10.87	10-14-53	
2baa1 3dda1	Palph Clabaugh	1936		Qt	29	Dg	C, h C, w	PS		21.60 20.85	11-17-53 11-18-53	••••
3cd1	do.		1,712	Pf	57	Dg	C, W	s		52.83	2- 9-54	••••
3aad1 6bbc1	I. P. Stover		1.728	Qt Qt	28	Dg Dd	N C, h	S D, S		24.50 31.57	2- 9-54	
10aaa1				Pb	37	Dg	N	S		24.43	11-18-53	••••
17ddd1	Carl Bleick			Pb, Pdc	85	Dd	c "	s		73.38	11-17-53	
19aaa1	C. W. McDuff	1954		Pb, Pdc	70	Dd	TN	I	55	13.17	10-26-53	
20dcc1	L. E. Pearson		1,731	Pb, Pdc	73	Dd	C, w	š		60.15	2- 9-53	••••
20abal 21bdcl	Mrs. McKinley Pearson	1954	1.728	Pb, Pdc Pb, Pdc	100 145	Dd Dd	Т, Ъ N	I N	275	61.80	8-27-53	 L
22aaa1	Sidney Burcham	1948	1,754	Pb, Pdc	135	Dd	Т, Ъ	I	600	94.85	2-11-54	с
220001	····		•••••		33	Dg	C, W	3		21.51	10-20-55	
5N-23W-22daa1 23ddd1	Mrs. S. A. Turner	1937		Pb, Pdc	110	Dd De	C, w C, w	S S		71.39	11-17-53	
26abb1	H. D. Wells	1903		Pb, Pdc	92	Dd	т, b	I	700			••••
27aca1 27ccb1	W. B. Mathews L. B. Thompson	1953 1942	1,725	Pb, Pdc Pb. Pdc	109	Dd Dd	T, b J, e	ľ S	650	64.82	/-29-33	· · · ·
27bda1	J.D. Gray	1953	1,717	Pb, Pdc	127	Dđ	T, b	I	650	57.25	12-15-53	L
28baa1 28baa2	D. R. Penn do.	1948	1,720	Pb, Pdc Pb, Pdc	65	Dg	Г, D С, е	1 5		51.96	11-18-53	••••
29dd1				Qt	40	Dg	N	N T		22.67	11-15-50	
33aaal	J. B. Thompson	1953		rb, Pac	60	Da Da	1, е	T	0.00			
5N-24W-2baa1	C. F. Slaton	1074	1,696	Qt Of	15	Dg Dg	N C	N N		10,43 11.23	2- 9-54 11-17-53	
14ccb1	LOWIL OF REED			Pb, Pdc	44	Dg	Ċ, w	S		41.58	11-19-53	с
15ddd1	 • • • • • • • • • • • • • • • • • • •	· · · · ·	1,760	Pb, Pdc		Dđ	C,w,h	S		25.02	11-19-23	••••
			1									

ĩ

										Water	level	
Well number	Owner or tenant	Date completed	Altitude of land surface (feet)	Geologic source	Depth of well (feet)	Type of well	Pump and power	Use	Yield (gpm)	Depth below land surface (feet)	Date of measurement	Other data
GREER COUNTY												
6N-23W-32ddd1	Bud Batter		l.	Ot	29	De	N	n		22.15	11-17-53	
on-25w-520001	Bud Patton										10 10 00	
6N-24W-27c 34cdd1	W E Duch	1950		Pf Pf	33	Dd Bd	R	N		26.01 21.06	12-15-53	
35cdd1	J. P. Taylor	1930		Qt	14	Dg	N	D		9.48	11-19-53	
36ddc1	· • • • • • • • • • • • • • • • • • • •		••••	Qt	32	Dg	N	S		20.82	11-19-53	
HARMON COUNTY		1										
1N-24W-2caal	W. D. Payne			Pb, Pdc	137	Dd	N	N		24.40	1- 7-54	}
2cad1	do.	1954	1 533	Pb, Pdc Pb Pdc	140	Dd	N	N	200	81.94	2-25-53	 L
4dd1	Oscar Bryant		1,542	Pb, Pdc		Dd	N	N				
4bc1			1,544	Pb, Pdc		Dd	C, W	S		85.86	2-11-54	:
6bcd1 6cba1	Carl Snider	1953	1,544	Pb, Pdc	130	Dd	N	N		51.40	8-31-33	
7ccal	Ovid Patrick	1953		Pb, Pdc	170	Dá	N	N		34.35	12-31-53	
7cca2	do.	1954		Pb, Pdc	207	Dd	T, b	I	270	35.50	4-16-54	
80Da1 8adb1	H. S. Beanland	1954		Pb, Pdc	255	Dd	1, 0	I				
8bab1	Floyd Patrick	1955		Pb, Pdc	2 50	Dd	N	N				
9cbb1	Motley		1 495	Pb, Pdc		Dd	N C. W	N S		25.38	1- 6-54	
17c bc 1	H. S. Beanland	1949		Pb, Pdc	138	Dd	Т, Б	I	850			
17aaa1			1,518	Pb, Pdc		Dd	C, W	S		77.01	2-11-54	
190c 1 19dac 1	W. D. Ewing	1952		Pb, Pdc	110	Dd	N N	N		18.16	8- 5-53	
19ddb1	do.	1954		Pb, Pdc	110	Dd	Т, Б	I				L
20ddd1 20ca1	E. H. Mefford	1953	1,503	Pb, Pdc Pb, Pdc	140	Dd	Т, Б Т. Б		1.000	67.40	2-10-34	
216661				Pb, Pdc		Dđ	C, w	N		56.57	1- 7-54	
25dad1	T T o locker	1057	1,461	Pb, Pdc	140	Dd	N	N	420	30.11	2-10-54	
30bb1	J. I. Cunningnam Trov Coke	1953		Pb, Pdc	157	Dd	N N	N				L
30daal	Jack Gregory	1952		Pb, Pdc	130	Dd	Т, Ъ	I	200		2 10 54	
30dbb1 30cab1	do.	1953	1,581	Pb, Pdc	110	Dd	T, b T, e	I	500	11.15	2-10-54	
31b	J. R. Spradlin, Sr.	1955		Pb, Pdc	85	Dd		I				
32dbd1	do.	1955	1 443	Pb, Pdc	04	Dd	 T b	I	655	15.09	2-11-54	
35bcb1	Merritt & Washburn	1952	1,443	Qal	16	Dg	C, W	S		10.43	1- 6-54	
									200			
1N-25W-1aa1 1dbb1	W. H. Conner George Bell	1948 1954	1, 530	Pb, Pdc	210	Dd	T, D	I N	200	31,47	2-16-54	
1dbc1	do.	1954		Pb, Pdc	180	Dd	Т, Б	I	640			L
1cda1	Max McLaughlin	1954		Pb, Pdc	169	Dd	T, b	I	810			
ladl	W. H. Conner	1954		Pb, Pdc	145	Dd	Т, Б	I				
3dad1	J. B. Metcalf			Pb, Pdc	145	Dđ	N	N		27.82	8- 7-53	
3dad2 3cbc1	do. Bhurmond Abernathy	1954		PD, Pdc Pb, Pdc	125	Dđ	Т, Б Т. Б	I	500			
4dba1	Joe L. Thomas	1951	1,545	Pb, Pdc	120	Dđ	Т, Ъ	I	6 5 0	51.07	2-10-54	L
4dcb1	do.	1954		Pb, Pdc	195	Dđ	T, b	I		• • • • •		
6ada1	O. B. Magee	1953		Pb, Pdc	210	Dđ	T, e	I	140	104.46	9- 1-53	L
8caal	Cummins	1953	1,581	Pb, Pdc	181	Dđ	N	N		102.59	2-10-54	
9aaa1 10add1	Henry A. Purdue Henry McGlaughlin	1953	1,516	Pb, Pdc	135	Dd	Т, Б	I	915	38.12	4-26-54	
11baa1	Carl Snider	1953		Pb, Pdc	180	Dd	Т, Б	I	600	44.93	2-10-54	C, L
11dcc1 11abc1	Cleo Gallop E. M. Burd	1953		Pb, Pdc Pb, Pdc	193	Dd	Т. Б		550			L
11cbb1	Mrs. J. E. McClendon	1955		Pb, Pdc	145	Dd	T, b	I			•••••	••••
12bbb1	Roy O. Husband	1052		Pb, Pdc	170	Dd	T, b		625	26.09	11-13-53	 L
12cdb1	Fred Reeton	1954		Pb, Pdc	127	Dd	Т, Б	Î	1,000			L
12ad1	J. M. Langston	1954		Pb, Pdc		Dd	T, b	I			•••••	••••
120a1 13dcc1	J. J. Thomason E. H. Mefford	1954	1,493	Pb, Pdc	120	Dd	T, b	I	800	21.35	2-10-54	c
13dda1	do.	1954		Pb, Pdc	115	Dd	Т, е	I				
13bab1	F. F. Brewer	1954	•••••	Pb, Pdc	125	Dd	T, D	I N		18.65	10-20-53	
22a	Magee			Pb, Pdc	120	Dd	N	N				
24acd1	L. S. Slaten	1948		Pb, Pdc	120	Dd	T, b	I	42.5	·····	8-26-52	
26CDD1 28aab1	J. M. Langston	1953	1.601	Pb. Pdc	390	Dd	N N	N I		106.30	12-31-53	
35ddb1	Fred Cope	1948	1,485	Pb, Pdc	72	Dđ	Т, е	I	820	16.72	9- 3-52	••••
35dbb1 35cca1	do.	1948	1,493	Pb, Pdc	95	Dd Dd	T, e N	IN	1,100			
35caa1	do.	1952	·····	Pb, Pdc	105	Dd	Т, е	ī	785	32.14	8-26-53	L
36cac1	C. Y. Spradlin	1952	1,490	Pb, Pdc	54	Dd	т, в	I	300	20.55	2-10-54	••••
1N-26W-5bd1	W. J. Hudson	1951	1,555	Pb, Pdc	102	Dd.	Т, Б Т	I	1,350		2-11-54	с
5aabi 6bbb1	Utho H. Morris H. B. Bartlett	1953	1,603	Pb, Pdc	35	Dd	I, D N	N	1,000	12.72	11-16-50	
65552	do.	1949	1,564	Pb, Pdc	54	Dd	Т, Б	ĩ	725	14.25	11-16-50	••••
6aal	J. E. McClendon	1954	•••••	PD, Pdc	135	Da	т, в	T	• • • • •	•••••		••••
1N-27W-laaal 1cdal	J. R. McClendon Warren Mitchell		1,565	Pb, Pdc Pb, Pdc	54 91	Dđ Dđ	Ν Τ. ε	N I	300	14.80	11-16-50	
	1		1			1	1 ' 0	-				

										Water	level	
Well number	Owner or tenant	Date completed	Altitude of land surface (feet)	Geologic source	Depth of well (feet)	Type of well	Pump and power	Use	Yield (gpm)	Depth below land surface (feet)	Date of measurement	Other data
HARMON COUNTY												
1N-27W-1dac1	Charles R. Bartlett		1,592	Pb, Pdc	119	Dd	T, b	I	650	20.37	8-25-53	
1222	J. R. McClendon	1933	1,504	Pb. Dda	147	D.	1, U C w	e	1,000	52 48	2-11-54	
2N-24W-2DC1 5cd1	W. D. Payne	1953	1,580	Pb, Pdc	2 50	Dd	N N	N				L
13ccd1 17cd1	R. C. Bassel Cliff Jones	1953	1,484	Pb, Pdc Pb, Pdc		Dd Dd	N N	S N				
17dcc1	do.		1,577	Pb, Pdc	146	Dd	C, W	N		33.92	2-11-54	
18cdc1 19ada1	do. Jim Loonev	1953		Pb, Pdc Pb, Pdc		Dd	C, W	S				
20acb1	Oscar Bryant	1944		Pb, Pdc	195	Dd	C, W	N		83.96	2-22-54 2-11-54	
22add1 26acc1	Tapley Jordon	1950	1,322	Pb, Pdc	140	Dd	N N	N				L
27ada1	D C Nama	1053	1 571	Pb, Pdc		Dd	C, W	S T	1.350	47.92	1- 6-54 2-11-54	
31b	K. S. Moran Wilmoth McNeal	1955	1,5/1	Pb, Pdc		Dd		Ň				
35accl	Tapley Jordon	1950		Pb, Pdc	162	Dd Dc	N	N N		72.31	1- 6-54	L
SODCDT	• • • • • • • • • • • • • • • • • • • •			ro, ruc		D	., "				0.10.54	
2N-25W-1bbb1	T D Tonor	1957	1.606	Pdc Pb. Pdc	20	Dg Drl	С, w	S I	500	16.39 57.07	2-10-54 2-11-54	L
4bcd1	Oscar Bryant	1953		Pb, Pdc	210	Dđ	N	N				
4bdd1 4bcc1	do.	1953		Pb, Pdc Pb. Pdc	160	Dd Dd	T.e	N I	1,600	44.16	4-21-53	
4cbc1	Bryan Putnam	1953		Pb, Pdc		Dd	Т, Б	I	900	50.13	8-20-53	• • • •
5aaal 5ccbl	D. S. Plummer F. E. Motley	1952	1,609	Pb, Pdc Pb. Pdc	140 120	Dd Dd	T, D N	I N	2,000	18.31	8-19-53	
5aab1	Oscar Bryant	1953		Pb, Pdc	80	Dd	N	N		45.52	8-20-53	
5aac1 5cal	do. Mrs. I P. Neal	1953		Pb, Pdc Pb, Pdc	145	Dd Dd	T, e T	I	1,000	43.20		L
5ccb2	do.	1953		Pb, Pdc		Dd	N	N		30.59	2-10-54	••••
6bcb1 6cbb1	Ola C. Hopkins do.	1952 1954	1,611	PD, Pac Pdc	56	Dd	Т, b	I	700	30.97	1-25-54	
7dab1	L. D. Worrell	1953	1,591	Pb, Pdc		Dd	T, b	I	635	18.30	2-10-54	
8aaa 1 8daa 1	F. E. Motley Stellie Moore	1953	1,391	PD, Pdc Pb, Pdc	148	Dd	T, e	I	510	37.49	8-21-53	
8a.a.2	F. E. Motley	1953		Pb, Pdc		Dd Dd	T, b	I	400	47.37	8-19-53	
950a1 10acb1	Limo Jones L. R. Morris	1953		Pb, Pdc	199	Dd		I				
11bac1	Loyd Duvall	1953	1,522	Pb, Pdc	175	Ddi Ddi	T, b	I	330 450	36.54 58.00	8- 5-53 4-27-54	L
11dac1 12ad1	Jennie Woodman E. Q. Anderson	1954		Pb, Pdc	265	Dd	N N	N				
12cca1	Sam Earls	1953	1,601	Pb, Pdc	266	Dd Dd	N T b	N T		60.58 53.43	12-14-53 2-22-55	L
13bcc1	ao.			Pb, Pdc		Dd	1, 0	Ň		26.65	8- 5-53	
14dbb1	Gould Motor Co.	1953		Pb, Pdc	95	Dd Dc	N T.b	N T	800	21.92	8- 4-53	· · · ·
140a01 14cbb1	Oscar Abernathy	1953	1,564	Pb, Pdc	115	Dd	Т, Ъ	I	900	21.19	2-10-54	
14ccb1	Melvin Duvall Could Nator Co	1953	1 576	Pb, Pdc Pb, Pdc	145	Dd Dd	Т, Ъ N	I N	710	18.63	8- 4-55 1-26-54	 L
14dbb2	do.	1954		Pb, Pdc		Dđ	Т, Б	I	800	22.57	1-26-54	
15dab1 17acc1	Aubrey Anthony	1953	1.577	Pb, Pdc Pb, Pdc	105	Dd Dd	Т, Б Т. Б	I	400	25.30	2-11-54	
17661	Garland Motley	1953		Pb, Pdc	145	Dd		I	900			L
18cdd1 18cc1	J. H. Motley	1953		Pb, Pdc Pb, Pdc	137	Dd Dd	T, D N	I N	2,000			
18ab1	G. F. Moore	1952		Pb, Pdc	148	Dd	N	N				••••
19aacl 19dal	W. H. Lewis Vera Cunningham	1952 1954		Pb, Pdc Pb, Pdc	139	Dd	T, b	I	1,000			
20dbb1	Travis Collier	1953		Pb, Pdc	110	Dd	T, b	I	800	33.67	8-21-53	••••
20ccc1 20bcd1	L. F. Trammel	1954		Pb, Pdc Pb, Pdc	150	Dd	Т, b	I	580			
21dac1	Oscar Bryant	1947	1,568	Pb, Pdc	112	Dd Dd	T,e N	I N	6.50	28.73 20.02	2-10-54 11-16-50	
21dac2 21dac3	do.	1946	1,505	Pb, Pdc	81	Dd	N	N		23.50	8-21-53	
21dac4	do.	1952		Pb, Pdc	100	Dd Dd	N N	N N		22.61	8-21-53 8-21-53	
21dac6	do.	1952		Pb, Pdc	94	Dd	N	N		24.56	8-21-53	
21aac1	Ray Walkup	1057	1,588	Pb, Pdc	150	Dd Dd	N T. D	N T		43.67	1-25-54 8-21-53	· • • •
21ddc1	Oscar Bryant	1954		Pb, Pdc	121	Dd	Т, е	I	800	21.73	8-26-54	
23abb1 23dbd1	H. L. Wilder	1952	1,556	Pb, Pdc Pb, Pdc	130 105	Dd Dd	Т, Б Т. Б	I	310 785	21.35	2-10-54	с, L ••••
24cbb1	L. R. MUIIIS			Pb, Pdc		Dd		I				••••
25da1 25cdd1	Earl Newberry I. H. Motley	1952 1953	1.545	Pb, Pdc Pb. Pdc	97	Dd Dd	Т, b Т, b	I I	550 950	44.00	8- 4-53	
25adc1	Joe Allison	1954		Pb, Pdc	162	Dđ	Т, Ъ	I	650		8-12-54	••••
26ac1 26bc1	Jennie Woodman Cecil Carv	1952 1955	1,547	Pb, Pdc Pb. Pdc	120	Dđ Dđ	Т, Ь Т. Ъ	I		50.81	2-22-55	••••
275551	Ralph Moore	1947	1,552	Pb, Pdc	150	Dd	T, b	I	410	20.96	8-21-53	••••
27ccc1 27bb1	Marvin Williams Ralph Moore	1952		PD, Pdc Pb. Pdc	100	Dd Dd	T, D	I		13.02	4-21-54	
27dad1	James Q. Tucker	1954		Pb, Pdc	:::	Dd	Т. Ь	I		75.22	9- 9-54	••••
28dbb1 28cab1	G. D. Payne Robert Walkup	1954 1954		Pb, Pdc Pb, Pdc	140	Dd Dd	Г, Б Т, Б	I	300			
28ccd1	Travis Collier	1954		Pb, Pdc	162	Dd	T, b	I	750	33 10	2-23-55	••••
28bcb1 29bbb1	ROY Ginn Mrs. R. Y. Darnell	1954 1952	1,578	PD, Pdc Pb, Pdc	129	Dd	т, р	I	1,600	28.70	2-10-54	
29adal	Lee H. Lewis	1952	1,574	Pb, Pdc	130	Dd	Т, Б	I	52 5	30.28	2-11-54	••••

										Water	level	
		Date	Altitude of	Geologic	Depth of	Type of	Pump and			Depth below	Date of	Other
Well number	Owner or tenant	completed	land surface	source	well	well	power	Use	Yield	land surface	measurement	data
			(feet)		(feet)		ļ		(gpm)	(feet)		ļ
HARMON COUNTY		2										
2N-25W-29dcc1	Guy B. Cummins	1952		Pb. Pdc	138	Dd	т. ь	I	520	65.35	8-19-53	
29aac1	Bill Scivily	1953		Pb, Pdc	110	Dd	Т, Ъ	I	865	28.22	8-19-53	
29aal 29ccd1	do. Mrs R. V. Darnell	1953		PD, Pdc Pb, Pdc	120	Dd	С, w Т. b	S I		28.01	8-19-55	
29dbc1	Claude Richardson	1954		Pb, Pdc	180	Dd	Т, Ъ	I				
30abb1	Mrs. R. Y. Darnell	1953		Pb, Pdc	166	Dd	T, b	I	620			
300001 31dac1	do. Claude Richardson	1953	1,391	Pb. Pdc	175	Dd	1, 0 N	N	930	72.39	9-15-53	
31dad1	do.	1953		Pb, Pdc	201	Dd	N	N				С, L
31abb1	do.	1953		Pb, Pdc	200	Dd	Т, е	I	80	34.16	10-28-53	L
310001 31ada1	Mrs. J. M. Cary Claude Richardson	1953	1,580	Pb, Pdc	170	Dd	1, 0 N	N	125	60.11	12-31-53	
31db1	do.	1953		Pb, Pdc		Dd	N	N				
31aaal	do.	1954		Pb, Pdc		Dd	T, b	I	300			
310002 32cacl	Mrs. J. M. Cary Travis Magee	1954		Pb. Pdc	200	Dd	1, D T. e	I	150			 L
32bca1	do.	1953		Pb, Pdc	175	Dđ	Т, е	I	400	69.89	9-16-53	L
33dbd1	G. A. Williams	1954	1	Pb, Pdc	165	Dd	T, b	I	510	42.15	4-14-54	
34da01 34bcb1	do.	1952	1,540	Pb. Pdc	115	Dd	Т. b	I		30.57	2-10-54	
35ccal	Martin		1,544	Pb, Pdc		Dd	T, b	1	750			
35dcb1	John R. Hill	1052		Pb, Pdc	159	Dd	Т, Ь	I	800 400		•••••	••••
35acol 36dcb1	J. H. MOTLEY Martin A. Bullington	1423	1.539	Pb. Pdc		Dd	N	N	400	37.92	8- 7-53	
36dac1	do.	1953	1,540	Pb, Pdc	230	Dd	Т, Б	I	300	39.70	8-25-53	L
36bal	J. H. Motley	1953		Pb, Pdc	194	Dd Dd	T, b	I	155	35.92	1-26-54	
JOCUI	Martin A. Builington	1934		ro, rac	1 104		1,0					
2N-26W-labb1	Charles McKinley	1952		Pb, Pdc	144	Dd	Т, в	I	820	17.42	4- 0-52	L
2cba1 2cba2	J. H. Motley	1952	1,612	Pb, Pdc Pb, Pdc	102	Dd	Т, D Т. b	I	800	17.42	4- 9-55	с. г
2dc1	W. A. Horton	1953		Pb, Pdc	120	Dd	Т, Ъ	Ĩ	1,500			
2baal	Mark's Greenhouse	1951		Pb, Pdc	70	Dd	T, e	I			11 16 50	
3ddb1	L. M. Cunningham	1947	1,613	Pb, Pdc Pb, Pdc	200	Dd	1, g N	I N	450	17.53	2-10-54	
3da1	E. D. Kuykendall	1953		Pb, Pdc	175	Dđ	N	N				
3dbc1	D. J. Shelby	1955	1,613	Pb, Pdc	4 50	Dd	T, D	I	••••			с, г
4ccc1	Roy Sanford	1954		Pb. Pdc		Dd	л. ъ	I	800			
5dbb1	do.		1,032	Pb, Pdc		Dđ	T, ng	I	1,200			
5bcc1	Ward Bros	1948	1,640	Pb, Pdc	149	Dd	T, g	I	1,200	30.23	2-10-54	••••
65651	Fred K. Rilev	1953		Pb, Pdc	150	Dd	Т, Б	Î	400			
7acb1	R. W. Scott	1952		Pb, Pdc	156	Dd	J, b	I	800			••••
8bcb1 8dbc1	J. J. Gee	1952	1,644	Pb, Pdc	174	Dd	T, b	I	495	38.72	8-25-55	••••
9cdb1	W. R. Horton	1953	1,044	Pb, Pdc	124	Dd	Т, Б	ĩ	900	48.49	8-25-53	
10bbd1	S. A. Patterson	1954		Pb, Pdc	110	Dd	т, ь	I	900			••••
12cca1 12ada1	Oscar H. Abernathy		1,630	PD, Pdc	•••	Da Dn	T, D	1 N	1,250	24.20	9- 1-53	
12ada2	do.	1953		Pb, Pdc	120	Dd	Т, Ъ	I	330	24.03	12-31-52	
15aabl	A. L. Prock	1953	1,672	Pb, Pdc	130	Dd	Т, Ъ	I	100	72.11	2-10-54	• • • •
16add1 17da1	W. R. Horton	1954	1.707	Pb, Pdc	285	Dd Dd	T, D N	I	200	98.11	8-25-53	· · · · ·
17da2	do.		1,707	Pb, Pdc		Dd		Ň		100.00	8-25-53	
17b	C. W. Masters	1954		Pb, Pdc	220	Dd	T, b	I	3 50			••••
25dbc1	D. T. Johnson	1954		PD, Pdc Pb. Pdc	202	Dd	л. ъ	N I	150			
25bab1	Oscar Abernathy	1954		Pb, Pdc		Dd	Т, Ъ	I	260			• • • •
27bcb1	Herschel Vaughn	1953	1,650	Pb, Pdc	150	Dd Dd	T, b	I N	3 50	46.20	2-10-54	• • • •
27d	do.			Pb, Pdc	129	Dd	N	N				
29cc1	Chock Earls	1952		Pb, Pdc	186	Dđ	<u>.</u>	N				L
31cbc1 31ddd1	T. C. Gilbert		1 500	Pb, Pdc		Dd Dd	T, g	I	900	31.51	11-16-50	• • • •
36abb1	Shellie Moore	1952		Pb, Pdc	107	Dd	Т, е	ĩ	390	67.65	8-19-53	••••
2N-27W-1abc1	C. R & Mary Bennett	1952	1.658	Pb. Pdc	177	Dd	т. ь	N				
16661	Mrs. Barbara Brown		1,659	Pb, Pdc	138	Dd	Т, Б	I	1,200	30.96	11-16-50	
1ccb1	Ted & Clay Whorton	1052	1,659	Pb, Pdc	150	Dd	Т, b	I	1,100	43.13	2-10-54	••••
36dad1	A. A. Kite	1953	1,582	Pb, Pdc	234	Dd	т. b	I	1,000	33.24	2-10-54	L
36dab1	do.	1952		Pb, Pdc	150	Dđ	Т, Б	I	600	45.54	8-25-53	
36bac1 36ab1	Ollie Kite Winnie Flain	1953		Pb, Pdc	180	Dd Dd		N S		62.40 58.48	8-25-53 8-25-53	L
36ab2	do.	1953		Pb, Pdc	155	Dd	N. N	N				••••
3N-24W-3dda1	Joe Fox	1945	1.573	Pb. Pdc	190	Dd	c. w	s		108.63	2- 9-54	
5dad1	Cloyd Roberts	1953	1,545	Pb, Pdc	155	Dd	Т, Б	I	785	79.92	8-21-53	2
9dcc1	• • • • • • • • • • • • • • • • • • •		1,526	Pb, Pdc		Dd	C, w	N	•••••	62.54	2- 9-54	• • • •
13dab1	Howell Atwood	1951	1,543	Pb. Pdc	175	Dd	N, W	N		66.00	1-19-54	
13dab2	do.	1952	1,543	Pb, Pdc	315	Dd	N	N			li	L
14ccb1	•••••	1954		Pb, Pdc		Dd	N	N		79.30	9-2-54	• • • •
20acd1	John R. Hill	1	1,539	Pb, Pdc	229	Dd	N N	N		77.25	10- 9-53	
21ac1	J. C. Putnam	1952		Pb, Pdc		Dd	Т, Б	I	775	46.37	8-21-53	• • • •
21bc1	Wallace N. Bullington	1955		Pb, Pdc	145	Dd	Т, b т ъ	I	1 100	31.60	8-21-53	••••
22 V. 41	Bryant	1736	1	1	1		1 * * *	•	* ,****			

										Water	level		
Well number	Owner or tenant	Date completed	Altitude of land surface (feet)	Geologic source	Depth of well (feet)	Type of well	Pump and power	Use	Yield (gpm)	Depth below land surface (feet)	Date of measurement	Other data	,
HARMON COUNTY													
3N-24W-23bcc1	Robert B. Bryant	1954		Pb, Pdc Pb, Pdc	160 144	Dd. Dd.	TN	I N	450				
25bcb1	N. C. Thompson	1954		Pb, Pdc	185	Dđ	N	N		49.82	4-28-54	L	
29aaa1	Ballard Hill	1953	1 527	Pb, Pdc Pb, Pdc	167	Dd · Dd	N Т. Б	N I		65.30	9- 7-54 2-12-54	с, L	
270402		1,20	1,501	10,						177 (0	2 9 54		
3N-25W-1cdd1 2abb1			1,605	Pb, Pdc Pb, Pdc		Dd Dd	C, W C, W	S S		148.52	2- 8-54	····	
4aa1				Pb, Pdc		Dg	R	D		12.08	12-30-53		
15bbal 17caal	Limmie Edmundson		1,702	PW Pb, Pdc	270	Dd	N N	N		20.01			
18baal				Pb, Pdc		Dđ	N	N		24.42	1- 5-54		
29dbal 29adcl	Oma Haskins I. F. Cunningham	1954 1954		Pb, Pdc Pb, Pdc	200	Dd	T, b	I	400	62.95	11- 1-54		
30abb1	G. F. Moore	1953	1,620	Pb, Pdc	160	Dd	Т, Ь	I	700	28.00	2- 9-54	L	
31bdc1 31ccd1	F. E. Motley Garland Motley	1954		Pb, Pdc		Dđ	T, e	I	1,000				
31daa1	Afton Baily	1954		Pb, Pdc	140	Dđ	T, b	I	1.060	33 77	2_ 9_54		
326661 32dda1	Wilcy Moore Oscar Bryant		1,623	Pb, Pdc Pb, Pdc	160	Dd	N N	N	1,000				
32ddb1	do.	1953		Pb, Pdc	158	Dd Dd	T, e	N N		52.88	8-20-53		
32ad1 32acd1	do.	1953		Pb, Pdc	156	Dd	Т, Ь	I	1,200	47.89	8-31-53	C, L	
32cad1	R. B. Tucker	1953		Pb, Pdc	155	Dd	T, b	I T	1,000	40.18	11- 4-53		
32ddc1 33aab1	do.	1954	1,656	Pb, Pdc		Dđ	N N	Ň		86.97	2-11-54		
33dbb1	Wilcy Moore			Pb, Pdc	200	Dd Dd	N	N N		69.00	1-20-54		
33d	do. do.			Pb, Pdc		Dd	N	N					
3 <i>5</i> b	Stokesberry			Pb, Pdc	340	Dđ	N	N		79.38	9- 1-55		
3N-26W-2bbc1						Dg	С, w	S		13.17	12-30-53		
5adal 6abal				Pw	42	Dg Dd	C, W C. W	N N		18.10	12-29-53		
9cb1	R. W. Wynn	1953		Pb, Pdc	150	Dđ	N	N		21.54	8-26-53		
9cb2	do. Robert Massey	1953		Pb, Pdc Pb, Pdc	165 140	Dd Dd	T. b	N I	800	21.18		C, L	
lladdl	J. M. Curry	1954		Pb, Pdc	160	Dd	T, b	I	1 000		2-12-54		
12cdd1 12cbc1	Chester Caswell	1953	1,655	PD, Pac		Dd	N N	N	1,000	59.38	1- 5-54		
13bbc1					100	Dd	C, W	N		35.14	1- 5-54		
13c 13bba1	R. B. Tucker M. B. Briscoe	1954 1954		Pb, Pdc Pb, Pdc	160	Dd	T, b	I					
14aa1	J. M. Coley	1952		Pb, Pdc	232	Dđ	T, b	I	1,200				
186661	M. B. Briscoe			Pb, Pdc	16	Dg	C, W	N		10.16	1- 5-54		
20cad1	C. H. Alders	1954		Pb, Pdc	135	Dd Dd	T, D	I N	200	79.39	4-16-54 12-30-53		
22cdc1	Marcus McClanahan	1953	1,682	Pb, Pdc	165	Dđ	N	N		68.80	2- 9-54	L	
22cca1	do.	1953		Pb, Pdc	215	Dd	N N	N N		75.80	11-27-55 12-31-53	L 	
22bbb1				Pb, Pdc		Dđ	C, w	S		60.05	12-30-53		
22dd1 23cca1	Raymond Keith	1954		Pb, Pdc	140	Dd Dd	T, D T, D	I	1,000	67.45	2-10-54		
23aaa1				Pb, Pdc		Dd	N	N		34.86	1-26-54	•••••	
24dad1 24ada1	W. I. C. Castle A. B. Crump	1953		Pb, Pdc Pb, Pdc	136	Dd	Т, Б Т, Б	I	900 75	67.68	1-25-54		
25cd1	E. M. Crenshaw		1,628	Pb, Pdc		Dd	T	I			•••••	••••	
26bdc1	Paul Metcalf	1953		Pb, Pdc	185	Dd	N N	Ň		57.80	12-14-53		
26bd1	do.	1953		Pb, Pdc	143	Dd Dd	N N	N N		53.30 56.97	12-14-53 12-24-53	 L	
26bdc2	do.	1953		Pb, Pdc	251	Dd	N	N	••••	63.10	12-28-53	••••	
26baa1 26bab1	do.	1954		Pb, Pdc	170	Dd Dd	N N	N N		49.05	1- /-54		
26bdd2	do.	1954		Pb, Pdc	180	Dd	N	N		51.00	1-20-54	• • • •	
27ccd1 28cbc1	J. B. Fowler Martin Tice	1954		Pb, Pac Pb, Pdc	125	Dd	т, е Т, b	I		55.25	2-16-55		
29cc1	A. C. Mayhugh	1952		Pb, Pdc	110	Dd	T, ng	I	485		2- 9-54	С	
29acb1 29acc1	C. H. Alders do.	1952	1,660	Pb, Pdc Pb, Pdc	100	Dd	л Т, Б	I	130				
29bbb1	J. A. Carrick	1953		Pb, Pdc	142	Dđ	T, ng	IN	900				
31cbd1	do.	1951	1,652	Pb, Pdc	119	Dd	Т, Ъ	ĩ	800	43.38	1-26-54		
31dbb1	Charles McKinley	1953		Pb, Pdc	2.52	Dđ Dđ	N N	N N				L 	
31dbc1	do.	1953		Pb, Pdc	155	Dd	N	N				••••	
31dad1	do.	1953	1,654	Pb, Pdc	231	Dd Dd	T, ng N	I N	695	45.15 73.00	2- 9-54 2-22-54	••••	
32cbb1	J. M. Coley	1953		Pb, Pdc	160	Dd	T, ng	Î	1,635			••••	
32bcb1	A. C. Mayhugh	1955	1 630	Pb, Pdc	150 115	Dđ Dđ	T, ng T. b	I	750	58.64	2-15-55	• • • •	
33dd1	H. M. Walker	1953		Pb, Pdc	130	Dđ	T, e	ī	750			••••	
33dda1 33cha1	W. D. Carrick	1952		Pb, Pdc	75 90	Dd.	Т, Б Т. Б	I	1,200 800	28.39	1-26-54	••••	
33aad1	William Sherd	1952		Pb, Pdc	95	Dđ	T, b	I	1,000				
33cab1 34bbc1	G. C. Hollis Selma Clement	1954 1954	1.651	PD, Pdc Pb, Pdc	··· 92	Da Da	г, D Т, b	ī	800			••••	
34babl	Arvie J. Orr	1057	1,638	Pb, Pdc	163 65	Dd. Dd	Т, Ъ Т. У	N T	····· 800	· · · · · · · · · · · · · · · · · · ·		 	

										Water	level	
		Date	Altitude of	Geologic	Depth of	Type of	Pump and			Depth below	Date of	Other
Well number	Owner or tenant	completed	land surface	source	well	we11	power	Use	Yield	land surface	measurement	data
			(feet)		(feet)				(gpm)	(feet)	· · · · · · · · · · · · · · · · · · ·	
HARMON COUNTY												
3N-26W-34bal	Arvle J. Orr			Pb, Pdc	170	Dđ	N	N				
34ccc1 34bad1	Willie J. Cummins Arvle I. Orr	1953 1955		Pb, Pdc Pb, Pdc	120	Dd. Dd.	T, ng T, ng	I I	500	41.14	2-15-55	
35aad1	Lona H. Christian		1,643	Pb, Pdc	180	Dd.	T, b	I	855		••••	••••
35cbal 35bdcl	Claude Essary T. H. Cummins	1952 1952		Pb, Pdc Pb, Pdc	120	Dd	т, в Т, в	I	475			
35cac1	Marvin Swaim	1953	1 630	Pb, Pdc	81	Dd Dd	T, g	I	2.50 900	31.82	9- 1-53 2- 9-54	••••
550401	Charles Merida	1933	1,039	10, 140			1, 0					
3N-27W-12cac1 24aaa1	Mrs. Flsje Yancev		1,769	Pb, Pdc Pb, Pdc	145	Dd Dd	C, W C, W	S N		30.40	2- 9-54 1- 5-54	••••
25cbb1	Mrs. Pearl Whiteside	1952	1,682	Pb, Pdc	102	Dđ	Т, Ъ	I	950	70.08	2-10-54	• • • •
36dd1	Maxine Brock	1953		PD, Pac	220	Da	1, D	1	730			
4N-24W-17cdd1 17dad1	Wm. J. B. Moon	1956	1,751	Pw Pb. Pdc	288	Dd. Dd	C, W N	N N		25.50 162.5	12-30-53 6-28-56	 L
18acb1	Town of Gould					Dđ	Т, е	P	35			С
18abc1 18ac1	do.	1953		0t	46	Dd	T, e N	P N	35			
18ada1	Public	1930's	1,744	Qt	17	Dg	N	P		2.36	2-8-54	• • • • •
19bbal 20daa1	C. R. Kerbo	1900's	1,715	Pw		Dđ	J, e C, w	S		32.06	2- 8-54	
31dda1			1,576	Pb, Pdc		Dđ	C, W	N		97.95	2- 8-54	••••
4N-25W-6aaa1	Mrs. Vera Willhelm		1,827	Pw		Dd	С, w, h	S		58.69	2- 9-54 2-12-54	• • • •
15bdd1	•••••		1,717	Qt	17	Dg	N N	N		13.50	2- 8-54	
20bca1 20bc1	City of Hollis	1948		Qt Ot	102 110	Dd Dd	T,e T.e	P P	165 265			с с
20bcc1	do.	1951		Qt	105	Dd	T, e	Р	225			• • • •
20bc1 21ddd1	do.	1955	1,836	Qt Qt	200	Dd	Т, е С, w	P N	400	42.89	2-12-54	••••
23aaa1		1956	1,797	Pb, Pdc	370	Dd	N	N		226	6-21-56	L
24cbc1 24cbc2	Howard Robinson	1955	1,806	Pb, Pdc	367	Dd	C, W N	S N		40.52	2- 0-34	L
24cbc3		1955		Qt	240	Dd		N		0.44	12-30-53	L
25aaa1 29aaa1	A. L. Carter			Qt	19	Dd	C, W	S		15.65	12-30-53	
29aaa2	do.	1055	1,798	Qt Db Ddc		Dg	R	S		15.50	12-30-53	 L
29aaa3 31bbb1	*****	1955	1,790	Qt Qt	16	Dd	N	N		8.83	12-29-53	
31cdb1	J. E. Leathers	1955	1,754	Qt Pw	474	Dd	N	N S		72.50	4-12-55	L
33cdc1	•••••					Dd	C, w	ŝ		14.76	12-30-53	
35ccc1	•••••			Qt Ot		Dg Dd	N C.W	N S		7.17 9.76	12-30-53	••••
36dda1	•••••			Qt	12	Dg	С, w	S		6.48	12-30-53	••••
4N-26W-3bcl				Qa1		Dg	N	N		20.26	12-28-53	••••
3aaa1 4bcb1				Pb, Pdc Pb, Pdc		Dd Dg	C, W C, W	S N		43.78	1-27-54 12-28-53	••••
5ddc1			1,885	Qt		Dd	N	N		39.32	2- 9-54	
6cdb1 8bba1			1,867	Pw Pw		Dd	C, W C, W	N S		40.89 50.20	12-28-53	••••
11c	•••••			Pw	28	Dd	C, w	S		13.70	12-29-53	••••
12ccb1 14cdc1	Monroe Webster		1,879	Qt		Dg	ј, е С, w	D		45.82	2- 9-54	••••
14cdc2	Dub 1 1	1955		Pb, Pdc	318	Dd Dr	NCh	N D	<i>.</i>	125.7	11- 3-55	L
176661	+ + + + + + + + + + + + + + + + + + +		1,925	Qt		Dd	C, w	N		54.40	2- 9-54	
17bcc1 19bbd1				Qt Qt		Dd Dd	C, w C. w	N S		52.46	12-29-53	••••
19ddd1				Qt		Dd	C, W	N		13.31	12-29-53	
22dbd1 22dbd2	•••••			Qt	43	Dd Dd	C, w N	S N		25.93	12-29-53	• • • • •
22dca1				Qt		Dd	Ň	N		33.34	12-29-53	••••
23ddd1 24ddd1	•••••		1,836	Qt	28	Dd Dd	R R	S N		20.61	12-29-53	••••
29ccc1			1.882	Pw	37	Dd	N C	N		29,71	2- 9-54	••••
29aaa1 34ccl	•••••			Pw Pw	10	Dg	C, w	N N		8.61	12-29-53	••••
36cd1	•••••			Qt		Dd	С, w	S	•••••	4,50	12-29-53	
4N-27W-12dd1			1.040	Qt		Dd	C, w	S		33.66	12-28-53	••••
13cdd1 13cdd2	R. J. Holland	1955	1,942	Pb. Pdc	415	Dd	C, W N	S N			6- 9-34	••••
25db1				Qt		Dđ	С, w	S	•••••	38.82	12-29-53	••••
5N-24W-4ccd1	Mrs. Sam C. Hall		1,793	РЪ	70	Dd	C, w	S		56.88	2- 9-54	••••
6aaal 7dcdl			1,807	Pb, Pdc	35	Dđ	C, W C, W	S S		42.13	2- 9-54	· · · · ·
16ddd1	State of Oklahoma	1946	1,792	Pb, Pdc	78	Dd	[C, w, h	S		48.32	2- 9-54	••••
190001 20add1	U. E. Morris	1950	1,771	Pb, Pdc	, ⁵⁴	Dd	C, N C, W	s S		10.03		••••
5N-25W-10001	Winfred Aller	1051	1 709	Ph Pdr	85	Dd	C. w	¢		31.42	2- 9-54	
16cdc1	"ALL red Allen	1421	1,867	Pw	29	Dg	N	N		24.78	2- 9-54	
17cdc1 17cdd1	B. Merritt			Pw Pw	34	Dd Dg	C, w J. e	S S		28.61 28.28	1- 8-54 1- 8-54	••••
	,			1	1	۰ ^۲	1					

										Water	level	
Well number	Owner or tenant	Date completed	Altitude of land surface (feet)	Geologic source	Depth of well (feet)	Type of well	Pump and power	Use	Yield (gpm)	Depth below land surface (feet)	Date of measurement	Other data
HARMON COUNTY												
5N-25W-17aad1 18cdc1 18dcc1	Jake Davidson Carl Smith	1945 	· · · · · · · · · · · · · · · · · · ·	Pw Pw Pw	43 112 53	Dg Dd Dd	C, w C, w C, w	S D N		30.76 44.70 30.64 21.08	1-26-54 1- 8-54 1- 8-54 1-19-54	····
19ddd1 21cbb1 23ccc1 27dcc1	H. A. Williamson	····	1,874 1,787 1,817	Pw Pw Pb, Pdc Pb, Pdc	37 42 52	Dg Dd Dd Dd	C, W C, W C, W C, W	N S S N	·····	22.32 29.93 18.12 22.70	2- 9-54 1-19-54 2- 9-54 2- 9-54 1-26-54	 c
28ccc1 5N-26W-7dca1 16daa1 18aba1	B. F. Hayes D. L. Jones	····	1,927 1,954	PW PW PW PW	42 70 65 125	Dg Dd Dd Dd	C, w C, w C, w C, w	N S S		33.01 45.94 43.16	2- 8-54 2- 8-54 1-15-54	
23dbd1 27dbb1 29acb1	Mars Heart R. C. Fillpot F. S. Hughes	 1952	1,899 1,893 1,818	Pw Pw Pw	105 97 22	Dd Dd Dd	C, W C, W C, e	S S S	·····	55.44 62.45 16.06	2- 9-54 2- 8-54 2- 8-54	••••• ••••
6N-26W-12cab1 13ddd1 17dcc1 33aab1 34bcb1	Lynn Spurlin	 1946 	1,744 1,865 1,898 1,910	PD, Pdc Pb, Pdc Pb, Pdc Pw Pw	116 34	Dd Dd Dd Dg Dg	C, W C, W C, W C, W C, W	S S S S		55.95 44.40 32.67 28.65	2- 8-54 2- 8-54 12-18-53 2- 8-54	с
JACKSON COUNTY												
15-21W-17baa1 15-22W-8ccc1	•••••			Qt Pb	 44	Dd Dd	C, w C, w	N N		14.54 26.91	1- 8-54 2- 9-54	····
15abb1 19ccc1 30dda1 36aab1	· · · · · · · · · · · · · · · · · · ·	1953 	1,345 1,426 1,380	Pf Pb Pb Pb	 195 	Dd Dd Dg Dg	C, W N C, W C, W	S N S N	·····	4.66 12.03 8.36	2- 9-54 2- 9-54 1- 8-54	L
15-23W-7dcc1 9dcd1 12cdd1 18bdd1	City of Eldorado Vera Wood D. H. Shumaker City of Eldorado	····	1,445 1,504 1,484	Qal Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc	32 45	Dđ Dđ Dđ Dg	N C, w C, w Cn, E	N S S P		20.12 65.34 48.07	2- 9-54 2- 9-54 2- 9-54	••••
18acb1 18dbc1 20ddc1 22ddc1	do. do.	····	 1,456 1,479	Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc	55 50 40	Dđ Dđ Dđ Dđ	T, e J, e C, w C, w	P P S N	150 100	22.32 34.25 55.60	2-15-54 2- 9-54 2- 9-54	••••
240001 28adb1 28adb2 30daa1 33aaa1	City of Eldorado do.	····	 1,413 1.456	Pb, Pdc Pb, Pdc Pb, Pdc Qt Pb, Pdc	45 45 	Dg Dg Dd Dd	C, w Cn, e T, e N C, w	S P P N		20.70 38.65	2- 9-54 2- 9-54	с с
1S-24W-1adb1 2abb1 5bcd1 6abb1 7dd1 7ad4	Billy Brewer Lester R. Thompson F. E. Motley T. L. Palmer	1954 1953 1953 1952	1,452 1,462	Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc	 100 103 98 72	Dd Dd Dd Dd Dd	T, e C, w T, e T, b N	I S I I N	1,200 2,000	38.43 31.50 22.05	8-25-54 2- 9-54 2- 9-54	 L
8d 8dabl 10ccd1 20add1 21bcd1 21bcd1 36dcd1	Troy Coke do. W. F. Spencer Joe J. Cope	1952 1952 1953 1952 	1,403 1,477 1,495 1,499 	Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc	134 76 63 165 120 	Dd Dd Dd Dd Dd Dd Dd	Т, В Т, е С, w Т, b Т, b С, w С, w	N I N I S S	1,800 350 685	54.87 59.47 63.63 71.29	2- 9-54 2- 9-54 2- 9-54 1- 8-54	L C
15-25W-1bcd1 1bbb1 2abb1 2baa1 13ccc1 13dc1 13dcc1	F. E. Motley do. Glen Hankins W. H. Bernard Wynfred Black Ted Springs do.	1953 1954 1951 1952 1953 1952 1954	 1,481 1,527	Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc	97 86 80 130 80 119	Dd Dd Dd Dd Dd Dd Dd	T, b T, b T, e T, e T, b N T, b	I I I I N I	2,000 1,700 1,000 1,100 1,000	20.58 14.93 75.60 60.40	8- 7-53 9- 3-52 2- 9-54 4-16-54	C L L
2S-21W-6ada1	•••••			Pf		Dd	N	N	••••	16.03	1- 8-54	••••
2S-23W-4aa1 8bca1 2S-24W-1ad1 1b1 1b2 4acb1 12cc1	City of Eldorado do. W. C. Garren do. Mrs. Ida V. Thorp City of Eldorado	 1954 1954 1952 1951 1952 1954	1,420 1,424 1,433 1,479	Pb Pb Pf Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc	 62 100 105 145 124 120	Dd Dd Dd Dd Dd Dd Dd Dd	C, w C, w N N	S N N N N N	·····	10.64 33.45 	2- 9-54 2- 9-54	L
1N-21W-16ddd1 20ba1 20aad1 21aaa1 31cdd1	Town of Olustee Town of Olustee L. A. Fessenden	1954 1953 	·····	Qal Pf Qt Qt Pf	42 62 	Dd Dd Dd Dd	T, e C, w T, b C, w	P S P I N	125 9 400	28.14 12.40	1-13-54 1-13-54	с
1N-22W-11cbc1 12daa1 18aab1 26aad1	Mrs. Pearl Montgomer	 1953	1,414 1,467 1,356	Qt Qt Pb, Pdc Pf	 22 97	Dg Dg Dd Dd	C, w C, w C, w N	N N S N	· · · · · · · · · · · · · · · · · · ·	8.91 17.09 43.51 12.71	2- 8-54 1-13-54 2- 8-54 2- 8-54	

										Water	level	
Well number	Owner or tenant	Date completed	Altitude of land surface (feet)	Geologic source	Depth of well (feet)	Type of well	Pump and power	Use	Yield (gpm)	Depth below land surface (feet)	Date of measurement	Other data
JACKSON COUNTY												
1N-22WCont'd 27cac1 32bcb1		••••	1,350	Qt Qal		Dg Dg	C, w C, w	N S		16.78 14.73	1-13-54 2- 8-54	
1N-23W-10bbb1 11ddc1 22bcc1 24ccd1 29bb1 31ddd1 32bbd1 34dcd1	John G. Alexander Earl Hulett Earl Hulett	1951 1946 1954 1954 	1,430 1,441 1,449 1,438 1,376 1,470 1,453	Pb, Pdc Pb, Pdc Pb, Pdc Pb Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb	92 25 90 53 94 	Dd Dd Dd Dd Dd Dd Dd Dd Dd	T, e C, w C, w N T, g C, w C, w	I S N N I S	400	28.16 37.57 23.34 50.94 22.32 43.67 49.4 25.91	2- 8-54 2- 8-54 2- 9-54 2- 9-54 2- 9-54 2- 9-54 2- 9-54 2-17-55 2- 9-54	C L
2N-21W-17aa1	•••••			Qt	16	Dg	N	N		9.97	12-18-53	
2N-22W-3bc1 4daa1 5dcb1 5dbb1 6ddd1 6cac1 7aaa1 8dcb1 8dda1 9bba1 9bab1 22abb1 36bcc1 36bb1	Kizziar Brothers J. O. Nash Frank Johnston T. M. Walston do. W. R. Renfro Marshall Brothers J. P. Machin Marvin Williams Mrs. Pearl Forgey D. M. Weyrick	1953 1953 1953 1953 1953 1952 1952 1952 1952 1953 1952 1953	1,425 1,428 1,417 1,380 1,386 	Pb Pb Pb Pb, Pdc Pb Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Pb, Pdc Qal Pf Pf	117 110 135 135 135 90 83 61 75 33 96	Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd D	F, b T, b T, g N T, g T, g T, g T, b N, w C, w N	I I I I I I N D S N	135 700 775 800 1,100 850 800 700 900	63.55 56.86 38.50 35.00 37.22 35.17 23.95 38.05 36.30	2-17-54 2- 8-54 6-10-48 2-16-54 2- 1-52 2- 8-54 12-10-53 2- 8-54 1-15-54	L C L L L L
2N-23W-1cal 1cbd1 1cbd2 1ca2 2bcb1 2ba1 3bab1 2aa1 3cca1 4bdd1 4acd1 4acd1 4dcc1 8acc1 8acc1 8db1 10db1 10db1 10db1 10db1 10db1 10db1 10db1 10db1 10db1 10db1 10db1 12bd1	L. B. Heidenreich J. W. Heidenreich do. L. B. Heidenreich loys Criswell do. do. K. Haddad N. W. Warren C. Lee & J. R. Hill C. A. Bradford Mervin Fast C. Lee & J. R. Hill Carmack Truman Jones do. J. D. Ballard do. Lee H. Warren do. J. H. McMinn do. J. P. Dunnam R. G. Moore J. P. Dunnam	1952 1953 1953 1951 1951 1952 1953 1952 1953 1952 1953 1952 1952 1952 1954 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1953 1951 1951 1951 1951 1951 1951 1951 1951	1,424 1,425 1,425 1,439 1,445 1,439 1,445 1,417 1,417 1,430 1,421 1,417 1,421 1,417 1,421 1,417 1,426 1,429 1,435 	Pb Pb Pb Pb, Pdc Pb, Pdc Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb Pb, Pdc Pb, Pb, Pdc Pb, Pb, Pdc Pb, Pb, Pdc Pb, Pb, Pb, Pb, Pb, Pb, Pb, Pb, Pb, Pb,	70 85 100 84 93 96 90 97 70 100 75 1155 184 82 90 70 2000 83 133 140 99 85 104	bd bd bd bd bd bd bd bd bd bd bd bd bd b	N N T, T, T, B B B B B B B B B B B B B B B	N N I I I I I N R I I I I N N I I I P P I N I I I I I I I	800 500 650 500 1,040 900 1,100 500 900 580 810 580 810 700 400 950 500	36.91 36.91 54.50 27.18 55.90 31.49 44.30 35.48 18.93 24.16 22.60 31.30 29.12 33.38 30.58 29.87 	2 - 9 - 54 $8 - 5 - 53$ $2 - 9 - 54$ $7 - 29 - 53$ $2 - 9 - 54$ $2 - 22 - 55$ $2 - 22 - 55$ $2 - 22 - 55$ $2 - 22 - 55$ $11 - 23 - 53$ $5 - 16 - 52$ $6 - 10 - 48$ $2 - 9 - 54$ $$ $6 - 10 - 48$ $2 - 9 - 54$ $$ $2 - 9 - 54$ $2 - 9 - 54$ $2 - 9 - 54$ $2 - 5 - 52$ $$	 L L L L L L L L L L L L L L L L L
18cbal 20bb1 20bb1 21abb1 21adb1 21adb2 21acal 21adb3 21acal 21adb3 21acal 21bd1 21bd1 21bd1 24bbb1 26c 26aab1 32dad1 35dcc1	Jesse Moore Paul W. Davis do. Johnnie Kenmore do. do. do. do. io. Leroy Kenmore Boyd Davis do. Moore Glen Filbeck 	1952 1951 1951 1951 1952 1952 1952 1952 1952 1954	1,439 1,439 1,433 1,447 1,429 1,429 1,429 1,442 1,442 1,442	Pb, Pdc Pb, Pdc	126 93 76 84 100 77 80 136 89 135 85 90 52 110 	Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd Dd D	, b T, b N N N N N N T, b S T, c N N T, b S C, w C, w	N I N N N N I I I I N N N I S S	800 190 180 800 600	28.79 32.29 25.98 36.69 27.72 43.79 34.05 33.32 38.20 43.57 44.54 76.18 66.28	$\begin{array}{c} 2-5-52\\ 2-5-52\\ 2-5-52\\ 3-20-52\\ \end{array}$	L L L
3N-22W-26dcd1 27ad1 30cda1 31ddb1	W. F. Proctor Jim Bradford	 1950 1954	1,425	Qt Qt Pb Pb	 100 	Dg Dg Dd Dd	C, g C, w T, g T, e	N N I I	300 450	8.91 7.80 	1-19-54 2- 8-54	•••• ••• •••

										Water	level	
- 2		Data	Altitude of	Ceologic	Denth of	Tuno of	Pump and			Depth below	Date of	Other
		Date	AITITUDE OI	OCOLOGIC	beptil of	Type of		Itea	Vield	land curface	measurement	data
Well number	Owner or tenant	completed	land surface	source	well	well	power	USE	11610	Tanu Surface	MCASUL CHCILL	Gata
			(feet)		(feet)				(gpm)	(feet)		
JACKSON COUNTY												
3N-22WCont'd												
32cbb1	Wilbur Leonard	1949	1,436	Pb	123	Dd	I, g	I	455	42.98	2- 8-54	
32 c bb2	do.	1954		РЬ	182	Dđ	Т, е	I	35			
36cdc1	••••	• • • •	••••	Qt		Dg	С, w	S		9.57	1-14-54	
3N-23W-19aaa1	Hugh Forman	1952		Pb, Pdc	177	Dd	Т, д	I	900			L
196661	do.	1952	1,530	Pb, Pdc	170	Dđ	N	N		81.84	2- 8-54	L.
21abb1	Ivan Owen	1948	1,452	Pb, Pdc	43	Dđ	N	N		21.11	4-15-49	
21add1	do.	1948	1,450	Pb, Pdc	100	Dd		I	1,000	23.92	4-15-49	
2laab1	do.	1953		Pb, Pdc	153	Dd	Т, Ь	I	1,000	48.13	8-13-53	L
22bcb1	Joe Bond	1953		Pb, Pdc	115	Dd	Т, Ъ	I	900	43.46	8-20-53	• • • •
22add1	Cecil Lewis	1953		Pb, Pdc	200	Dd	N	N				
22acd1	do.	1953		Pb, Pdc	175	Dd	N	N			••••	L
22accl	do.	1953		Pb, Pdc	200	Dd	N	N				• • • •
23aaa1	Otis Bassel	1952		Pb, Pdc	150	Dđ	N	N		69.80	8-13-52	L
23aac1	do.	1952		Pb, Pdc	158	Dđ	Т, Ь	I	800	82.00	8-28-53	
23cab1	Lovs Criswell	1951		Pb, Pdc	155	Dd	N	N	60			• • • •
23dbb1	Frankie Johnson	1951		Pb, Pdc	195	Dcl	N	N	15			L
24bcb1	R. Ledbetter	1952		Pb, Pdc	190	Dd	T, g	I	4 50	81.12	8-31-53	
24bdc1	do.			Pb, Pdc	140	Dđ	N	N				
25acc1	E. E. Brown	1951		Pb, Pdc	121	Dd	Т, Ъ	I				
25bcc1	Sam Maise	1952		Pb, Pdc	90	Dd	C, g	S		53.99	9-15-54	
26cab1	Fred W. Tigert	1948	1,461	Pb, Pdc	130	Dd	T, g	I	1,000	46.53	4-15-49	
26aad1	W. W. Cunningham	1952	1.467	Pb, Pdc		Dd	Т, Ъ	I	335	58.05	2- 8-54	
27dab1	S. L. Spraggins	1948	1,442	Pb, Pdc	118	Dd	Т, Б	I	600	24.35	4-15-49	С
27dad1	do.	1948	1,449	Pb, Pdc	125	Dri	N	N		57.10	8- 7-53	
27aad1	Robert B. Bryant, Ir.	1947	1,458	Pb. Pdc	127	Dd	T.e	I	720	46.08	2- 8-54	
27cdd1	Love Criswell	1950	1,438	Pb. Pdc		Dd	Т. Ъ	I	550	30.80	2- 8-54	
27bdb1	do.	1951	1,440	Pb. Pdc	100	Dd	Т. Ь	I	1,200	21.51	2- 2-51	
29ddd1	I I Poss	1951	1,450	Pb. Pdc	113	Dd	N	N				L
29cba1	Cecil Leonard	1951		Pb. Pdc	154	Dd	N	N				L
29cbd1	do	1951		Pb. Pdc	100	Dd	N	N		38.82	1-19-54	••••
30aab1	Archie Leonard	1951		Pb. Pdc	102	Dd	N	N				L
30aaa1	do	1951		Pb. Pdc	100	Dd	т. ь	I	800	15.58	2- 5-52	
30daa 1	Cecil Leonard	1951	1.453	Pb. Pdc	90	Dd	т. ь	I	500	24.42	2- 8-54	L
31cbb1	W. F. Blevins	1953		Pb. Pdc	62	Dđ	T.g	I	600			L
31bca1	Bill Garman	1953		Pb. Pdc	86	Dd	Т. е	I	1,000	25.92	2- 8-54	
32aab1	F. F. Walker	1949	1.447	Pb. Pdc	105	Dd	т. ь	I	945	34.14	2- 8-54	
33bdd1	Marshall Carroll	1947	1,446	Pb. Pdc	75	Dđ	Ть	I	1,025	24.83	6-10-48	С
33abb1	S. L. Spraggins	1951	1,449	Pb, Pdc	120	Dđ	N N	N		39.20	2-2-52	• • • •
33dba 1	B I Spradlin	1951		Pb. Pdc	82	Dd	Т.е	N				
33abb1	S. L. Spraggins			Pb. Pdc	170	Dd	Т. Б	I	1,200	42.16	9-24-53	L
33dbb1	B. I. Spradlin	1953		Pb. Pdc	73	Dd	Т, е	I	1,250			
35bdb1	B. O. Vates	1948	1,441	Pb. Pdc	120	Dd	T.g	I	110	26.27	6-10-48	
35bca1	do.			Pb. Pdc		Dđ	N	N		32.58	8- 7-53	
36bbd1	Robertson Brothers	1948	1.451	Pb. Pdc	120	Dd	Т. д	I	100	42.30	4-15-49	
36bc1	do.	1951	1,450	Pb. Pdc	150	Dd	Т. Б	I	700	39.72	2- 2-52	L
36cc1	W. M. Adams	1952		Pb. Pdc	100	Dd	Т. Б	I	200	42.42	5-15-52	
36aac1	Ralph Mitchell	1951	1,443	Pb, Pdc	149	Dd	т, ъ	I	200	44.52	2- 8-54	• • • •

The logs on the following pages record the materials penetrated in the drilling of many wells and test holes. The logs described as sample logs were made by field analysis or by field and microscopic analysis of the drill cuttings by personnel of the U.S. Geological Survey or the Oklahoma Planning and Resources Board. The logs des-cribed as drillers' logs were made by field analysis of the drill cuttings by the well driller. The logs are arranged by county according to the well-numbering system used in this report (fig. 2, p. 7). The altitude refers to the ground level at the mouth of the well or test hole in feet above mean sea level.

Description	ick-	Depth	Description	Thick-	Depth
GREER COUNTY					
3N-23W-2ccd1. SE4SW4SW4. Driller's log supplied Ivan Owen.	by		<u>3N-23W-4cbal</u> Continued		
			Gypsum	13	126
Shale, brown	22	22	Shale, brown	6	132
Gypsum Shale brown	17	39	Gypsum Shala haam	12	144
Gynsum	, 8	54	Gunsum	14	160
Limestone (drv)	2	56	Limestone, water-bearing, 100 gpm	10	170
Shale, blue	4	60	Shale, red	5	175
Shale, brown	32	92	Shale, brown	15	190
Gypsum	17	109	Shale, brown and blue	5	195
Shale, brov.	14	123	(14-in. casing set at 145 ft.)		
Gypsum Shale blue	2	129	3N-23W-8dant NEINELCEL Deviloret Las ours	tind bu	
Shale, brown	14	145	Ivan Owen.	Lied by	
3N-23W-3ddb1 NW4SE4SE4 Driller's log subplied	hv		Shale brown	30	30
Ivan Owen.	Uy		GVDSUE	12	51
- · · · · · · · · · · · · · · · · · · ·			Shale, blue	3	54
Clay, black	10	10	Gypsum	11	65
Clay	9	19	Shale, blue	4	69
Gypsum	5	24	Gypsum	13	82
Shale, Diue	15	39	Shale, blue	3	85
Shale red	2	90	Guneum	10	100
Dolomite and limestone	5	56	Shale, brown	10	110
Shale, red	4	60	Gypsum	10	129
(14-in. casing set at 6 ft.)			Shale and limestone, water-bearing, 2 gpm	2	131
			Shale, blue	4	135
<u>3N-23W-3dad2</u> . SE [‡] NE [‡] SE [‡] . Driller's log supplied Ivan Owen.	l by		Shale, red	15	150
			<u>3N-23W-9dbal</u> . NE ¹ / ₄ NW ¹ / ₄ SE ¹ / ₄ . Driller's log suppl	ied by	
Soil	2	2	Ivan Owen.		
Gypsum Shale brown	2	4	5-11	-	2
Gypsum	21	36	Shale red	20	33
Shale, brown and blue	8	44	Gypsum, chalky: dolomite	13	46
Gypsum	3	47	Shale, blue	3	49
Sand	3	50	Dolomite	10	59
Shale, brown and blue	30	80	Shale, brown	6	65
(test hole, no casing)			Gypsum	9	74
3N-23W-3aaai weinghet prillor's los supplied	har		Shale, brown	22	83
Clarence Trussler	, Uy		Shale brown	33	108
			Gypsum, hard, water-bearing	7	115
Soil	1	1	Dolomite, water-bearing	3	118
Limestone	2	3	Limestone and clay	7	125
Shale, blue	2	5			
Shale, fed	25	30	<u>3N-23W-10dal</u> . NE [‡] SE [‡] . Driller's log supplied	Бу	
Shale blue	1.	32	Ivan Owen.		
Gypsum	11	43	Clay red and blue	30	30
Cavity, water-bearing	1	44	Clay, blue	10	40
Gypsum	4	48	Clay, brown	9	49
Shale, red	2	50	Shale, blue; gypsum	11	60
Gypsum	4	54	Shale, blue	5	65
Limestone	2	56	Gypsum	11	76
Shale, Diue	2	58	Shale, blue	4	80
Gybsum	10	00 76	Gypsum Shale blue	15	95
Shale, blue	2	78	Shale, brown	10	110
Shale, red	16	94	Gypsum	13	123
			Sand	2	125
<u>3N-23W-4cbal</u> . NE ¹ / ₂ NW ¹ / ₂ SW ¹ / ₂ . Driller's log supplied Ivan Owen. Altitude: land surface. 1.527.	by		Shale, brown (reported vield, 10 gpm; 6-in, casing set at 72	5 (ft.)	130
S		_			
Shale red	8	8	<u>SN-23W-11acc1.SW\$SW\$NE\$.</u> Driller's log supplied	i by	
Shale blue	х Х	20	clarence Trussler.		
Shale, red	26	56	Soil	,	1
Shale, blue	23	79	Shale, red	4	5
Gypsum	10	89	Shale, blue	3	8
Shale, brown	2	91	Shale, red	10	18
Limestone, shaly	4	95	Shale, blue	2	20
Shale, clue	3	98	Gypsum	.7	27
Shale hive	10	113	Shale, Diue	3	30
,	2	~~~	UNALL, ITA	20	20

Thickness in feet. Depth in feet below land surface. -----

	Thick-	•		Thick-	
Description	ness	Depth	Description	ness	Depth
GREER COUNTY Continued					
SN-23W-11acc1Continued			Tvan Owen.	supplied by	
Shale, blue	2	52	Artun Over	ь.	
Shale, blue	3	64	Clay, red; sand	25	25
Gypsum	9	73	Clay, brown; sand, 7-8 gpm	17	42
Shale, blue	3	76	Gypsum	1	43
Shale, red	11	87	Shale, brown	3	46
Gypsum	3	90	Gypsum Shala brown	5	. 51
Shale, Diue	2	92	Gynsum	14	74
Shale, leu	10	110	Shale, red	10	84
3N-23W-14bc1. SW1NW1. Driller's log suppl	ied by		Gypsum, water-bearing	8	92
Ivan Owen. Altitude: land surface, 1,48	9.		Sand and limestone	4	96
			Shale, blue	3	99
Shale, red	20	20	Shale, red	21	120
Shale, red and blue	12	32	Gypsum	17	148
Limestone	9	41	Shale, blue: limestone stringers	3	151
Gypsum	7	49	Shale, red and blue	12	163
Limestone	3	52	Gypsum	7	170
No sample	3	55	Shale, blue	3	173
Gypsum Shala hl	11	66	3N-23W-16deb1 NWkewlerk priling	unplied by	
SHALE, DIUE	1	67	Ivan Owen.	appired by	
Shale, blue	2	70			
Gypsum	13	83	Clay, brown	20	20
Shale, blue	1	84	Shale, white	6	26
Shale, brown	4	88	Gypsum Shala harves	5	31
Gypsum Sholo have	2	90	Junestone 15 gpm	3	34
Shale, brown Gynsum	17	109	Gynsum	10	47
Shale hine	. 1/	100	Shale, blue and brown	8	55
Shale, brown	7	116	Gypsum	20	75
Gypsum	4	120	Shale, blue and brown	8	83
Cavity	2	122	Gypsum	12	95
Limestone	8	130	(Wall abandoned hale filled with conth.)	5	100
(14-in casing got at 10 ft)	5	132	(weir abandoned, noie fiffed with earth.)		
(1) int casing set at 10 it.)			3N-23W-16dcal. NWaSWaSE2. Driller's log s	upplied by	
3N-23W-16cab1. NWINEISWI. Driller's log st	upplied by		Ronald Owen.		
Ivan Owen. Altitude: land surface, 1,45	9.				
Ca11	-		Clay Limestone and supsum	43	43
Shale red condu	3	30	Shale, red	10	55
Shale, blue	4	34	Gypsum	10	65
Gypsum	12	46	Shale and sand	2	67
Shale, red	18	64	Gypsum	8	75
Gypsum	12	76	Shale, red	5	80
Shale, brown	12	88	Shale red	10	110
Sand	2	90	(7-in, casing set at 43 ft.)	10	-10
Limestone	12	105			
Shale, brown	19	124	<u>3N-23W-17aal</u> . NE ¹ / ₄ NE ¹ / ₄ . Driller's log suppl	ied by	
Shale, blue	2	126	Ivan Owen. Altitude: land surface, 1,47	0.	
Shale, red and blue	4	130		2	2
Gypsum Shale blues linestere states	14	144	Shale brown	<u>`~</u> 55	58
Shale, blue	4	140	Gypsum	9	67
Shale, brown	3	152	Shale, blue	3	70
(Reported yield, 1,380 gpm; 16-in. casing s	et at 36 f	t.)	Shale, brown	4	74
			Gypsum	12	86
<u>JN-23W-16dabl</u> . NWANEASEA. Driller's log s	upplied by		Cubeum	3 7	69 04
Ivan Owen.			Shale, brown	4	100
Soil	3	3	Gypsum	13	113
Clay, red. sandy	27	30	Limestone; shale, blue	2	115
Shale, brown	5	35	Shale, blue	5	120
Gypsum, water-bearing, 10 gpm	14	49	Shale	5	125
Shale, blue	3	52	Shale, brown and blue	20	145
Share, Drown Gyneum	5	57	Shale blue	20	167
Shale, brown	1/	83	Shale, brown	11	178
Gypsum	12	95	Gypsum	8	186
Limestone, water-bearing	3	98	Shale, blue (salty)	3	189
Shale, blue	3	101	(Yield 940 gpm August 1952; 16-in. casing se	et at 67 ft.	.)
Shale, red	13	114	3N-23W-17ddal NEiseleri Deillaria 1aa	upplied by	
Shale, blue	ъ В	130	Ivan Owen.	wherea of	
Gypsum	13	143			
Shale, blue	10	153	Shale, red and blue	25	25
(Well abandoned and hole filled, April 1950.	.)		Gypsum; shale, blue	14	39
			Shale, blue	3	42
			Shale brown and blue	ىد 4	58
			Gypsum	13	71
			Shale, brown	8	79
			Gypsum	12	91

Th	ick-		Т	hick-	
Description	ness	Depth	Description	ness	Depth
GREER COUNTY Continued			<u>4N-24W-14bbb2</u> Continued		
<u>3N-23W-17dda1</u> Continued			Gypsum, alabaster Shale, reddish-brown and grav	2 9	55 64
Shale, brown	9	100	Gypsum, alabaster and selenite	2	66
Gypsum, 20 gpm	12	112	Shale, reddish-brown and gray; gypsum stringers	9	75
(7-in, casing set at 102 ft.)	8	120	Shale, bluish-grav: gypsum stringers	17	100
(, in outing set at its it)			Shale, bluish-gray and brown	13	113
<u>4N-23W-32dbb1</u> . $NW_{4}^{1}NW_{4}^{1}SE_{4}^{1}$. Driller's log suppli	ed by		Gypsum Shale bluish gray	1	114
Ronald Owen.			Gypsum, alabaster	10	125
Clay	24	24	Shale, bluish-gray	5	130
Gypsum	2	26	Anhydrite	10	140
Shale, blue Shale	15	41 58	Anhydrite	13	155
Gypsum	7	65	Shale, gray	4	159
Shale, blue; limestone	2	67	Anhydrite Shale bluich grou	20	179
Shale, red	10	63 94	Gypsum, alabaster; shale stringers, gray	15	198
Shale, blue	4	98	Dolomite, gray, porous, water-bearing	2	200
Shale, red	7	105	Shale, blue and brown Shale, brown	10	210
Shale, blue	3	120	Anhydrite	2	223
Gypsum	5	125	Shale, brown	2	225
Shale, blue Gypsim	5 10	130	Annydrite (6-in, casing set at 59 ft.)	9	234
Shale, blue	3	143	(o int oneing out at 37 itt)		
Shale, red; limestone	2	145	$\frac{4N-24W-15bcb1}{4N-45W_{4}^{2}SW_{4}^{2}NW_{4}^{2}}$. Driller's log suppl	ied by	
Gypsum Shale red	23	168	Ivan Owen. Altitude: land surface, 1,780.		
Gypsum	1	174	Sand	45	45
Shale, red; limestone	3	177	Shale, red	10	55
Sand and limestone	7	195	Gypsum	7	95
Shale, red	15	210	Shale, brown	25	120
(Reported yield, 70 gpm.)			Shale, blue Shale brown	8	128
4N-23W-33dab1, NWANEASEA. Driller's log suppli	ed by		Gypsum	10	141
Ivan Owen. Altitude: land surface, 1,550.			Shale, blue and brown	4	145
Soil	2	2	Gypsum Shale, brown	11	156
Clay, red	38	40	Gypsum	11	169
Conglomerate	3	43	Shale, brown	5	174
Clay, red Gypsim	15	58	Shale, blue	21	195
Limestone, blue	7	68	Shale, brown	5	202
Shale, blue	2	70	Gypsum	11	213
Shale, blue	3	85	Shale, brown	21	235
Gypsum	12	98	Gypsum	22	257
Shale, brown	10	108	Shale, blue (Peperted viold 15 appr 2 in cacing set at 56	6 ft. 7	263
Shale, blue	5	124	casing set at 198 ft.)	10, 1	
Gypsum	1	12.5			
Shale, brown Gypsum	4	129	<u>SN-23W-21Ddc1</u> , SW ₄ SE ₄ NW ₄ , Driller's log supply Tvan Owen, Altitude, land surface 1,728.	.ed by	
Dolomite, water-bearing	4	139			
Shale, red	16	155	Soil	10	10
ckeported yield, 800 gpm; 16-in. casing set at 5	4 It.)		Clay, red; sand	11	71
4N-23W-35dcb1. NW4SW4SE4. Driller's log suppli	ed by		Sandstone, water-bearing	1	72
Ivan Owen.			Clay, red Clay brown and blue	18	90 121
Clay	12	12	Gypsum	12	133
Gypsum	2	14	Clay, brown and blue	12	145
Shale, brown Gynsum	25	39	5N-23W-27hda1 NE ¹ SE ¹ NW ¹ Driller's log suppli	ed by	
Shale, brown	3	45	Elmo Crenshaw. Altitude: land surface, 1,717	•	
Gypsum	5	50	0-11	10	10
Shale, blue	28	52 60	Sand, white	70	80
Shale, brown	5	65	Shale	18	98
Shale, blue	5	70	Gypsum Cavity water-bearing	4	102
(14-11. casing set at /0 ft.)		(Gypsum	6	110
4N-24W-14bbb2. NWWNWA. Sample log of test ho by U.S. Geol. Survey. Altitude: land surface	ole dr: , 1,76	illed 7.	Shale Gypsum (16-in, casing set at 98 ft.)	4 13	114 127
Clay, brown, sandy	10	10			
Clay, light-gray, sandy; sand stringers	8	18			
Clay, light-grav. sandy	۲ 5	25			
Sand, medium to coarse	3	28			
Gravel, coarse	2	30			
Clay, brown to white	ة 2	40			
Sand, coarse; clay, brown	3	43			
Shale, reddish-brown and gray	10	53			

Description	Thick-	Depth	Description	Thick-	Depth
HARMON COUNTY		<u>bop m</u>	Description	1035	Depth
<u>IN-24W-2cdbl</u> . NW4SE4SW4. Driller's log s Jack Jenkins. Altitude: land surface,	upplied by 1,533.		IN-24W-7cca2Continued	r	
No comple			Limestone, water-bearing	5	150
Shale, blue	18	22	Gypsum	1	155
Shale, red	8	30	Shale, red and blue	18	174
Shale, blue Shale, red	4	34 45	Gypsum Shale red	1	175 180
Gypsum	6	51	Limestone, water-bearing	3	183
Shale, red	26	77	Shale, red	. 3	186
Shale, blue	4	84 88	Shale, blue	4	190
Shale, red	20	108	Gypsum	2	198
Gypsum Shale red	2	110	Shale, blue	1	199
Shale, blue	5	122	Limestone, water-bearing	2	207
Shale, red	4	126			
Gypsum Shale blue	12	138 .	1N-24W-8dbal. NE ⁴ NW ⁴ SE ⁴ . Driller's log sup	plied by	
Gypsum	10	149	Juck Jenkins.		
Salt	2	151	Clay	18	18
Shale, blue Gypsum	9	165	Shale, red and blue	20	25 45
Shale, blue	1	166	Gypsum	5	50
Gypsum Sholo and	25	191	Shale, red and blue	46	96
Gypsum	14	210	Shale, blue	5	110
Limestone, blue, water-bearing	10	220	Gypsum	9	119
Shale, red	27	247	Shale, blue	2	121
1N-24W-6bcd1. SEaSWaNWa. Driller's log s	upplied by		Shale, blue	2	125
Jack Jenkins. Altitude: land surface,	1,544.		Gypsum	12	137
Soil	3	3	Shale, red Gypsum	6 26	143
Shale, red	18	21	Shale, red	9	178
Shale, blue	11	32	Gypsum	7	185
Shale, red Shale, blue	2	38	(16-in, casing set at 99 ft.)	3	199
Gypsum	2	40			
Shale, blue	2	42	<u>1N-24W-19ddb1</u> . NW\$SE\$SE\$. Driller's log su	pplied by	7
Shale, red	6	50	Jack Jenkins.		
Shale, blue	3	53	Soil	4	4
Gypsum Shale, blue	10	63 65	Sand Sand fine water-bearing	18	22
Gypsum	6	71	Shale, blue	7	36
Shale, red	5	76	Shale, red	9	45
Shale, red	2	81	Shale. red	10	55 69
Gypsum	29	112	Shale, blue	6	75
Shale, red	16	128	Gypsum	25	100
Shale, blue, water-bearing	2	140	Shale, red	4	103
Shale, red	10	152	Gypsum	1	110
Shale, red; gypsum, blue Gypsum	16	168	(16-in. casing set at 55 ft; 14-in. casing set	et at 80	ft.)
Shale, blue and red	12	186	1N-24W-30bb1. NWaNWa. Driller's log supplie	ed by	
Shale, blue	5	191	Ivan Owen.		
Gypsum Limestone: shale, blue	12	203	Shale, red and blue	28	28
(Not enough water for irrigation)	-		Gypsum, water-bearing	12	40
IN-24W-70000 NDESWIGHT DEVILOPT	upplied by		Shale, blue; sand	2	42
Jack Jenkins.	abbired by		Gypsum	10	. 57
			Shale, brown	3	60
NO Sample Limestone	4	4 0	Gypsum Shale, brown	3	63 65
Shale, red	17	26	No sample	17	82
Gypsum Shalo mad	2	28	Gypsum Shala have	19	101
Shale, fed Shale, blue	23 6	51	Gydsum	10	122
Gypsum	1	58	Shale, blue; limestone	2	124
Shale, blue, water-bearing 58-60 ft Shale, red	9	67	Shale, red	26	150
Gypsum	24	92	Shale, blue	2	157
Shale, red	10	102			
Shale, plue	8	110	IN-2-3W-1dbc1. NW&NW&SE&. Driller's log sup	oplied by	
Gypsum	2	116	Jara Jenarno,		
Shale, blue	3	119	No sample	5	5
Gypsum	5	124	Shale, flue	9	14 15
Shale, red and blue	8	133	Shale, red	9	24
Gypsum Shale, blue: limestone water-bearing	5	138 140	Gypsum Shale blue	7	31 34
Gypsum	7	147	Shale, red	21	55

Thickness in feet. Depth in feet below land surface.

Description	Thick- ness	Depth	Description	Thick- ness	Depth
HARMON COUNTY Continued			1N-25W-11baa1Continued		
Shala hlua		54	Shalo roddich have and share colorsoons.		
Gypsum	3	59	limestone stringers	5	115
Shale, red and blue Gypsum	16 2	75 77	Shale, reddish-brown and gray, calcareous; gypsum stringers, alabaster, white	5	120
Shale, blue	2	79	Gypsum, alabaster, white	5	125
Gypsum, water-bearing Shale, blue	8 4	87 91	Shale, reddish-brown and gray, calcareous	5	130
Gypsum	13	104	Shale, reddish-brown and blue, calcareous;		• • •
Gypsum	11	118	Shale, reddish-brown and gray, calcareous;	0	141
Shale, red	4	122	gypsum stringers, satinspar	9	150
Limestone; shale, blue and red; main	24	140	stringers, alabaster	10	160
water-bearing zone	5	151	Shale, red and gray; gypsum stringers,	5	165
Shale, blue	3	155	Limestone, gray, argillaceous	2	167
Gypsum Limestone: shale, red, water-bearing	11	166 173	Dolomite, gray, porous; water-filled cavity 169.5-170 ft	3	170
Shale, red	7	180	No sample (most drill cuttings washed from		
1N-25W-4dbal. NEANWASEA. Driller's log supp	lied by		bailer) (16-in. casing set at 165 ft.)	10	180
Ivan Owen.	,				
Clay	30	30	Jack Jenkins.	plied by	
Shale, brown and blue	5.	35	0-11		
Shale, brown	22	43 65	Sand	4	15
Gypsum Shala blue	10	75	Sand, very fine	15	30
Shale, brown	.9	85 94	Shale, red	17	48
Shale, blue; limestone, water-bearing	14	108	Sand and gravel, water-bearing	1	49
Gypsum	3	111	Shale, red	3	63
Shale, blue	1	120	Limestone, water-bearing	6	69
(Reported yield, 650 gpm; 14-in. casing set a	t 70 ft.	, 1	Shale, fed Shale, blue	11	80 81
1N-25W-6adal. NE ¹ / ₄ SE ¹ / ₄ NE ¹ / ₄ . Driller's log supp.	lied by		Gypsum	2	83
Paul Bible.			(Problems with quicksand and other difficultie abandoned and hole plugged. Lots of water.)	s. Well	
No sample	28	28			
Shale, blue	15	43 53	IN-25W-12DCcl. SW2SW2NW2. Driller's log supp lack lenkins.	lied by	
Gypsum	15	68			
Shale, red	2	73	Soil Shale, red	21	2 23
Gypsum	15	90	Shale, blue	7	30
Shale, blue Shale, red	3	93	Shale, red Limestone, water-bearing	9	39 45
Gypsum	26	122	Shale, blue	3	48
GvDsum	16 18	138 156	Gypsum Shale, blue	12	60 62
Limestone, water-bearing	4	160	Gypsum	3	65
Shale, red Limestone, water-bearing	20	180 182	Shale, blue Gypsum	1	66 80
Shale	2	184	Shale, red and blue	5	85
Shale, red and blue Gypsum	7	191	Gypsum Shale red	25	110
Limestone, sandy, water-bearing	2	200	Gypsum	8	122
Gypsum Shale calcareous	3	203	Limestone, water-bearing	1	123
Shale, blue	3	207	Shale, blue	3	132
Shale, red No sample	1	208	Limestone, blue	3	135
(16-in. casing set at 209 ft. Perforated inte	erval	210	Gypsum	ź	146
129-209 ft.)			Shale, red and blue	9	155
1N-25W-11baal. NEANEANWA. Sample log of irri	igation w	e11.	Shale, blue	.3	160
Altitude: land surface, 1,530.			Gypsum Shala blue	2	162
Sand, reddish-brown, medium to coarse	3	3	Gypsum	3	168
Sand, medium to very coarse, argillaceous;	0	1,1	IN 25H 12 db1 makericul pritteric ter own		
Sand, coarse, argillaceous	6	17	Jack Jenkins.	Lied by	
Shale, reddish-brown and gray, argillaceous;	25	42	Shale red blue and	**	46
Shale, light-gray; limestone stringers	3	45	Limestone, water-bearing	40	52
Shale, brown and gray, calcareous	5	50	Shale, blue	2	54
limestone stringers	15	65	Shale, red	11 2	63 67
Shale, gray, calcareous	10	75	Gypsum	16	83
Shale, feddish-brown and gray, calcareous Limestone, gray; shale, reddish-brown	9	84 90	Snale, red Gypsum	5	88 95
Shale, gray, calcareous	6	96	Shale, red; some water	2	97
Snale, gray Limestone, gray, porous, water-bearing	3	99	Gypsum Shale, red	13	110 120
Gypsum, alabaster, white; shale stringers,	Ŭ		Gypsum	4	124
redaish-brown	5	110	Cavity, water-bearing (16-in, casing set at 54 ft. Perforated interv	3 al 46-54	127 ft.)

	Thick-		Thic	k-	
Description	ness	Depth	Description ne	ss	Depth
HARMON COUNTYContinued			2N-24W-35acc1. SW4SW4NE4. Driller's log suppli	ed by	
<u>1N-2.5W-3.5caal</u> . NE $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$. Driller's log supp	olied by		Ivan Owen.	25	25
Ivan owen,			Gypsim	35	30
Shale, brown	15	15	Shale, brown and blue	30	60
Cavity	11	26	Shale, blue	5	65
Shale, brown	4	30	Shale, brown	13	78
Cavity	6	36	Gypsum	9	87
Conglomerate	7	43	Shale, blue and brown	5	92
Shale, brown	3	46	Gypsum	8	100
Gypsum Shale	24	70	Gypsum; shale, blue	10	115
Gynsim	10	89	Shale blue	. 10	120
Sand and limestone	5	94	Gypsim	21	141
Shale, blue and red	11	105	Shale, blue	2	143
(16-in. casing set at 26 ft.)			Shale, brown	7	150
-			Gypsum	10	160
2N-24W-5cdl. SEASWA. Driller's log supplied Jack Jenkins.	by		Sand, water bearing. Water level 105 ft below land surface (7-in casing set at 133 ft Water too salty fo	2 r stor	162 k use.)
Soil	4	4	i the stating set at uss its match too saily to		
Shale, red	16	20	2N-25W-2aaal. NEANEANEA. Driller's log supplie	d by	
Cavity, dry	1	21	Ivan Owen. Altitude: Land surface, 1,606.		
Gypsum	2	23			
Shale, red	12	35	Shale, red	39	39
Shale red	2	37	Shale red	4.	43
SVDSUM	23	69	Shale blue	3	68
Shale, red and blue	18	87	Gypsim	10	78
Gypsum	2	89	Shale, blue	3	81
Shale, black	3	92	Shale, red	31	112
Gypsum	11	103	Shale, red and blue	11	123
Shale, red and blue	9	112	Gypsum	7	130
Spale red and blue	1	113	Shale, red and blue	5	144
Gypsim	2	123	Shale blue	5	149
Shale. blue	2	125	Gypsum	10	159
Gypsum	2	127	Shale, blue	4	163
Shale, blue	2	129	Shale, red	2	165
Gypsum	2	131	Gypsum	26	191
Shale, red	7	138	Shale, red	7	198
Gypsum	3	141	Gypsum	10	208
Gypsim	2 8	143	level 63 ft below land surface	3	211
Shale, blue	3	154	Shale, red and blue	4	215
Gypsum	8	162	(12-in; casing set at 120 ft.)		
Shale, blue	2	164	• • • • • • • • • • • • • • • • • • • •		
Gypsum	15	179	2N-25W-5aac1. SW4NE4NE4. Driller's log supplied	d by	
Shale, blue	5	184	Jack Jenkins.		
Gypsum Shala hlua	25	209	Soil	5	5
Gypsim	1	212	Shale red	25	30
Shale, blue	3	215	Shale, blue	5	35
Gypsum	7	222	Cavity	2	37
Limestone, water-bearing	5	227	Gypsum	3	40
Shale, blue	2	229	Limestone, water-bearing	10	50
Shale, red	9	238	Shale, red	5	55
Shale, blue	3	241	Shale blue	23	70
Gypsum	3	246	Gypsim	5	75
Shale, red and blue	4	2 50	Gypsum and limestone, water-bearing	10	85
(Not enough water for domestic use.)			Gypsum	5	90
ON Other stands to stand the			Shale, red	10	100
2N-24W-26acc1. SW2SW2NE2. Driller's log supp	lied by		Gypsum and limestone, water-bearing	5	105
Ivan Owen.			Shale hive	10 6	120
No sample	15	15	Gypsum, water-bearing	14	143
Clay	15	30	Cavity, water-bearing	2	145
Gypsum	2	32	(16-in. casing set at 70 ft.)		
Shale, brown and blue	20	52			
Spale blue	9	61	ZN-25W-5cal. NE2SW2. Driller's log supplied by		
Shale brown	2	63	John Jenkins.		
GVDSum	с С	75	Soil and clay	10	10
Shale, blue	5	80	Shale, red	40	50
Gypsum	8	88	Gypsum	2	52
Shale, blue	3	91	Limestone, porous	13	65
Shale, brown	4	95	Shale	5	70
Gypsum	21	116	Gypsum	2	72
Shale, blue	4	120	Shale, red	6	78
Shale, brown Gypeum	4	124	Gypsum Limestone persue	10	88
Sand, water-bearing	11	135	Limestone, porous	16	106
Shale, blue	4	140	Cavity	6	112
(Large quantity of water but too salty for sto	ck use:	hole	Gypsum	3	115
plugged.)	,		(16-in. casing set at 78 ft.)		

Thickness in feet. Depth in feet below land surface.

	Thick-			Thick-	
Description	ness	Depth	Description	ness	Depth
HARMON COUNTY Continued			2N-25W-14dbal. NE ¹ ₄ NW ¹ ₃ SE ¹ ₄ . Driller's log su Ivan Owen. Altitude: land surface, 1,57	pplied by	
2N-25W-11bac1. SWANEANWA. Driller's log	supplied by 1.522.		Shale, red	36	36
5 5 «««2» · · · · · · · · · · · · · · · · · ·	-,		Shale, blue	5	41
Shale, red	17	17	Shale, red	. 5	46
Shale, blue	5	22	Gypsum	9	55
Gypsum Shala blue	8	30	Limestone, water-bearing	1	56
Shale, Dive	5	35	Shale	4.	60
Gypsum	6	62	Shale, blue	4	71
Shale, blue	8	70	Shale, red	4	75
Gypsum	10	80	Gypsum	7	82
Limestone, water-bearing	3	83	Shale, blue	8	90
Shale, blue	3	86	Gypsum	26	116
Gypsum Shala hlur	11	97	Shale, brown	.17	133
Gensum	2 3	102	Shale blue	4	140
Shale, blue	2	102	Shale, red	5	145
Gypsum	12	116	(Not enough water for irrigation.)	5	
Shale, blue	6	122			
Gypsum	27	149	2N-25W-15dabl. NWANEASEA. Driller's log su	pplied by	
Shale, red	6	155	Ivan Owen.		
Gypsum	10	165	Chata have		~ 1
(14-in casing set at 70 ft)	10	175	Shale, brown	21	29
(14-In: casing set at /0 it.)			Gypsum	6	34
2N-25W-12ccal, NE ¹ / ₂ SW ¹ / ₂ SW ¹ / ₂ , Driller's log	supplied by		Shale, brown	4	38
Jack Jenkins. Altitude: land surface,	1,601.		Gypsum	3	41
			Shale, brown	5	46
Shale, red	19	19	Gypsum	9	55
Cavity	1	20	Shale, brown (caves easily)	10	65
Gypsum Shalo rod	6	26	Gypsum Chala have	10	75
GVDSUT	2	31	Gunsum	. 13	79
Shale, red	8	41	Timestone (porous near top hard at base)	5	97
Gypsum	5	46	Shale, red	8	105
Shale, blue	3	49			
Gypsum	7	56	2N-25W-17bb1. NW2NW2. Driller's log supplie	ed by	
Shale, blue	1	57	John Jenkins.		
Gypsum Shala and	3	60			,
Shale, red	9 2	59 71	Soil	4	10
Shale, red	4	77	Clay sandy	22	32
Gypsum	2	79	Rock, red, porous	2	34
Shale, red	- 9	88	Gravel and rock	18	52
Gypsum	2	90	Clay, red	11	63
Shale, blue	4	94	Gypsum, porous	6	69
Gypsum	1	95	Shale	11	80
Shale, blue	2	97	Shale, red	18	98
Shale, red Gypsum	2	103	Gypsum Gypsum Deneur	8	106
Shale, red		103	Gypsum	23	143
Gypsum	4	108	Cavity	2	145
Shale, red	6	114	(16-in. casing set at 53 ft; 14-in. casing se	et at 98 f	t.)
Shale, blue	1	115			
Gypsum	8	123	2N-25W-18cdd1. SE4SE4SW4. Driller's log sup	oplied by	
Shale, blue	2	125	Chester Anderson.		
Shale blue	14	139	Shalo	24	2.4
Gydsum	25	168	Gypsum	24 12	36
Shale, red and blue	2	170	Shale.	6	42
Gypsum	14	184	Gypsum	11	53
Limestone, water-bearing	4	188	Limestone, porous	2	55
Shale, blue	2	190	Shale, red	35	90
Gypsum Shollo blue	2	192	Limestone, porous	2	92
Shale, Diue	3	100	Gypsum	17	109
Shale, red: limestone	4	200	Limestone porous	21	130
Shale, red; gypsum, thin layers	16	216	(16-in, casing set at 137 ft. Perforated int	erval	
Gypsum	2	218	107-137 ft.)		
Shale, blue	3	221			
Gypsum	13	234	2N-25W-23abb1 NW4NW4NE4. Driller's log suppli	ed by	
Snale, blue	1	235	Ronald Owen. Altitude: land surface, 1,5	56.	
Shale red and hive	1	236	No comito	-	-
Limestone water-bearing	9	245	NU Sample	5	12
Shale, blue	4	250	Shale and limestone	18	50
Gypsum	10	260	Shale	16	66
Shale, blue	6	266	Limestone	5	71
(Not enough water for irrigation.)			Gypsum	7	78
-		1	Shale, blue	3	81
			Gypsum	23	104
			Shale, red	6	110
			Gypsum Shale blue	16	126
			(12-in, casing set at 70 ft Derforated inter	4 rva1 30_70	130
			· · ···· · ···························		

Thickness in feet. Depth in feet below land surface.

Description	Thick-	Denth	Description	Thick-	Denth
HARMON COUNTYContinued			2N-25W-32cac1. SW aNE 4SW4. Driller's log supp	lied by	Depth
2N-25W-26ac1. SW1NE1. Driller's log suppl Ronald Owen. Altitude: land surface, 1.	led by	·	Jack Jenkins. Soil and clay	10	10
			Gypsum	12	22
Clay	25	25	Shale, red	8	30
No sample, water at 36 ft	13	38	Gypsum	2	32
Gypsum Limestone	18	57	Shale, red	10	42
Shale and limestone, 100 gpm at 58 ft	8	65	Shale, blue		62
Gypsum	10	75	Shale, red	5	68
Limestone	7	82	Gypsum	9	77
Shale, red	18	100	Shale, blue	4	81
Limestone and shale	3	103	Gypsum Limestone blue	8	89
Gypsum	3	112	Limestone, red, water-bearing	5	96
Shale	3	115	Gypsum	10	106
Gypsum	3	118	Shale, red	4	110
Shale, blue	2	120	Gypsum	6	116
(16-in. casing set at 37 ft.)			Limestone, water-bearing	1	117
2N-25W-31abbi NWANWANEA Driller's log si	upplied by		Gypsum Shale blue	5	120
Lewis Bible.	ippiled by		Gypsum	2	133
			Shale, red	5	138
Clay, red	30	30	Shale, gray	6	144
Clay, red; gravel, water-bearing	25	55	Shale, red; limestone stringers	24	168
Gypsum, water-bearing	1	56	Limestone	2	170
SHALE, FED	2	58	Snale, red	30	200
Limestone	5	74	2N-25W-36dac1, SW1NE1SE1, Driller's log supp	lied by	
Shale, red	15	89	Jack Jenkins. Altitude: Land surface, 1,5	40.	
Shale, red and blue	13	102			
Limestone	24	126	Soil	3	3
Shale, blue	14	140	Shale, blue	4	7
Gypsum No sample	13	200	Shale, red Limestone	4	22
(16-in. casing set at 63 ft.)	77	200	Shale, blue	5	27
			Shale, red	7	34
2N-25W-31bbb1. NW2NW2NW2. Driller's log su	pplied by		Limestone; shale, blue	5	39
Jack Jenkins. Altitude: land surface, 1	L,586.		Gypsum	5	44
Sand	10	10	Shale, blue	2	40
Shale, red	55	65	Shale red	6	79
Limestone, water-bearing	1	66	Gypsum	1	80
Shale, red and blue	31	97	Limestone, water-bearing	3	83
Gypsum	15	112	Shale, red	8	91
Shale, blue; limestone	2	114	Limestone, water-bearing	5	96
Shale, red	11	125	Shale, red	12	108
Shale, blue	4	131	Shale, blue	2	112
Limestone	3	138	Shale, red	3	115
Gypsum	15	153	Gypsum	1	116
Shale, blue	2	155	Shale, blue	2	118
(16-in. casing set at 97 ft.)			Gypsum Sholo blue	3	121
2N-25W-31dad1 SEANEASEA Driller's log st	unplied by		Limestone: shale blue	5	12.5
Lewis Bible.	· · · · · · · · · · · · · · · · · · ·		Gypsum, water-bearing	1	129
			Shale, blue	2	131
Shale, red and blue	65	65	Gypsum	15	146
Gypsum Shala aid	10	75	Shale, blue; limestone	4	150
Gynsum	10	106	(In May 1954 well deepened to a depth of 230 ft	withou	+ 230
Shale, limestone stringers	4	110	tapping water-bearing strata.)		•
Gypsum	12	122			
Limestone	4	126	2N-26W-labb1. NWANWANE4. Driller's log suppli	ed by	
Gypsum	15	141	Ivan Owen.		
Cavity water-bearing	3	144	Clay red	53	53
Shale, red	21	171	Sand, water-bearing	4	57
Gypsum		175	Wash	8	65
Limestone	26	201	Gypsum	5	70
(16-in. casing set at 164 ft.)			Shale	8	78
2N.25W 22hard wplowing/ providents for an			Gypsum Shala abita	10	88
lack lenkins	ipplied by		Shale, white No sample	5	90
U			Gypsum and sand	10	105
No sample	26	26	Shale, blue	3	108
Gypsum	12	38	Gypsum, blue	1	109
Snale, red	2	40	Shale, blue	2	111
Gypsum Shale blue	25	65 49	Gypsum Shala blue	12	123
Shale, red	34	102	Sand, red	0	130
Gypsum	16	118	Shale and sand, red	4	134
Shale, red	19	137	Gypsum	10	144
Gypsum	8	145	(16-in. casing set at 85 ft. Perforated interv	al 58-8:	5 ft.)
Shale, red	5	150			
Shale blue	23	173			
(16-in, casing set at 152 ft. Perforated in	4 terva1 97-	-152 ft.)			
set at its its its its attaited in					

Description	Thick- ness	Depth	Description	Thick- ness	Depth
HARMON COUNTY Continued			$2N-26W-29cc1$. $SW_4^1SW_4^1$. Drillers's log supplied	by Ivan	Owen.
2N-26W-2cba2. NEaNW18W1. Driller's log supp	lied by		Shale; gypsum stringers Gynsum	40	40 50
oncorer Anderson. Artitude: Tand Surface	, 1,010.		Shale, blue	4	54
No sample	8	8	Shale, brown	2	56
Sand and gravel	15	23	Gypsum	7	63 67
Grave1	14	42	Shale, brown	11	78
Sand	28	70	Gypsum	7	85
Clay	16	86	Cavity	5	90
Gypsum Limestone	11	97	Shale, Drown Gypsum	. 11	104
Shale, red	19	118	Shale, blue	2	106
Limestone	1	119	Gypsum	13	119
Sand, water-bearing	3	122	Limestone Shale blue	1	120
Shale	5	124	Shale, red	24	154
Rock	2	131	Gypsum; limestone, blue; shale	. 11	165
Shale	2	133	Shale Shale brown and blue	5	170
Limestone	23	156	Gypsum	3	185
Shale	9	166			
Rock	18	184	2N-27W-36bac1. SW4NE4NW4. Driller's log supp	lied by	
Shale (18-in. casing set at 49 ft; 16-in. casing se	5 tat 87	189 ft.)	Ivan Owen.		
ON DOM 24L + extendent			Clay, brown	19	19
<u>Supplied by John Jenkings</u> Sample 1cr bal	OU feet,	eet	Shale, brown	6 25	43 50
Altitude: land surface, 1,613.	.0w 300 I		Gypsum	5	55
			Shale, red	4	59
No sample	17	17	Gypsum Limestone porous	4	63 70
Clay	10	40	Shale, blue	3	73
Limestone, porous	8	48	Shale, red	24	97
Shale	17	65	Gypsum	8	105
Shale, red Limestone	21	86	Shale, brown Shale blue and red	20	142
Shale, red	16	107	Gypsum	2	144
Gypsum	1	108	Shale, blue	3	147
Shale, red	2	110	Gypsum Shala blue	8	155
Sand	3	130	Shale, red and blue	13	173
Gypsum	10	140	Gypsum	1	174
Limestone, porous	3	143	Shale, blue	2	176
Shale, blue Gypsum	12	155	(Reported vield 80 gpm. Not completed as an i	rrigatic	n 180
Shale, blue	12	184	well.)		
Gypsum	18	202			
Shale, blue	6	208	2N-27W-36dadl. SEANEASEA. Sample log. Altit	ude: lan	d
Shale, red	2	212	Surface, 1,502.		
Shale, blue	4	218	Soil and clay, gypsiferous, calcareous	10	10
Shale, blue; limestone stringers	5	223	Clay, brown, sandy, calcareous	5	15
Limestone	2	224	Shale, blue, calcareous	10	40
Shale, blue	10	236	Gypsum, alabaster, calcareous	10	50
Limestone	4	240	Shale, gray, calcareous; gypsum stringers,		
GYDS1m	5	245	alabaster Gypsum alabaster calcareous	5	60
Shale, blue; gypsum stringers, alabaster	24	274	Shale, brown, calcareous	5	65
Shale, red	9	283	Shale, brown, gypsiferous	5	70
Shale, blue; limestone stringers	6	289	Gypsum, alabaster, calcareous	10	75 85
Shale, red	4	300	Gypsum, alabaster	10	95
Shale, brown and gray, earthy; gypsum,	-		Gypsum, alabaster, calcareous, porous	7	102
selenite and alabaster	5	305	Shale, red, gypsiferous	3	105
Selenite and alabaster	5	310	alabaster	5	110
Shale, bluish-gray; gypsum, selenite and	5	510	Shale, gray, calcareous; gypsum stringers,	_	
alabaster Shale bluich group and roddich browns	10	320	alabaster Gungum alabaster	5	115
gypsum stringers. alabaster	10	330	Shale, gray, calcareous, gypsiferous	10	130
Shale, gray, earthy; anhydrite, gray to white	10	340	Gypsum, alabaster	5	135
Shale, reddish-brown to gray; gypsum	• •	2	Shale, blue, calcareous, gypsiferous	10	145
shale, bluish-grav, gypeum selenite	15	355	Shale, blue and red, calcareous, gypsiferous	5	160
Shale, brown and gray, earthy, gypsiferous	5	365	Gypsum, alabaster	17	177
Shale, brown and gray, earthy; siltstone,		_	Shale, red and blue, calcareous	3	180
Drown, calcareous	15	380	Shale, red and blue; gypsum stringers,	< آ	185
alabaster and selenite	15	395	Shale, red and blue, calcareous: gypsum		200
Shale, brown and gray, earthy to plastic	10	405	stringers, alabaster	5	190
Shale, reddish-brown and gray; anhydrite	5	410	Gypsum, alabaster	5	195
alabaster: dolomite stringers grav	5	415	Shale, gray, calcareous, gypsiferous Shale, reddish-brown: gypsim stringers	5	200
Shale, brown and gray, conchoidal, gypsiferous	30	445	alabaster	10	210
(Salty water in cavity at 443 ft. Test hole p	lugged b	ack	Shale, reddish-brown, calcareous; gypsum	10	220
to 500 ft and completed by owner as an irriga	tion wel)	stringers, alabaster (Yield, 1.400 gpm: 45 ft drawdown after 14 hr	test.)	220

Description	Thick- ness	Depth	Description	hick- ness	Depth
HARMON COUNTYContinued					
<u>3N-24W-13dab2</u> . NW ¹ / ₂ NE ¹ / ₃ SE ¹ / ₄ . Driller's log supp Ivan Owen. Altitude: land surface, 1,54	plied by 3.		<u>3N-25W-30abb1</u> . NW ¹ 2NW ¹ 2NE ¹ 4. Driller's log suppli Ivan Owen. Altitude: land surface, 1,620.	ied by	
Shale, brown	32	32	Shale Shale and sand	60 20	60 80
Gypsum Shale, brown	9 14	41 55	Limestone	13	93
Shale, brown and blue	34	89	Gypsum	9	102
Gypsum Shale, blue	5	103	Gypsum	14	122
Gypsum	9	112	Shale, blue and brown	5	127
Shale, blue Shale, brown	2	114	Sand	23	150
Gypsum	14	131	Gypsum	6	157
Shale, blue and brown	4	135	Shale, blue; limestone	2	159 160
Shale, brown	7	165	(16-in. casing set at 80 ft; 14-in. casing set a	it 130	ft.
Gypsum	10	175	Perforated interval 100-130 ft.)		
Cavity, Water-bearing Shale, blue	8	184	3N-25W-32acdl. SE1SW1NE1. Driller's log suppli	ied by	
Shale, red and blue	27	211	Jack Jenkins.		
Gypsum Sbale blue	17	228 235	No sample	18	18
Shale, brown	4	239	Shale, gray	17	35
Gypsum	8	247	Shale, red and blue	28	63 72
Shale, brown	16	265	Shale, red and blue	4	76
Gypsum	4	269	Limestone	4	80 86
Shale, brown Gypsum	3	272	Shale, grav	6	92
Shale, brown and blue (about 3 gpm at 290 ft) 36	315	Gypsum	13	105
(lest note plugged.)			Shale, blue Gypsum	4	109
3N-24W-25bcb1. N#\$SW2NW4. Driller's log su	pplied by	с.,	Limestone, water-bearing	1	116
Chala and all the	46	46	Gypsum No sample vields water	25	141
Gypsum	10	56	Shale, red; limestone, water-bearing	13	156
Shale, blue	2	58	(16-in. casing set at 83 ft.)		
Gypsum Shale, blue (some water)	12	70 72	3N-25W-32cad1. SEANEASWA. Sample log.		
Gypsum	12	84			
Shale, blue	6	90 112	Sand Shale red	12 18	12 30
Shale, blue and red	8	120	Shale, blue	6	36
Gypsum, water-bearing	10	130	Dolomite, light-gray, porous	5	41
Shale, red and blue Gypsum	36 17	183	Gypsum, alabaster, white, water-bearing (lots	4	45
Shale, blue	2	185	of water)	14	59
(10-inch casing set at 47 ft.)			Shale, blue Gypsum, alabaster, white (most drill cuttings	1	60
3N-24W-30aaa2. NEANEANEA. Driller's log su	pplied by	,	lost)	5	65
Jack Jenkins. Altitude: land surface, 1	,527.		Dolomite, gray, argillaceous, conchoidal fracture	2	67
Soil	3	3	Gypsum alabaster and selenite, tan	9	76
Shale, red	12	15	Shale, gray, calcareous	5	81 85
Gypsum	2	22	Gypsum, alabaster and selenite white and tan	5	90
Shale, red	16	38	Shale, blue	2	92 93
Shale, red	3	42	Cavity, filled with water	1	94
Gypsum	1	43	Gypsum, alabaster, white to gray	16	110
Shale, red Shale blue	3	46 55	Gypsum, alabaster and selenite, white	14	130
Gypsum	2	57	Shale, gray, calcareous	4	134
Shale, blue	4	61 64	Shale, reddish-brown and gray, earthy Gypsum alabaster	9	143 145
Gypsum	13	77	Shale, reddish-brown and gray	2	147
Shale, blue	5	82	Gypsum, selenite, argillaceous	8	155
Gypsum Shale, red	12	110	(16-in. casing set at 65 ft. Perforated interva	1 50-6:	5 ft.)
Shale, blue	5	115			
Shale, red Gypsum	4	119	and John Jenkins.	у кау и	iest
Shale, blue (some water)	1	124			
Gypsum Shale blue	21	145	Soil and clay Shale red, sand	15 36	15
Gypsum	1	148	Gypsum, white	5	56
Shale, red	2	150	Shale, red	29	85
Shale, red; limestone. water-bearing	5	160	Shale, red; rock	17	109
Gypsum, water-bearing	4	164	Gypsum, white	3	112
Shale, plue Shale, red	4	169	Gypsum, blue	3 7	122
(16-in. casing set at 64 ft.)			Shale, blue and gray	6	128
			Gypsum Sand, water-bearing	8 2	138
			Gypsum	2	140
			Reported yield, 1,000 gpm; 16-in. casing set at	85 ft.)

Thickness in feet. Depth in feet below land surface.

Description nest HARMC DOUNT,Continued National State (Not		
N=20F-20bilContinuedN=20F-20bilContinuedShie, red46Orpsum stingers, selenite3Shie, red7Shie, red7Shie, red7Shie, red1Shie, red1 <tr< td=""><td>5</td><td>Depth</td></tr<>	5	Depth
Number 2002-11. Systepsing is a set of the set o		
surfactJohnShale, ced4646Grysum, alabaster5Shale, red5Shale, red1Shale, redin-brown and gray, calareous;3grypum stringers, selenite1appoint stringers, selenite1grypum stringers, selenite1grypum stringers, selenite1Shale, redin-brown and blue; calareous;3grypum stringers, selenite1grypum stringers, selenite1Shale, blueh-brown and blue; grypum stringers,1Shale, blueh-brown and blue; grypum5Shale, blueh-brown and blue; grypum6Shale, redin-brown and blue; grypum6Shale, redin-brown and blue; grypum1Shale, red5Shale, red10Shale, red5Shale, red1Shale, red5Shale, blue1Shale, red		
Shale, redShale, redShale, redShale, redShale, redish-brown and gray, calcareous;33grpom mitingers, selenite33grpom mitingers, selenite33shale, redish-brown and gray, slightly calcareous;73grpom mitingers, selenite17shale, selenite61Shale, redish-brown and gray, slightly calcareous85Shale, redish-brown and gray, slightly calcareous85Shale, redish-brown and gray, slightly calcareous86Shale, redish-brown and gray, slightly calcareous86Shale, redish-brown and gray, slightly calcareous91Shale, redish-brown and gray, slightly calcareous11Shale, brown and gray, slightly calcareous11Shale, red, calcareous11Shale, red, calcareous11Shale, red, calcareous11Shale, red, calcareous11Shale, red, calcareous11Shale, red, calcareous11Shale, red11Shale, red, calcareous11Shale, red, calcareous11Shale, red11Shale, red11Shale, red11S		
Optimum Company Shale, redish-brown and gray, calcarcous; grppum stringers, seleniteoOptimum stringers, selenite3353555375538.12, redish-brown and gray, calcarcous; grppum stringers, selenite17777755555555555556565565565575	3	232
Shie, reddish-brown and gray, calcareous; grpom stringers, elsenite35Shak, reddish-brown and Diue, calcareous; grpom stringers, elsenite1Tan Deen.1Alabaster and selenite1Shak, reddish-brown and gray, alightly calcareous; grpom stringers, slightly calcareous; grpom stringers, slightly calcareous1Shake, reddish-brown and gray, calcareous3102Shake, redy, and slow3102Shake, gray, canase6104Shake, gray, canase5100Shake, gray, canase1100Oppum, alabaster, white1100Shake, gray, calcareous3130Shake, gray, calcareous3130Shake, gray, calcareous3130Shake, gray, calcareous3130Shake, gray, calcareous5140Shake, gray,	.)	2.52
gypum stringers, selenite33Shale, redubis-brown and bite1Andyfrite, gray to white1Shale, redubis-brown and pray sliphity5Shale, redubis-brown and pray sliphity5Shale, redubis-brown and bite; gypum5Shale, brown and gray; gypum stringers, selenite5Shale, brown and gray; gypum stringers, selenite, gray donst. conclusion1Shale, read, data5Shale, read, data5Shale, read, data5Shale, read, data5Shale, read, data5Shale, read5Shale, read5Shale, read6Shale, read6Shale, read6Shale, read6Shale, read6Shale, read6Shale, read6Shale, blue7Shale, read6Shale, read6Shale, read6Shale, blue7Shale, read6Shale, read6 </td <td></td> <td></td>		
Ambyrite, gray, forhite1772Shale, gray, calcarcous, gypsum stringers, alabaster, and selenite3Shale, gray, calcarcous, gypsum stringers, alabaster, reddish-brown and gray, slightite5Shale, reddish-brown and pray, slightite5Shale, reddish-brown and pray, slightite5Shale, reddish-brown and pray slightite5Shale, reddish-brown and pray slightite6Shale, reddish-brown and pray slightite5Shale, gray, and slighteens6Shale, gray, and slighteens6Shale, gray, and slighteens120Shale, gray, and slighteens5Shale, gray, and slighteens120Shale, blue5Shale, gray, and slighteens5Shale, gray, ang slighteens120Shale, blue5Shale, pray to white: shale, stars120Shale, stars5Shale, red14Shale, blue5Shale, stars5Shale, blue5Shale, stars5Shale, blue5Shale, stars5Shale, stars5Shale, blue<		
Anhydrite, gray to white 3 75 Shale, gray, clacareous gypsum stringers, 1 Shale, pray, clacareous gypsum stringers, 6 Shale, white 1 Shale, pray, clacareous gypsum stringers, salenite 6 Shale, blue and brown 1 Shale, pray, dense 6 81 Shale, brown 1 Shale, pray, dense 6 61 Shale, blue and brown 1 Shale, pray, dense 6 64 Shale, blue and brown 1 Shale, pray, dense 6 64 Shale, blue and brown 1 Shale, pray, dense 6 64 Shale, blue 1 Shale, pray, dense 6 64 5 100 5 Shale, pray, dense, concholdal fracture, argilaceous, calcareous 5 130 5 5 140 5 140 5 140 5 140 5 140 5 140 5 140 5 140 5 140 5 140 5 140 5 140 5 5 140 5 140 5 5 140 5 <		
Jalakster, gray, calcaceous; gypous stringers, Limestone or gypous Jalakster, reddish-brown and gray, slightly 4 Shale, reddish-brown and gray, slightly 4 Shale, reddish-brown and pray, slightly 5 Shale, reddish-brown and pray, slightly 5 Shale, reddish-brown and Dive; gypoun 5 Shale, reddish-brown and Dive; gypoun 5 Shale, reddish-brown and Dive; gypoun 5 Shale, gray, argilaceous 5 Shale, gray, dense 6 Oppoun, allabaster, white to gray 5 Shale, gray, calcareous 5 Shale, gray, calcareous 5 Shale, gray, calcareous 5 Shale, gray, calcareous 5 Shale, prown 1 Bypsin 1 Bypsin 1 Shale, gray, calcareous 5 Shale, prown 1 Shale, prown 1 Bypsin 1 Shale, prown 1 Shale, blue 5 Shale, blue 5 Shale, blue 5 Shale, blue 5 <	5	15
Shale, bish-greay, alightly calcareous 4 55 Shale, brown 1 Shale, b-bish-brown and gray, slightly 5 Shale, b-town 1 Shale, redsh-brown and blue gypsum 8 98 Shale, b-town and blue gypsum stringers, satingers 5 Shale, blue 5 Shale, b-town and gray; gypsum stringers, satingers 5 Shale, blue 5 Shale, brown and gray; gypsum stringers, satingers 5 Shale, blue (water seep at 96 ft) 5 Shale, brown and gray; gypsum stringers, satingers 5 Shale, blue (water seep at 96 ft) 5 Shale, prown and gray; gypsum stringers, satingers, sating	3	18
Shale, reddish-brown and gray, slightly calcateous; sysum stringers, selingers, stringers, settingers, immed a stringers, settingers, stringers, settingers, stringers, gray, rarjilaceousGypsum shale, blue forpsum, shale, blue and brown forpsum, shale, blue forpsum, shale, blue and brown forpsum, shale, brown forpsum, shale, blue and brown forpsum shale, brown forpsum, shale, brown shale, blueIDelowit gray to white stringers, actingers5130 shale, blue5Anbydrite, gray owhite shale, blue5140 shale, blue14Anbydrite, gray to white: shale, blue5140 shale, blue11 shale, blueShale, blue fort mough water for irrigation.)14100 shale, blue12 shale, blue12 shale, blueShale, blue fort mough water for irrigation.14100 shale, blue15 shale, blue14 shale, blueShale, blue fort mough water for irrigation.14 shale, blue14 shale, blue14 shale, blueShale, blue forpsum15 shale, blue15 shale, blue15 shale, blue16 <br< td=""><td>5</td><td>39</td></br<>	5	39
calcareous; gypsum stringers, selenite590Shale, blue and brown10 bile; reddsh-brown and blue; gypsum890071 instringers, selinipat890070 bile; reddsh-brown and gray; gypsum stringers, selenite5112Shale, blue5 blale, brown and gray; gypsum stringers, selenite41201200 cypsum, alabaster, white to gray5122Shale, blue10 cypsum, alabaster, white to gray5135136111 bile, gray, calcareous5135136111 bile, gray, calcareous514010111 bile, gray, calcareous514010111 bile, gray, calcareous514010111 bile, gray, calcareous516016111 bile, gray, cowhite; gypsum, alabaster, calcareous14160161 bile, tred516016161 bile, tred516016161 bile, tred516016161 bile, blue516016161 bile, blue516016162 bile, blue5160161203 bile, blue516016163 bile, blue516016163 bile, blue516016163 bile, blue516016163 bile, blue1616	1	50
artigers, sitinger60 and shale, gray60 and shale, blue60 and shale, blueShale, blueShale, blueShale, blues made gray41 and shale, blueShale, blues made gray41 and shale, blue (water seep at 96 ft)Shale, blue made gray51 and shale, blue (water seep at 96 ft)Shale, blue made gray51 and shale, blue (water seep at 96 ft)Shale, blue made gray51 and shale, blueShale, blue made gray51 and shale, grayShale, gray, calcarcous51 and shale, gray, calcarcousStale, gray, calcarcous51 and shale, gray, calcarcousStale, gray, calcarcous51 and shale, blueAnhydrite, gray to white; shale, gray61 46 (SpsumAnhydrite, gray to white; shale, gray61 46 (SpsumAnhydrite, gray to white; shale, gray61 46 (SpsumShale, blue10 shale, blueShale, blue11 timestone; shale, blue(Not enough water for irrigation.)51 bio shale, blueShale, blue10 shale, blueShale, blue10 shale, blueShale, red10 shale, blueShale, red10 shale, blueShale, blue10 shale, blueShale, red10 shale, blueShale, red10 shale, blueShale, red10 shale, blueShale, blue10 shale, blueShale, blue11 shale, blueShale, blue12 shale, blueShale, blue13 shale, redShale, red </td <td>) 5</td> <td>60</td>) 5	60
Dolonite, ray, dense6104Shale, blueShale, gray, argillaceous5112Shale, blueShale, blue, brown and gray; gypsum stringers, selenite, pray, dense, conchoids fracture, argillaceous, calareous4120Shale, gray, calacareous5133Shale, blue and brown Gypsum1Shale, gray, calacareous5133Shale, blue1Shale, gray, calacareous5133Shale, blue1Shale, gray, calacareous5133Shale, blue1Shale, gray to white; gypsum, alabaster, 	4	69
Shale, gray3107GypsunShale, blueShale, blueShale, blueShale, blue number of the state of t	ç	78
Shale, brown and gray; gypsum stringers, sclenite4112Oppraam full Shale, blue and brown Shale, blue and brown Oppsum, blue (water seep at 96 ft)Ovpsum, flabster, witte to gray5125Dolonite, gray, dense, conchoidal fracture, argilacous, calcareous5130Shale, gray, calcareous5130Shale, gray, calcareous5130Shale, gray, calcareous5130Shale, gray, calcareous5130Shale, gray, calcareous5140Shale, gray to white; gypsum, alabaster, calcareous6146Gypsum14160Chot enough water for irrigation.)5165Shale, blue5165Shale, blue5165Shale, blue11Shale, blue11Shale, blue11Shale, blue11Shale, blue11Shale, blue11Shale, blue11Shale, red1073Shale, red1073Shale, red1073Shale, red11Shale, red12Shale, red13Shale, blue1Shale, red and blue5Shale, red and blue1Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, red and blue1Shale, red and blue1 <trr>Shale, blue<</trr>) /	.87
Shale, blue own and gray; gypaun stringers, seleniteShale, blue (and brown Gypaun Shale, gray, denae; conchoidal fracture, 	3	94
selenite 4 120 Syspaum, alabasier, white to gray y Dolomite, gray, dense, conchoidal fracture, argillaceous, calacreous 5 130 Shale, gray, calacreous 5 133 Shale, gray, calacreous 5 133 Shale, gray to white; gypsum, alabaster, gray to white; gypsum, alabaster, 7 gray to white; gypsum, alabaster, 7 Shale, blue and brown 1 Shale, blue 15 Shale, blue 5 Shale, red and blue 5 Shale, red and blue 5 Shale, red and blue 7 Shale, blue 15 Shale, blue 15 Shale, blue 15 Shale, blue 15 Shale, blue 19 Shale, blue 19 Shale, blue 19 Shale, blue 19 Shale, red and blue 19 Shale, red and blue 19 Shale, red and blue; gypsum stringers 3 Shale, red and blue 20 Shale, red and blue 20 Shale, red and blue 20 Sha	ł	96
Delomite, ray, dense, calcareous5123Shale, gray, dense, calcareous5130Shale, gray, dense, calcareous5130Shale, gray, dense, calcareous1Ambydrite, gray to white; gypsum, alabaster, gray to white; gray to gray	, 7	113
argillaceous, calcareous5130Öypein11Shale, gray, calcareous5135Shale, blue and brown1arhydrite, gray to white; gypsum, alabaster,11Limestone; shale, blue1gray to white; shale, gray6146Shale, blue1Anhydrite, gray to white; gypsum, alabaster,6146Gypsum1arterous14160Gypsum11Shale, blue5165Limestone; yellow1Shale, blue5165Shale, blue and brown1Shale, blue5165Limestone; yellow1Shale, blue5165Shale, blue1Shale, red5454Shale, blue; limestone1Shale, red and blue563Gypsum2Shale, red11106Gypsum2Shale, red and blue5131106Ister Group, 1,754, water level in terrace depositsShale, red and blue1133Terrace deposits:3Shale, red and blue1134Sand, brown, very fine to fine13Shale, red and blue1134Sand, brown, very fine to fine14Shale, red and blue1171Sand, brown, very fine to fine15Shale, red and blue1171Sand, brown, very fine to fine15Shale, blue1171Sand, brown, very fine to fine16Shale, blue1171Sand, brown, very fine to fine15<	,	120
shale, gray to white: gray to w	į	139
IntersectionLimestonicgray to white:grysum, alabaster,5140Anhydrite, gray to white; gypsum, alabaster,5140gray to white; gypsum, alabaster,5140gray to white; gypsum, alabaster,5140gray to white; gypsum, alabaster,5165gray to white; gypsum, alabaster,5160calcareous14160Shale, blue5165Shale, blue5165Shale, blue5165Jack Jenkins.5165Shale, red5454Shale, red and blue563Gypsum1290Shale, blue578Gypsum1290Shale, blue578Gypsum15121Shale, red and blue6127Shale, red and blue6127Shale, blue7134Shale, blue11Shale, blue13Shale, blue14Gypsum15Shale, blue14Gypsum14Shale, blue14Shale, blue14Gypsum15Shale, blue14Shale, blue14Gypsum15Shale, blue11Shale, blue14Shale, blue15Shale, blue15Shale, blue14Shale, blue15Shale, blue15Shale, blue	,	158
Anhydrite, gray to white; gypsum, alabaster,StaleStrownStalegray to white; gypsum, alabaster,6146Anhydrite, gray to white; gypsum, alabaster,14160Shale, bite5165Shale, bite5165Shale, bite5165Mack Jenkins.5165Shale, bite5165Shale, bite5165Shale, bite5165Shale, bite5165Shale, bite55Shale, bite55Shale, bite55Shale, bite55Shale, red610Gypsum1260Shale, bite56Gypsum1260Shale, bite57Shale, red11106Gypsum15121Shale, olonitic4138Shale, bite2140Shale, bite1Gypsum15Shale, bite1Shale, bite	, 1	166
gray to white; shale, gray 6 146 Gypsum Gypsum 1 Anhydric, gray to white; gypsum, albaster, 14 160 Gypsum 11 Shale, blue 5 165 Linestone, yellow 11 (Not enough water for irrigation.) Shale, blue and brown 1 <u>3N-26W-22ccal.</u> NE§SWASWA. Driller's log supplied by Shale, blue Shale, blue 16 Shale, blue 5 63 Shale, blue 16 Gypsum 16 Shale, red 5 63 Gypsum 10 73 Shale, blue 16 Shale, blue 5 78 Gypsum 10 73 Kot enough water for irrigation.) 16 Shale, blue 5 78 Gypsum 11 10 Iand surface, 1/54; water level in terace deposits: Shale, red 11 10 Iand surface, red; rise of fine 26 Gypsum 7 134 54 54 54 54 Shale, blue 1 17 53 53 54 54 54 54 54 54	Ĺ	187
Annowite, gray to white; gypsum, alabaster, calcareous14160Shale, blue5165Shale, blue5165Intercong water for irrigation.)1M-26W-22ccal.NE4SW45W2.Jack Jenkins.5Shale, red54Gypsum4Shale, blue5Shale, red54Gypsum4Shale, ned5Shale, ned5Shale, blue5Shale, blue5Shale, red10Gypsum12Shale, blue5Shale, blue5Shale, blue5Shale, blue5Shale, blue5Shale, blue5Shale, blue11Shale, colu10Gypsum15Shale, blue11Shale, blue121Shale, olomitic4Shale, blue11Shale, blue12		189
Shale, blue5165Limestone, yellow(Not enough water for irrigation.)Shale, blue and brown13N-26W-22ccal.NEÅSWÅSWÅ.Driller's log supplied byShale, blue and brown1Jack Jenkins.Shale, blue i limestoneShale, blue i limestoneShale, blue i limestone1Shale, red5454Shale, blueShale, blueShale, blue1Shale, red5454Shale, blueShale, blue1Shale, blue563Gypsum21Shale, blue578Gypsum11Shale, blue578Gypsum11Gypsum1290424W-17dafl.SEÅSEÅSEÅ.Sample log of test hole oShale, blue5111061111Shale, blue6127110611Shale, blue21401110611Shale, blue11515133333331Shale, blue11171Sand, brown, very fine to fine111333 <td></td> <td>210</td>		210
(Not enough water for irrigation.)Shale, blue and brown1 $\frac{3N-26W-22ca1}{Jack Jenkins.}$ $Shale, blue and brown1\frac{3N-26W-22ca1}{Jack Jenkins.}Shale, blue, blue, limestoneShale, brownShale, red5454Shale, red5454Shale, red and blue1073Shale, blue578Gypsum1290Shale, red'11Gypsum15121Gypsum7134Shale, red and blue6Shale, red'11Gypsum15Shale, red and blue6Gypsum7134Shale, red and blue2Gypsum7134Shale, red and gray5Shale, dolomitic4Shale, blue1Shale, blue1Gypsum15Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, red3Gypsum3Shale, red33Shale, red32Gypsum3Shale, red32Gypsum3Gypsum3Shale, red32Gypsum3Gypsum3Gypsum3Gypsum$	L	211
DN-26W-22cca1.NEÅSWÅSWÅ.Driller's log supplied by Jack Jenkins.Shale, brown Shale, blueShale, blueShale, blueShale, red5454Shale, blue5Shale, blue563Gypsum6Shale, blue563Gypsum2Shale, blue563Gypsum2Shale, blue5786Gypsum12904Shale, blue595Shale, blue595Shale, blue595Shale, red11106Gypsum15121Shale, blue6127Gypsum7134Shale, dolomitic4Shale, blue2140Shale, blue1171Shale, blue1171Shale, blue1171Shale, blue1171Shale, blue1171Shale, blue1171Shale, blue1197Shale, blue1197Shale, blue1197Shale, red3333Shale, red3333Shale, red3333Shale, red2258Gypsum336Shale, red2258Shale, red2258Shale, red2258Shale, red2258Shale, red2258Shale, red20		222
Jack Jenkins.Shale, bind to be a provided by the bind to be provided by the bind to bind to bind to be a pr	5	225
Shale, red54545454Gypsum458Shale, blueShale, blueShale, blueShale, red and blue073(Not enough water for irrigation.)Shale, red and blue578Gypsum1290(Not enough water for irrigation.)Shale, blue578Gypsum1290Shale, blue595Shale, red11106Gypsum15121Shale, red and blue6127Shale, red and blue2140Shale, dolomitic4Shale, blue2Shale, blue143Shale, white and gray5Shale, blue1Shale, blue<	,	236
Shale, blue54545454Shale, blue563Gypsum5Shale, blue563Gypsum5Shale, blue578(Not enough water for irrigation.)4Gypsum129044Shale, blue5785Gypsum12904-24W-17dad1. SEARSSEA. Sample log of test hole of by the U.S. Geol. survey in June 1956. Altitudes:Shale, red11106104survey in June 1956. Altitudes:Shale, red and blue6127104survey in June 1956. Altitudes:Shale, red and blue6127and surface. 1,784; water level in bog CreekShale, dolomitic4134Terrace deposits:Shale, blue2140Sand, brown, very fine to fine6Gypsum9149Sand, brown, very fine to fine8Shale, blue1155Sand, brown, very fine to fine13Shale, blue1171Sand, brown, very fine to fine14Shale, blue1171Sand, medium to very coarse; gravel; clay15Shale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Sand, red; blue mottling8Shale, red3220Dog Creek Shale and Blaine Formation:9Gypsum15215Shale, red, blue mottling7Shale, red3333Shale, red, blue mottling7Shale, r	1	242
Shale, blue563GypsumShale, red and blue1073(Not enough water for irrigation.)Shale, blue578Gypsum1290 $\frac{M - 24W - 17dad1.}{1.5E \frac{1}{2}NE \frac{1}{2}SE \frac{1}{2}.}$ Sample log of test hole ofShale, blue595Shale, red11106Gypsum15121Whitehorse Group, 1,754; water level in terrace depositGypsum6127Gypsum7134Shale, red and blue6127Gypsum7134Shale, dolomitic4Shale, blue2140Shale, blue2140Shale, blue1Shale, brown3Gypsum15Shale, brown3Gypsum3Shale, red33Shale, red33Shale, red22Shale, red33Shale, red33Shale, red22Shale, red3Gypsum3Shale, red3Shale, red3Shale, red3Shale, red3	į.	243
Shale, red and blue1073(Not enough water for irrigation.)Shale, blue578Gypsum1290Shale, blue595Shale, red11106Iand surface, 1,784; water level in terrace depositsGypsum7Shale, ned and blue6Gypsum7Shale, dolomitic4Shale, blue2Shale, blue2Gypsum9Shale, blue2Shale, blue2Shale, blue1Shale, brown3Shale, blue1Shale, blue1Shale, blue1Shale, blue1Shale, brown3Shale, brown3(Not enough water for irrigation.)Jack Jenkins.15Sand; shale, red33Shale, red33Shale, red33Shale, red33Shale, red33Shale, red33Shale, red33Shale, red35Shale, red33Shale, red33 <td< td=""><td>1</td><td>2 52</td></td<>	1	2 52
Shale, blue578Gypsum1290Shale, blue595Shale, red11106Gypsum15121Whitehorse Group, 1,754; water level in terrace deposiWhitehorse Group, 1,754; water level in Dog CreekShale, red and blue6Gypsum7Shale, dolomitic4Shale, blue2Shale, blue2Gypsum9Shale, white and gray5Shale, blue1Shale, brown15Shale, red20Opsum15Shale, red, blue mottling7Shale, red33Shale, red33Shale, red33Shale, red22Shale, red22Shale, red and blue; gypsum stringers5Shale, red22Shale, red and blue; gypsum stringers5Shale, red22Shale, red and blue; gypsum stringers3 </td <td></td> <td></td>		
Shale, blue595Shale, red11106Shale, red11106Shale, red and blue6127Gypsum7134Shale, dolomitic4138Shale, blue2140Shale, blue2140Sysum9149Shale, blue2140Shale, blue2140Sysum9149Shale, blue1155Shale, blue1155Shale, blue1155Shale, blue1170Shale, blue1171Shale, blue1171Shale, blue1177Shale, blue1177Shale, blue1197Shale, blue1197Shale, blue1197Shale, brown3200Dog Creek Shale and Blaine Formation:3Gypsum15215Shale, brown15215Shale, brown333Shale, red3333Shale, red3333Shale, red3336Shale, red2258Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum1573Shale, red and blue35Shale, red2258Shale, red35Shale, red35Shale, red<		led
Shale, red11106Iand surface, 1,784; water level in terrace deposiGypsum15121Whitehorse Group, 1,754; water level in Dog CreekShale, red and blue6127and Blaine Formation, 1,622.Gypsum7134Terrace deposits:Shale, dolomitic4138Terrace deposits:Shale, blue2140Sand, brown, very fine to fine6Gypsum9149Sand, brown, very fine to fine8Shale, white and gray5514caliche4Shale, white and gray5514Sand, brown, very fine to fine13Gypsum15170Sand, brown, very fine to fine13Shale, blue1171Sand, brown, very fine to medium5Shale, blue1171Sand, medium to very coarse; gravel; clay5Shale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Shale, red, blue mottling8Gypsum15215Shale, red, blue mottling7Shale, red3333Shale, red and blue; gypsum stringers5Sand; shale, red3333Shale, red and blue; gypsum stringers5Shale, red2258Gypsum20Gypsum1573Shale, red and blue; stringers35Shale, red2258Gypsum35Shale, red1573Shale, red and blue35Shale, red and bl		
Shale, red and blue15121Whitehorse Group, 1,754; water level in bog CreekShale, red and blue6127and Blaine Formation, 1,622.Gypsum7134Terrace deposits:Shale, blue2140Sand, brown, very fine to fine8Gypsum9149Sand, red, very fine to fine; clayey;2Shale, white and gray5154Sand, brown, very fine to fine13Gypsum15170Sand, brown, very fine to medium5Shale, blue1171Sand, brown, very fine to medium5Shale, brown and blue4175Stringers; water-bearing8Gypsum21196Whitehorse Group:Shale, red, blue mottling19Shale, blue1197Shale, red, blue mottling7Shale, blue1197Shale, red, blue mottling7Shale, blue333Shale, red and blue; gypsum stringers3Shale, red3333Shale, red and blue; gypsum stringers9Shale, red2258Gypsum20Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Shale, red1573Shale, red and blue35Shale, hue780Gypsum; dolomite stringers10	ts	and
Gypsum7134Shale, dolomitic4138Shale, blue2140Gypsum9149Shale, white and gray5154Salt1Shale, white and gray5Shale, white and gray5Shale, white and gray5Shale, white and gray5Shale, blue1Gypsum15Gypsum15Shale, blue1Shale, brown and blue4Gypsum21Shale, brown1Shale, blue1Shale, brown21Shale, brown1Shale, brown1Shale, brown1Shale, brown1Shale, brown1Shale, brown3Shale, brown15Shale, brown15Shale, brown3Shale, brown15Shale, red, blue mottling7Shale, brown3Shale, red33Shale, red33Shale, red33Shale, red33Shale, red22Shale, red33Shale, red and blue; gypsum stringers39Shale, red22Shale, red and blue; gypsum stringers39Shale, red15Shale, red and blue20Sypsum1573Shale, red and blue35Shale, red and blue35Shale, red and blue35Shale, red a	Sha	.1e
Shale, dolomitic4138Terrace deposits:Shale, blue2140Sand, brown, very fine to fine; clayey;Shale, white and gray5154CalicheShale, white and gray5154calicheShale, white and gray1155Sand, brown, very fine to fine;Shale, blue1157Sand, brown, very fine to fineGypsum15170Sand, brown, very fine to medium12Shale, blue1171Sand, medium to very coarse; gravel; claystringers; water-bearing8Gypsum21196Whitehorse Group:stringers; water-bearing8Shale, blue1197Shale, red, stringers of blue sand19Shale, brown3200Dog Creek Shale and Blaine Formation:3Gypsum15215Shale, red, blue mottling8(Not enough water for irrigation.)5Shale, red, blue mottling7 <u>3N-26W-26bd11. SEisEinWit</u> . Driller's log supplied byShale, red and blue; gypsum stringers5Sand; shale, red3333Shale, red and blue; gypsum stringers20Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue; stringers35Shale, red1573Shale, red and blue35Shale, red1573Shale, red and blue35		
Shale, blue2140Sand, brown, very fine to fine2Shale, white and gray9149Sand, red, very fine to fine; clayey; caliche4Shale, white and gray5154Sand, brown, very fine to fine; clayey; caliche4Shale, blue1155Sand, brown, very fine to fine13Shale, blue1170Sand, brown, very fine to medium5Shale, blue1171Sand, medium to very coarse; gravel; clayShale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Shale, red, fine Formation:7Gypsum15215Shale, red, blue mottling8Shale, brown15215Shale, red, blue mottling8Shale, brown15215Shale, red, blue mottling7Gypsum15215Shale, red, blue mottling7Shale, red3333Shale, red and blue; gypsum stringers5Shale, red3333Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue; gypsum stringers39Shale, blue780Gypsum; dolomite stringers10		
Shale, white and gray5147Caliche4Shale, white and gray5147Caliche4Shale, white and gray115170Sand, brown, very fine to fine13Gypsum15170Sand, brown, very fine to medium13Shale, blue1171Sand, brown, very fine to medium14Shale, brown and blue4175Sand, medium to very coarse; gravel; clay5Shale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Sand, red; stringers of blue sand19Shale, brown3200Dog Creek Shale and Blaine Formation:8Gypsum15215Shale, red, blue mottling8(Not enough water for irrigation.)15215Shale, red, blue mottling7 <u>3N-26W-26bdd1.</u> SEidsEinwid.Driller's log supplied by Jack Jenkins.Shale, red1535Sand; shale, red3333Shale, red and blue; gypsum stringers5Sande; shale, red2258Gypsum39Shale, red1573Shale, red and blue; stringers39Shale, blue780Gypsum; dolomite stringers10		. 8
Salt1155Sand, brown, very fine to fine13Gypsum15170Sand, brown, very fine to medium5Shale, blue1171Sand, brown, very fine to medium5Shale, brown and blue4175Stringers; water-bearing8Gypsum21196Whitehorse Group:1Shale, blue1177Sand, red; stringers of blue sand19Shale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Shale, red; blue mottling8Gypsum15215Shale, red; blue mottling8(Not enough water for irrigation.)5Shale, red; gypsum stringers3Jack Jenkins.5Shale, red; gypsum stringers5Sand; shale, red3333Shale, red and blue; gypsum stringers50Gypsum336Shale, red and blue; gypsum stringers30Gypsum336Shale, red and blue; gypsum stringers30Shale, red2258Gypsum6Gypsum1573Shale, red and blue; gypsum stringers35Shale, red2258Gypsum6Shale, red1573Shale, red and blue35Shale, blue780Gypsum; dolomite stringers10		12
Shale, blue15170SAnd, brown, very rine to medium5Shale, blue1171Sand, medium to very coarse; gravel; clayShale, brown and blue4175Witehorse Group:Shale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Sand, red; stringers of blue sand19Shale, brown3200Dog Creek Shale and Blaine Formation:8Gypsum15215Shale, red; gypsum stringers3Gybsud15215Shale, red; gypsum stringers3Shale, cod, blue mottling7Shale, red, blue mottling7Shale, red3333Shale, red and blue; gypsum stringers5Sand; shale, red2258Gypsum30Gypsum1573Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue; gypsum stringers35Shale, blue780Gypsum; dolomite stringers10	· .	25
Shale, brown and blue1111Stringers; water-bearing8Gypsum21196Whitehorse Group:5Shale, blue1197Sand, red; stringers; water-bearing19Shale, blue1197Sand, red; stringers; water-bearing8Shale, blue1197Sand, red; stringers; water-bearing8Shale, blue1197Sand, red; stringers; water-bearing8Gypsum15215Shale, red, blue mottling8(Not enough water for irrigation.)15215Shale, red, blue mottling7 <u>3N-26W-26bdd1.</u> SEASEANWA. Driller's log supplied by Jack Jenkins.Shale, red and blue; gypsum stringers5Sand; shale, red3333Shale, red and blue; gypsum stringers9Shale, red2258Gypsum6Gypsum1573Shale, red and blue; gypsum stringers35Shale, blue780Gypsum; dolomite stringers10		30
Gypsum21196Whitehorse Group:Shale, blue1197Sand, red; stringers of blue sand19Shale, brown3200Dog Creek Shale and Blaine Formation:19Gypsum15215Shale, red, blue mottling8(Not enough water for irrigation.)5Shale, red, blue mottling7 <u>3N-26W-26bdd1.</u> SEASEANWA.Driller's log supplied byShale, red, blue mottling7Jack Jenkins.3333Shale, red15Sand; shale, red3333Shale, red and blue; gypsum stringers5Sand; shale, red3336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue; stringers35Shale, blue780Gypsum; dolomite stringers15		38
Snale, blue1197Sand, red; stringers of blue sand19Shale, blue1197Sand, red; stringers of blue sand19Gypsum3200Dog Creek Shale and Blaine Formation:8Gypsum15215Shale, red, blue mottling8Shale, sed, blue mottling7Shale, red, blue mottling7 <u>3N-26W-26bdd1.</u> SE4SE4NW4.Driller's log supplied byShale, red and blue; gypsum stringers5JAck Jenkins.3333Shale, red and blue; gypsum stringers5Sand; shale, red3336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue; stringers10Shale, blue780Gypsum; dolomite stringers10		
Gypsum15215Shale, red, blue nottling8(Not enough water for irrigation.)15215Shale, red, blue nottling83N-26W-26bdd1. SEiASE2NW4.Driller's log supplied by Jack Jenkins.Shale, red, blue mottling73N-26W-26bdd1. SEiASE2NW4.Driller's log supplied by Jack Jenkins.Shale, red, and blue; gypsum stringers5Sand; shale, red3333Shale, red and blue20Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue35Shale, red2258Gypsum6Shale, blue780Gypsum; dolomite stringers10		57
(Not enough water for irrigation.)Shale, red; gypsum stringers33N-26W-26bdd1. SEidSEdWWinDriller's log supplied byShale, red, and blue; gypsum stringers5Jack Jenkins.Shale, red and blue; gypsum stringers5Sand; shale, red3333Shale, red and blue; gypsum stringers5Sand; shale, red3336Shale, red and blue20Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue35Shale, blue780Gypsum; dolomite stringers10		65
Sn.26W-26bdd1. SEÅSEÅNWÅ. Driller's log supplied by Jack Jenkins.Snale, red, blue mottling7Sand; shale, redShale, red and blue; gypsum stringers5Sand; shale, red3333Shale, red; gypsum stringers5Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Shale, blue780Gypsum; dolomite stringers10		68
Jack Jenkins.Shale, redShale, red15Sand; shale, red3333Shale, red; gypsum stringers5Gypsum336Shale, red and blue20Shale, red2258Gypsum39Shale, red2258Gypsum6Gypsum1573Shale, red and blue35Shale, blue780Gypsum; dolomite stringers10		75 80
Sand; shale, redShale, red; gypsum stringers5Gypsum333Shale, red and blue20Gypsum336Shale, red and blue; gypsum stringers39Shale, red2258Gypsum6Gypsum1573Shale, red and blue35Shale, blue780Gypsum; dolomite stringers10		95
sanale, red 33 33 Shale, red and blue 20 Gypsum 3 36 Shale, red and blue; gypsum stringers 39 Shale, red 22 58 Gypsum 6 Gypsum 15 73 Shale, red and blue 35 Shale, blue 7 80 Gypsum; dolomite stringers 10		100
Shale, red2258Gypsum64Gypsum1573Shale, red and blue35Shale, blue780Gypsum; dolomite stringers10		120
Gypsum 15 73 Shale, red and blue 35 Shale, blue 7 80 Gypsum; dolomite stringers 10		165
Snale, Dlue 7 80 Gypsum; dolomite stringers 10		200
Shale, red and blue water bearing 16 06 Shale blue, gyneum stringers 4		210
Gypsum 6 102 Gypsum 13		227
Shale, blue and red 9 111 Shale, red and blue 2		229
vypsum 13 124 Gypsum; dolomite stringers 8 Shale blue 3 127 Shale red and blue 5		237
Gypsum 6 133 Gypsum 6		248
Shale, blue 7 140 Shale, blue 1		249
Gypsum 3 143 Gypsum 13 Chola blac State		262
Owner, Orug 4 147 State, red and blue 6 Gypsum 27 174 Gypsum 6		208 274
Shale, red; limestone, water-bearing 4 178 Gypsum, porous; dolomite stringers; water-		214
Gypsuin 16 194 bearing 6		280
snale, Diue 8 202 Dolomitic limestone; water-bearing 4 Shale, red, limestone 26 228 Shale red and blue 4		284
Gypsun 2 230		200 ·

.1

T	hick-		Thick	**
Description	ness	Depth	Description nes	s Depth
HARMON COUNTY Continued			4N-25W-24cbc2Continued	
4N-25W-23aaa1 NEANEANEA Sample log of test	hole dr	illed	Dog Creek Shale and Blaine Formation.	
by U.S. Geol. Survey in June 1956. Altitude	s: lan	d	Gypsum 10) 249
surface, 1,797; water level in terrace depos	its and		Shale, blue	2 2 5 1
Whitehorse Group, 1,767; water level in Dog	Creek S	hale	Shale, red; gypsum stringers	260
and Blaine Formation, 1,571.			Shale, red and blue; gypsum stringers) 270 8 278
Terrace deposits:			Gypsum; shale stringers, blue	2 280
Soil	3	3	Shale, blue	2 2 82
Sand, brown, very fine, clayey	4	7	Gypsum	5 288
Sand, brown, very fine to fine	3	10	Dolomite Shale blue	1 292
Sand, brown, fine to medium	1	12	Gypsum 1	306 J
Sand, very fine to fine, clay stringers	. 2	14	Shale, blue	1 307
Sand, very fine to fine; stringers of			Gypsum	1 308
clay and claiche	2	16	Shale, brown	1 309
Sand, very fine to fine; callene stringers	2	20	Gypsum Gypsum limestone stringers	/ 310 2 318
Sand, fine to medium: stringers of	2	20	Shale, blue	5 324
clay and caliche	5	25	Gypsum 16	3 340
Sand, very fine; stringers of clay and			Shale, blue	3 343
caliche	1	26	Gypsum 14	4 357
Sand, fine Sand fine to modium: clay stringers	1	27	bolomite, porous; limestone stringers;	4 361
Sand, coarse to very coarse; gravel;	5	30	Shale, red and blue	5 367
water-bearing	15	45		
Whitehorse Group:			$4N-25W-24cbc3$. $SW_{4}^{1}NW_{4}^{1}SW_{4}^{1}$. Sample log of test hole	drilled
Sandstone, red; shale stringers	8	53	by U.S. Geol. Survey in June, 1955.	
Snale, red, blue mottling, sandy	32	85 94	Terrace deposits:	
Dog Creek Shale and Blaine Formation:			Sand, brown, fine to coarse; clay stringers 10) 10
Shale, red, blue mottling	21	115	Sand, brown, fine to medium) 19
Shale, red; stringers of blue shale;			Clay, brown; caliche	. 20
gypsum stringers	32	147	Sand, brown, medium to coarse	j 25 30
Shale, red and blue: gypsum stringers	4	157	Clay, brown, sandy	5 35
Shale, red and blue	15	172	Sand, coarse; clay, brown; caliche	3 43
Shale, red and blue; gypsum stringers	7	179	Gravel, fine; sand, very coarse 7	50
Shale, red and blue	15	194	Sand, medium to coarse, water-bearing 5	55
Shale, red; blue shale stringers;	0	203	Gravel, medium to coarse, clay streaks;	61
Shale, red	5	203	Red beds (bedrock):	01
Shale, red; blue shale stringers; gypsum	-		Shale, reddish-brown and gray 59	120
stringers	11	219	Shale, reddish-brown and gray; gypsum	
Shale, red and blue	23	242	stringers, alabaster 10	130
Shale red and blue	12	254	Shale, reddish-brown and gray, sandy 10	140
Shale, red and blue: gypsum stringers	7	276	Shale, reddish-brown and gray: gypsum	1/0
Shale, red and blue	9	285	stringers, alabaster 10	180
Gypsum, dolomite stringers	9	294	Shale, reddish-brown and gray 20	200
Shale, blue	3	297	Shale, reddish-brown and gray; gypsum	
Shale blue	10	308	Gypsum alabaster 20	232
Gypsum	10	318	Shale, reddish-brown and blue 8	240
Shale, red and blue	7	32 5		
Gypsum; dolomite stringers	4	329	4N-25W-29aaa3. NE ¹ / ₄ NE ¹ / ₄ . Sample log of test hole	drilled
Shale, blue Synsum, delemite staingers	1	330	by U.S. Geol. Survey in November 1955. Altitudes	:
Shale, red	4	343	land surface, 1,798; water level in terrace depos	its and
Gypsum	1	348	and Blaine Formation, 1,652	JANNAC
Shale, red	1	349	· · · · · · · · · · · · · · · · · · ·	
Gypsum, small amount of water	13	362	Terrace deposits:	
of blue shale: water	5	367	Sand, fine to medium 3	3
Shale, red and blue	3	370	Sand, fine to very fine 16	20
			Sand, medium to coarse 3	23
4N-25W-24cbc2. SWANWASWA. Sample log of test	hole dr	illed	Whitehorse Group:	
by 0.5. Geol. Survey in December 1955.			Sandstone, red; shale stringers; gravel	
Terrace deposits:			Sandstone, red, shale stringers 24	44
Sand, red, fine	10	10	Shale, red and blue, sandy 15	85
Sand, white, medium	10	20	Shale, red and blue; gypsum stringers 5	90
Sand, white, medium; caliche stringers	9	29	Shale, red and blue; sandstone stringers,	
Sand, coarse: gravel	3 8	40	red and blue; gypsum stringers 22	112
Whitehorse Group:	v	~	Shale, red 3	118
Sandstone, red; shale stringers, red and			Shale, blue 2	120
blue; shale, sandy	80	120	Shale, brown and blue; gypsum stringers 12	132
Dog Creek Shale and Blaine Formation:	10	120	Sandstone, red; gypsum stringers; shale	
Shale red	19	148	stringers 46	178
Gypsum	3	151	Gypsum 1	170
Shale, red and blue	19	170	Shale, blue and brown: gynsum stringers 15	194
Shale, red and blue; gypsum stringers	31	201	Gypsum 5	199
Gypsum Sholo	3	204	Shale, gray; gypsum stringers 12	211
GYDSum	18	224	Shale, red 8	219
Shale, red and blue: gypsum stringers	15	239	Gvdsum A	220
,, , , , , , , , , , , , , ,		1	-) poum	~~ ,

	Thick-			Thick-	
Description	ness	Depth	Description	ness	Depth
HARMON COUNTYContinued			4N-26W-14cdc2. SW4SE4SW4. Sample log of test	hole dri	11ed
4N-25W-29aaa1Continued			surface, 1,878; water level in terrace depo	sits and	nale
Dog Creek Shale and Blaine Formation Continu	ued		and Blaine Formation, 1,753.	i oreck or	mit
Shale, blue and brown; gypsum stringers;	••		Terrace deposits:	-	
dolomite stringers	10	239	Sand, red, fine to medium Sand, brown, fine to very fine	10	15
Shale, blue; gypsum stringers	3	2.52	Sand, brown, fine to medium	25	40
Gypsum	10	262	Sand, white, medium to coarse	4	44
Shale, red and blue; dolomite stringers;			Caliche	1	45
gypsum stringers Gypsum	2	264	Whitehorse Group:	(26
Shale, red and blue; gypsum stringers	1	267	Sandstone; shale stringers, red and blue	59	111
Gypsum	5	272	Dog Creek Shale and Blaine Formation:		
Shale, gray; gypsum stringers	4.	276	Shale, red and blue; gypsum stringers	65	176
Shale, blue and brown Gypsum	5	279	Shale, red and blue; dolomite stringers Shale brown and blue; dolomite stringers:	0.	175
Limestone, soft, porour	1	285	gypsum stringers	41	216
Gypsum	13	298	Gypsum	5	221
Limestone, porous	1	299	Shale, brown and blue; gypsum stringers	20	241
Shale, red and blue; gypsum stringers	11	317	Gypsum Shale grav	10	240
Dolomite, porous	3	320	Shale, brown and blue	8	264
Limestone	4	324	Gypsum	2	266
Shale, blue	2	326	Shale, brown and blue; gypsum stringers	13	279
chare, reu	7	222	Dolomite	6	288
4N-25W-31cdb1. NW4SE4SW4. Driller's log to a	295 feet,		Shale, red and blue	4	292
supplied by Jack Jenkins. Sample log below	w 295 fee	et.	Gypsum	14	306
Attitude: land surface, 1,754.			Suate, red and brue Gypsum	4	315
Soil	3	3	Cavity	3	318
Sand	14	17	· · · · · · · · · · · · · · · · · · ·		
Shale, red	73	90 94	JACKSON COUNTY		
Gypsum	5	99	1S-22W-19ccc1, SW1SW1SW1, Driller's log supp	lied by	
Shale, red	14	113	Ivan Owen. Altitude: land surface, 1,426.		
Shale, blue and red	7	120			
Gypsum Shale blue	13	133	Shale, red, water seep at 4 ft Shale brown	22	42
Shale, red	. 14	152	Gypsum	13	55
Gypsum	5	157	Shale, blue	3	58
Shale, blue	5	162	Shale, red	10	68
Shale red and blue	15	181	Snale, Diue; limestone	23	70
Gypsum	16	197	Shale, brown	22	95
Shale, blue	1	198	Gypsum	10	105
Gypsum	10	208	Shale, blue	3	108
Shale, blue	4	212	Shale, brown	30	149
Gypsum	31	247	Gypsum	4	153
Shale, blue	2	249	Shale, brown	37	190
Gypsum Shale blue	16	265	Shale, red (No water: test hole plugged.)	5	195
Shale, red	11	283	(no water, tott nore prageat)		
Shale, blue	7	290	1S-24W-5bcd1. SE ¹ / ₄ SW ¹ / ₄ NW ¹ / ₄ . Driller's log suppl	ied by	
Shale, red	4	294	ivan Owen. Altitude: land surface, 1,462.		
Shale, blue	4	290	Clay	8	8
Gypsum; shale stringer, blue	5	304	Shale blue (water seen at 20 5t)	19	27
Shale, blue	1	305	Shale, red	10	40
sypsum; snale stringer, blue Shale, blue: sypsum stringers	4	311	Limestone	4	44
Gypsum; shale stringers, red and blue	4	315	Shale, red and blue	11	55
Shale, brown and blue	8	323	Limestone Shale red	5	63
Gypsum Limestone	15	338	Gypsum	1	64
Shale, blue and brown	16	340	Shale, red; gypsum	16	80
Gypsum	3	359	Sand	5	85
Shale, blue	5	364	Shale, red	9	91 100
Gypsum Shale blues gupsum stainess	1 2	365	(16-in. casing set at 94 ft. Perforated interv	val 44-94	ft.)
Dolomite	3	371			
Shale, blue	1	372	13-24W-50. 323E2. Uriller's log supplied by	ivan Owen.	•
Gypsum	6	378	Clay	12	12
Snale, blue and brown Gypsum	36	414	Sand, red	20	32
Shale, blue	2	417	Shale, blue Shale red	3	35
Shale, blue; gypsum	4	421	Limestone, water-bearing (25-30 gpm)	1	45
Shale, blue	5	426	Shale, red	13	58
Shale, brown and blue	30	427	Limestone	1	59
Shale, brown; salt stringers	1	467	Shale, Drown and Diue Gydsum	33 1	93
Salt	1	468	Shale, brown	12	105
Shale, brown and blue; salt stringers	1	469	Gypsum	14	119
onace, brown and brue	J	-14	Shale, red (Not enough water for irrigation)	15	134
		[(not enough water for irrigation.)		

			The 2		
Description	nick- ness	Depth	Description D	ck- ess I	Depth
JACKSON COUNTY Continued			2N-22W-5dbb1. NW4NW4SE4. Driller's log supplied	by	
1S-25W-2baa1. NEANEANWA. Driller's log supplie	đ by		Shale. light-red	1	1
Sheater Anderson.			Shale, red	5	6
Soil	8	8	Shale, gray	6	12
Gypsum (water seep at 10 ft)	2	10	Shale, blue	3	15
No sample	5	15	Shale, red	24	39
Gypsum	12	27	Gypsum	1	40
Shale, blue	6	33	Shale, red	2	42
Shale, with thin limestone beds	7	40	Gypsum	14	50
Gypsum	27	67	Shale blue and red	2	57
Shale, with thin limestone deds	5	72	Shale, blue and led	11	76
Cavity	7	80	Limestone, water-bearing	5	81
(Reported vield 1 100 gpm: 16~in, casing set at	40 f	t.)	Shale, blue	5	86
(Shale, red	17	103
1S-25W-13dc1. SWaSEa. Driller's log supplied b	y Ivan	n Owen.	Shale, blue	3	106
			Shale, red	13	119
Shale, red and blue	25	25	Shale, red and blue	2	121
Shale, red and blue	35	60	Gypsum	11	132
Limestone, water-bearing	6	66	Limestone, blue	1	133
Gypsum	6	72	Shale, blue	2	135
Cavity	5	77	an approximate and unlocal pointer to the sumplied i		
Shale, red	3	80	ZN-22W-6Cacl. SW4NE4SW4. Driller's log supplied	by	
(10-in. casing set at 70 ft.)			Shale brown	8	8
25-24W-lact culural Drillaria log cumplied by			Gypsim	17	25
Clarence Truccion			Shale, blue and brown	9	34
Guarence mussier.			Gypsum	19	53
Clav. red. sandy	10	10	Shale, brown	8	61
Shale, red	32	42	Gypsum	8	69
Shale, blue; water-bearing	3	45	Limestone, water-bearing	5	74
Shale, red	25	70	Shale, red	16	90
Shale, red, very hard	16	86	(18-in. casing set at 8 ft.)		
Limestone, salt water	4	90			
Shale, blue	7	97	ZN-22W-80CDL. NWTSWTSET. Driller's log supplied t	у	
Shale, red	3	001	Ivan owen.		
(Reported yield, 500 gpm. water too salty for i	ntenue	eu use.)	Shale brown	21	21
25-24W-12ccl swiswi Driller's log supplied b	v		Gypsum	15	36
Clarence Trussler Altitude: land surface.	1.479.		Shale, brown	7	43
Santonec Hussick, Artifude, Iand Barrare,	~,		Gypsum	7	50
Clay, red-sandy	30	30	Limestone, water-bearing	5	55
Shale, blue	31	61	Shale, blue	5	60
Shale, red	8	69	Shale, red	1	61
Limestone, water-bearing	9	78			
Shale, red	12	90	2N-23W-2bab1. NWaNEaNWa. Driller's log supplied t	у	
Shale, blue	2	92	Ivan Owen.		
Shale, red	. 7	99	Soil	10	10
Shale, blue	1	100	Shale brown	14	24
Sand salt water	20	120	Gypsum	5	29
(10-in casing set at 90 ft Interval between 9	and	120 ft	Shale, blue	4	33
plugged with earth.)			Shale, brown	3	36
PBBoo with Carthy			Gypsum	20	56
1N-23W-29bb1, NW1NW1, Driller's log supplied b	v		Shale, brown	9	65
Clarence Trussler.			Gypsum	9	74
			Sand	2	76
Soil	1	1	Shale, brown	9	85
Clay and shale	5	6	Limestone; shale, red	11	96
Gypsum Shalo hlur	10	16	(Reported yield, 10-15 gpm.)		
Snare, Diue	1	17	2N-23W-3ccal NEASWASWA Devition to the eventied b	v	
Shale hive	1	24	Tvan Owen. Altitude. land surface 1 430	7	
GVDS1m	14	30	And Survey and Article Survey at 1975		
Shale, red	-0	48	Shale, red	12	12
Cavity, water-bearing	ź	50	Sand	21	33
Gypsum, water-bearing	15	65	Shale, red and gray	12	45
Limestone, water-bearing	4	69	Gypsum	6	51
Gypsum	2	71	Cavity	3	54
Cavity, water-bearing	2	73	Shale, brown	8	62
Gypsum	2	75	Gypsum	6	68
Limestone	6	81	Cavity	7	75
Snale, red	5	86	Shale brown	4	19
Limestone, water-bearing	2	88	Sucre, Drown	5	04 00
(14-in casing act at 00 ft)	2	90	Sand	2	92
(14-10. casing set at 90 IT.)			Shale, brown	5	97
2N-22W-4daal. NEANEASEA. Driller's log supplied Ivan Owen. Altitude: land surface, 1,425.	i by		(Reported yield, 1,800 gpm; 16-in. casing set at 97	ft.)	
Shale, brown	32	32			
Shale, red and blue	20	52			
Shale, brown	35	87			
Gypsum	12	99			
Limestone, water-bearing	5	104			
Shale, blue	2	106			
Shart, red	4	110			
			1		

Inickness 1	n reet.	Depth	in feet below land surface.		
Description	ness	Depth	Description	fhick- ness	Depth
JACKSON COUNTY Continued			2N-23W-12bda1. NE4SE4NW4. Driller's log suppl	ied by	
2N-23W-4acd1. SE4SW4NE4. Driller's log suppli Ivan Owen.	ed by		Soil	8	8
			Gypsum	11	19
Shale, brown	40	40	Shale, blue and brown	21	40
Gydsum	7	54	Limestone, water-bearing	2	54
Cavity	2	56	Shale, blue and brown	6	60
Gypsum	2	58	Gypsum	9	69
Shale, blue and brown	13	71	Limestone	2	71
Gypsum Shalo have	9	80	Shale, blue and red	. 8	79
Gypsum	11	88 00	Shale, red	24	118
Limestone	2	101	Gypsum	13	131
Shale, red	6	107	Shale, blue; sand	2	133
(16-in. casing set at 77 ft.)					
2N-23W-4dcc1. SW4SW4SE4. Driller's log suppli Ivan Owen.	eđ by		2N-23W-16abal. NE2NW2NE2. Driller's log suppl Ivan Owen.	led by	
Chele	20	20	Soil and shale	15	15
Shale, brown	20 5	33	Cavity	2	23
Gypsum	1	34	Gypsum	5	28
Shale, brown	3	37	Shale, blue	5	33
Gypsum, water-bearing	1	38	Shale, brown	6	39
Limestone; shale, blue	1	39	Gypsum	3	42
Shale blue	24	53	GYDSUM	14	44 58
Shale, brown	5	58	Shale, blue	2	50 60
Gypsum	22	80	Shale, brown	5	65
Shale, brown	4	84	Gypsum	10	75
Gypsum, water-bearing	11	95	Limestone; shale, brown	24	99
Limestone Shale hive	4	99	Reported yield, 900 gpm; 18-in. casing set at 42	ft.)	
(Water too salty for irrigation; hole plugged w	ith ear	th.	2N-23W-21abb1. NW aNW aNE a. Driller's log suppli	ed by	
2N-23W-10dbd1. SEaNWaSEa. Driller's log suppl	ied by				
Ivan Owen.			Shale, red	27	27
0.11			Shale, brown	7	34
Soll and clay	18	18	Gypsum Shala hive	5	39
Shale, hive	2	25	Gypsim	2	53
Shale, brown	8	33	Shale, red	8	61
Gypsum	19	52	Gypsum	10	71
Shale, blue	2	54	Limestone; shale, blue	3	74
Shale, brown	6	60	Shale, red		84
Limestone	3	72	(itera 555 gpm, 5-20-52; 14-11. casing set at 54	11.1	
Shale, brown; limestone	13	85	2N-23W-21adb3. NWaSEaNE4. Driller's log suppli	ed by	
Shale, red	19	104	Ronald Owen		
Gypsum	1	105	0.11		
Shale, brown Gubsum	10	115	Soll Limestone and chale	6 20	6
Limestone	2	129	Gubsum	20	30 56
Shale, blue	1	130	Shale, red	7	63
Shale, red	2	132	Gypsum	10	73
No sample	3	135	Limestone	3	76
2N 22W 10.541 only limit patients to the suppli-			Shale, red	24	100
Ivan Owen	eu by		Shale, Dive and red Gypsim	1	108
			Shale, blue	9	117
Shale, brown	16	16	Gypsum	12	129
Gypsum	6	22	Limestone	2	131
Shale, White	8	30	Snale, red	5	136
Limestone	12	57	2N-23W-212221 NEANEANEA D-1110-10 100	ad be	
Gypsum	11	61	Ronald Owen. Altitude: land surface. 1.429.	u by	
Shale, brown	7	68	Nonero oneni Artifude, rand Sarrace, r, 127,		
Gypsum	10	78	Soil	4	4
Limestone	3	81	Shale	36	40
Shale, blue	3	84	Gypsum	3	43
(18-in, casing set at 73 ft.)	0	90	Shale, brown	<i>3</i> 0	40
(and emoting bet at to tot)			Gypsum	10	65
2N-23W-12aab1. NW4NE4NE4. Driller's log suppli	led by		Limestone	2	67
Ivan Owen.			Shale, red	13	80
Soil Soil	•		Shale, red	9	89
Shale_ red	2	20	2N=23W=26c SW Drillar's los subblied by		
Gypsum	28	48	Chester Anderson.		
Shale, blue	2	50			
Shale, red	6	56	Shale and gypsum	35	35
Sypsum	9	65	Gypsum	19	54
Limestone; shale, blue	9	74	Shale, red	11	65
Reported vield 810 come 16-in casing act at 2	1 64	90	Gypsum (lost drilling water at 71 ft)	6	71
			Shale, blue	2	75
			Shale, red	35	110
			(No water, test hole plugged.)		

Thickness in feet. Depth in feet below land surface

-

Th	Lck-		Thick-	-
Description	iess	Depth	Description ness	s Depth
JACKSON COUNTY Continued			$\frac{3N-23W-23aaa1}{Van}$ NE $\frac{1}{4}NE\frac{1}{4}NE\frac{1}{4}$. Driller's log supplied by	r
3N-23W-19aaa1. NEANEANEA. Driller's log supplied	l by		Shale and 50	50
Ronald Owen.			Shale, red and blue (20 gpm at 80 ft)	J 91
Soil and shale	23	23	Gypsum 6	97
Shale, blue	3	26	Limestone and clay 3	100
Shale, red and blue	24	55	Gypsum 8	3 125
Shale, blue	13	68	Shale, blue 3	128
Shale, red	9	77	Shale, blue and brown 17	145
Gypsum Shale hive	. 0 . 8	83	Limestone I Shale hive 4	146
Gypsum	10	101	(Not enough water for irrigation.)	150
Shale, blue and red	6	107		
Gypsum	3	110	<u>3N-23W-23dbb1</u> . NW [‡] NW [‡] SE [‡] . Driller's log supplied by	1 -
Gypsum	21	140	Ivan Gwen.	
Shale, red	8	148	Shale, brown 28	28
Gypsum	12	160	Gypsum 1	. 29
Limestone Shale red	4	104	Gypsum 11	. 50
(Not enough water for irrigation.)	10		Shale, blue 4	65
			Gypsum 10	75
JN-23W-19bbbl. NW4NW4NW4. Driller's log supplied	1 by		Shale, brown 1	. 79
oven, Attitute; Janu Sullate, 1,550.			Gypsum 12	92
Shale, brown	20	20	Shale, blue and brown 8	100
Gypsum Shale brown and blue	5	25	Gypsum 15	115
Shale, brown	13	73	Gypsum 11	135
Gypsum	11	84	Shale, mixed 40	175
Shale, brown and blue	4	88	Gypsum 15	; 190
Shale, brown and blue	3	100	(Not enough water for irrigation.)	195
Gypsum	15	115		
Shale, blue and brown	7	122	<u>3N-23W-29ddd1</u> . SE ¹ ₄ SE ¹ ₄ SE ¹ ₄ . Driller's log supplied by	
Shale, brown	20	142	Ivan Owen. Altitude: land surface, 1,450.	
Gypsum, water-bearing (5: gpm)	12	161	Soil 3	3
Shale, blue	4	165	Shale, brown 22	25
Shale, fed	5	170	No sample 5 Gypsum, porous 7	30
3N-23W-21aab1. NW hNE hE d. Driller's log supplied	i by		Gypsum 3	40
Ivan Owen.			Gypsum and shale 5	45
Clay brown	10	10	Gypsum 11 Shale blue 3	50
Clay, red	25	35	Shale, brown 7	66
Gravel	3	38	Gypsum 20	86 •
Shale blue and brown	9	47	Shale, brown 7	100
Gypsum	16	72	Limestone 4	104
Shale, blue and brown	6	78	Shale, blue and red 9	113
Gypsum	6	84	(16-in. casing set at 53 ft. Perforated interval 30-	40 ft.)
Gypsum	7	92	3N-23W-29cbal. NE ¹ / ₂ NW ¹ / ₂ SW ¹ / ₂ . Driller's log supplied by	
Shale, blue; sand, water-bearing (10-15 gpm)	1	93	Ivan Owen.	
Shale, blue	4	97	Shale brown and group 23	22
Gypsum	4	132	Gypsum 13	36
Cavity, water-bearing (unable to lower with			Shale, blue 4	40
Daller) Gynsum: shale, blue, cand	1	133	Shale, brown 4	44
Shale, blue and red	8	145	Shale, blue and brown 9	75
			Gypsum 5	80
<u>3N-23W-22acd1</u> . SE ¹ / ₄ SW ¹ / ₄ NE ¹ / ₄ . Driller's log supplied	lby		Shale, blue; sand, water-bearing (10 gpm) 5	85
clatence trussier.			Shale, red 12	102
Clay, black	4	4	Shale, red and blue 23	125
Shale, red	31	35	Gypsum 13	138
Shale, red	18	58	(Not enough water for irrigation. Test hole plugged.))
Gypsum	4	62	· · · · · · · · · · · · · · · · · · ·	
Shale, blue and red	6	68	<u>3N-23W-30aabl</u> . NW&NE&NE&. Driller's log supplied by	
Shale, blue	8 6	70 82	LVGH UWER.	
Shale, brown	2	84	Shale, brown (75 gpm at 30 ft) 50	50
Gypsum Shale blue and red	14	98	Gypsum 4	54
Gypsum	3 18	101	Gypsum 15	55 70
Shale, blue and red	7	126	Shale, blue and brown 7	77
Gypsum	10	136	Gypsum 6	83
Shale. blue	3	143	Shale, red 10	92 102
Shale, red	18	161	(Not enough water for irrigation. Test hole plugged.))
Shale, blue and red (Not enough water for irrigation.)	14	175		

Thickness in feet. Depth in feet below land surface.

:

	Thick-		Th	ick-	
Description	ness	Depth	Description	ness	Depth
JACKSON COUNTYContinued					
3N=23W=30daa1 NELNELCEL Driller's log supp	lied by		3N-23W-33abb1, NWANWANEA, Driller's log supplied	hv	
Ivan Owen. Altitude: land surface, 1,453.			Ivan Owen.	-,	
Soil; shale, brown	16	16	Shale, red and blue	10	10
No sample	4	20	Shale, red	9	19
Shale, brown	10	30	Gypsum	6	25
Cavity, water-filled	5	35	Shale, blue	.8	33
Shale, brown	5	40	Gypsum	7	40
Gypsum	22	62	Shale, red	2	42
Shale, brown	8	70	Gypsum	2	44
Gypsum	5	75	Shale, brown	9	53
Limestone, water-bearing	8	83	Gypsum	8	61
Shale, blue	3	86	Shale, blue	4	65
Shale, red	4	90	Shale, brown	4	69
(Reported vield, 1,000 gpm; 16-in, casing set a	at 41 ft.)	Gypsum	1	70
· ,, -, - 8F , 6			Shale, brown and blue	3	73
3N-23W-31cbb1. NWANWASWA. Driller's log suppl	lied by		Gypsum	16	89
Clarence Trussler.			Shale, brown	7	96
			Gypsum	8	104
Shale, red. sandv	3	3	Limestone	3	107
Shale, red	5	8	Shale, blue	1	108
Shale, red, sandy	2	10	Shale, red	37	145
Shale, dark-red	14	24	Shale, brown	3	148
Shale, blue and red	2	26	Gypsum	17	165
Sand, water-bearing	1	27	Shale, blue	5	170
Shale	4	31			
Limestone, blue	1	32	3N-23W-36bc1. SW1NW1. Driller's log supplied by	Ivan ()wen.
Shale, blue	2	34	Altitude: land surface, 1,450.		
Shale, red	10	44			
Gypsum	5	49	Shale, red	8	8
Shale, blue and red	3	52	Limestone	1	9
Gypsum	6	58	Gypsum	4	13
Cavity, water-bearing	4	62	Shale, blue and brown	8	21
(18-in. casing set at 38 ft; 16-in casing set a	t 62 ft.		Gypsum	9	30
Perforated interval 31-62 ft.)			Shale, blue	4	34
			Gypsum	11	45
			Shale, blue and brown	5	50
			Gypsum	19	69
			Shale, blue	1	70
			Limestone	1	71
			Shale, brown	5	76
			Gypsum, water-bearing	11	87
			Limestone	1	88
			Shale, blue	2	90
			Shale, brown	28	118
			Limestone; shale, blue	2	120
			Shale, blue and brown	5	125
			Shale, blue; limestone layers	5	130
			Gypsum	13	143
			Shale, blue (water level 60 ft below land surface)	5	148
			Shale, red	2	150
	And the second sec	the second se			