

US 412 at SH 412B Junction

Traffic Analysis Memorandum

JP 35050(04)

CI-2440

Mayes County

Prepared for:

Engineer's Certification

I hereby certify that this Traffic Analysis Memorandum for the US 412 at SH 412B Junction was prepared by Garver under my direct supervision for the Oklahoma Department of Transportation.

Thomas Cusick, PE State of Oklahoma PE License 33741

Table of Contents

Engine	er's (Certification2
Table	of Co	ntents3
List of	Figur	es4
List of	Table	9S4
List of	Appe	ndices5
1.0	Exe	cutive Summary6
2.0	Intro	duction13
2.1	Stud	ly Area13
3.0	Exis	ting Traffic Conditions13
3.1	Lane	e Configuration
3.2	Traf	fic Data16
3.3	Field	Observations
3.4	Cras	sh Data
3.5	Cap	acity Analysis
3.	5.1	Methodology22
3.	5.2	Intersection Level of Service
4.0	No E	Build Conditions
4.1	Deve	elopment Trip Generation
4.2	Back	ground Growth25
4.3	No E	Build Traffic Operations
4.	3.1	Intersection Capacity Analysis - 2045 No Build Intersection LOS
5.0	Fina	I Alternative Development
5.1	Fina	I Alternative Analysis
5.	1.1	Freeway, Weaving, and Ramp Analysis
5.	1.2	Intersection Analysis
6.0	Con	clusion

List of Figures

8
9
10
11
11
12
15
17
19
21
24
26
28
29

List of Tables

Table 1: LOS Thresholds for Intersections	22
Table 2: Intersection Capacity Analysis (2023 Existing)	23
Table 3: Intersection Capacity Analysis (2045 No Build)	27
Table 4: HCM LOS Criteria for Transportation Facilities	30
Table 5: Final Alternatives Build Out Percentages	30
Table 6: 2045 Build Conditions HCS Analysis Results (Eastbound Trumpet)	31
Table 7: 2045 Build Conditions HCS Analysis Results (Westbound Trumpet)	31
Table 8: 2045 Build Conditions Intersection Analysis Results (Alt 3 Diamond_v2)	32
Table 9: 2045 Build Conditions Intersection Analysis Results (Alt 10 Roundabout_v2)	32
Table 10: 2045 Build Conditions Intersection Analysis Results (Alt 12 Folded D_v6)	33

List of Appendices

Appendix A: Traffic Data Appendix B: Crash Data Appendix C: Operations Analysis Results Appendix D: Initial Concepts Matrix

1.0 Executive Summary

At the request of the Oklahoma Department of Transportation (ODOT), Garver evaluated the current and future traffic operations along US 412 and State Highway 412B (SH 412B) near the MidAmerica Industrial Park (MAIP) in Mayes County, Oklahoma. At 9,000 acres, MAIP is Oklahoma's largest industrial park. MAIP is located near the junction of US 69 and US 412 to the east of Tulsa, Oklahoma and midway between Dallas, Texas and Kansas City, Missouri. The Union Pacific Railroad serves MAIP as well as the Port of Catoosa MAIP and an on-site regional business jet airport. This connectivity has led over 80 businesses including seven Fortune 500 companies to locate within the industrial park. MAIP has several planned future developments that will impact the performance of the existing two-way stop-controlled intersection of US 412 and SH 412B that serves as an entrance to the park. The long-range plan for the US 412 corridor is to convert the highway to an interstate. The US 412 interstate conversion would enhance travel time connectivity. The need for a grade separated interchange would improve access control and also help local economic activity.

The study included data collection, field observations, assembling prior studies such as recently completed Traffic Impact Analyses (TIAs), and calculating new trips based on MAIP's developable land. This information was used to project 2045 future traffic volumes, develop alternative concepts, conduct operational analysis for each concept alternative, refine the alternatives, and ultimately select a preferred alternative.

The primary study area for the project includes US 412 one-half mile east of SH 412B and one-half mile west of Old Highway 33. The study area also includes one additional intersection along SH 412B at N4335 Road. The southern leg of the US 412 at SH 412B provides access to Chouteau Bend, a recreation area that offered camping sites and services before permanently closing. The road is still being used for access to boat ramps and fishing. The study area is depicted in **Figure 1** on the following page.

Field observations indicated potential site distance issues at the intersection of US 412 and SH 412B due to the close proximity of the Neosho River bridge as well as gap acceptance limitations for turning trucks. Traffic analysis of the existing conditions did not indicate major intersection delay issues within the study area but, as the left turn and crossing movements grow, more acceptable gaps will be needed. As volume increases, this intersection will be a safety risk and see large delays.

Garver analyzed multiple site plans for proposed developments in the industrial park and assumed trip generation for the remaining available parcels. Based on the site's proximity to the main study intersection of US 412 and SH 412B or the access to US 69, the developments trips were adjusted for the percentage of trips that would be using the intersection. Future trips for 2045 were estimated assuming 100% of the development was constructed. The trip generation process applied standard rates from the ITE Trip Generation Manual for multiple land use interactions as well as pass-by/diverted links trips to account for some trips that would use the development but not add new trips along the corridor. The total trip generation for the developments added approximately 9,900 daily trips on to SH 412B and approximately 1,450 trips in both the AM and PM peak hours. These trips were summed to determine the

overall impact at the study intersection and increased or decreased to determine when the concept alternatives would breakdown. This would allow for comparison purposes while highlighting the issues that would cause the concepts to begin to fail.

No Build scenarios were analyzed using the 2045 volume projections. The results indicated long delays and level of service (LOS) issues if no changes were made. Queuing would extend outside the available left turn lane storage and begin to impede the traffic flow along US 412.

13 preliminary improvement alternatives were developed for initial review. Preliminary analysis and conceptual layouts were generated for each option. The preliminary alternatives included:

- Three roundabout interchange options with different levels of access to the south and Old Hwy 33
- Two diamond interchanges; One traditional diamond and one with a button hook ramp and access to the south
- Three folded diamond options bridging over US 412 closer to the existing crossing and providing access to the south
- Three trumpet options providing access to Old Hwy 33 with different ramp locations and alignments to SH 412B
- One hybrid option combining the trumpet and folded diamond options
- One Single Point Urban Interchange (SPUI) option with US 412 bridging over the interchange

After review with ODOT, five of the preliminary alternatives were brought forward for further refinement. Traffic volumes, operational performance, conceptual layouts, environmental impacts, utility, and construction impacts were generated for each option. The five alternatives brought forward from the preliminary analysis are described below:

• Alternative 3 (Diamond_v2 - Button Hook On)

- Description: This alternative would create a diamond interchange approximately 0.4 miles to the west of SH 412B. The alternative would feature an eastbound button hook ramp to provide access and enough acceleration distance before the bridge over the Neosho River. The interchange will have signalized intersections at both the eastbound and westbound ramp terminals spaced at approximately 550 feet.
- Advantages: This alternative can handle 90% of full MAIP build-out volumes in 2045 while providing direct access to the south. It has lower utility impacts compared to the other options and only requires two bridges.
- **Disadvantages:** This alternative is not free flow meaning all movements will need to stop or yield, and it requires the third most linear footage of lane miles.
- Layout: The conceptual layout of Alternative 3 can been seen below in Figure 2.

Figure 2: Alternative 3 Layout

• Alternative 10 (Roundabout_v2)

- Description: This alternative would create a diamond interchange approximately 0.4 miles to the west of SH 412B. The interchange will have single lane roundabouts at both the eastbound and westbound ramp terminals spaced at approximately 375 feet. This alternative will provide a connection to Old Hwy 33 as well as a westbound right bypass at the westbound ramp terminal roundabout.
- Advantages: This alternative can handle 80% of full MAIP build-out volumes in 2045 while providing direct access to the south and Old Hwy 33. It has lower utility impacts compared to the other options and only requires two bridges.

- **Disadvantages:** This alternative is semi-free flow and it requires the most linear footage of lane miles.
- Layout: The conceptual layout of Alternative 10 can been seen below in Figure 3.

Figure 3: Alternative 10 Layout

• Alternative 11 (Trumpet_v5)

- Description: This alternative would create a trumpet interchange approximately 0.4 miles to the west of SH 412B. The interchange will provide ramps for all movements without requiring ramp terminals. This alternative will provide a connection to Old Hwy 33.
- Advantages: This alternative can handle 170% of full MAIP build-out volumes in 2045 while providing direct access to Old Hwy 33. The trumpet interchange will allow for free flow movements meaning no movement will need to stop or yield.
- **Disadvantages:** This alternative will require three bridges and the second most square footage of bridge deck as well as the second most linear footage of lane miles.
- Layout: The conceptual layout of Alternative 11 can been seen below in Figure 4.

Figure 4: Alternative 11 Layout

• Alternative 12 (Folded Diamond_v6)

- Description: This alternative would create a folded diamond interchange with SH 412B in nearly the same location. The interchange will have signalized intersections at both the eastbound and westbound ramp terminals spaced at approximately 0.4 miles. A connection to Old Hwy 33 will be provided and will cross to the south of US 412 to meet SH 412B south of the eastbound ramp terminal.
- **Advantages:** This alternative can handle 75% of the full MAIP build-out volumes in 2045 with signalized intersections while providing direct access to the south and Old Hwy 33. This alternative only requires two bridges with the third lowest square footage of bridge deck and the lowest amount of linear footage of lines miles.
- **Disadvantages:** This alternative is semi-free flow because free flow for southbound SH 412B movements to both eastbound and westbound US 412. It requires the largest utility impacts.
- Layout: The conceptual layout of Alternative 12 can been seen below in Figure 5.

Figure 5: Alternative 12 Layout

• Alternative 13 (Trumpet_v6)

- **Description:** This alternative would create a trumpet interchange approximately 0.2 miles to the west of SH 412B. The interchange will provide ramps for all movements without requiring ramp terminals. This alternative will provide a connection to Old Hwy 33 and to the south with a roadway connection near the existing SH 412B location.
- Advantages: This alternative can handle 170% of full MAIP build-out volumes in 2045 while providing direct access to Old Hwy 33 and to the south. The trumpet interchange will allow for free flow movements and the second lowest linear footage of lane miles.
- **Disadvantages:** This alternative will require three bridges and the largest utility impacts.
- Layout: The conceptual layout of Alternative 13 can been seen below in Figure 6.

Figure 6: Alternative 13 Layout

These five alternatives were presented to ODOT in September 2023. After reviewing the operational performance, the Trumpet Alternatives 11 and 13 provide the best results from a traffic performance perspective when considering 100% build out of MAIP in 2045. However, all alternatives will provide acceptable performance upon opening and with the assumed background growth for 2045. The operations for the two Diamond Alternatives 3 and 12 can remain unsignalized until 40-50% of the MAIP build out and then will require signalization at the ramp terminals to continue providing acceptable conditions up to 75% of the full build out. All alternatives should be considered for further evaluation, and a recommendation should be made based on the alternative that limits construction, environmental, and right-of-way impacts while potentially offering access to Old Hwy 33 and Chouteau Bend to the south.

2.0 Introduction

Garver was retained by ODOT to conceptually evaluate potential alternatives to install a grade separated interchange for the intersection of US 412 and SH 412B in Mayes County, Oklahoma. This intersection serves as an entrance to MAIP which has several planned developments that will impact the performance of the existing two-way stop-controlled entrance at the intersection of US 412 and SH 412B. This development will create a need to improve the access control to a grade separated interchange while accommodating the high percentage of heavy vehicles using the connection. The long-range plan for the US 412 corridor is to convert the highway to an interstate to encourage economic development and expand opportunities for employment in the region by enhancing travel time connectivity and improving access.

2.1 Study Area

The project limits extend approximately 1.5 miles along US 412 from west of Old Highway 33 to east of SH 412B in Mayes County, Oklahoma. The existing US 412 facility is a 4-lane divided highway with 40-50' median. Additionally, the study area extends to the north of US 412 on SH 412B into MAIP to include the intersection of SH 412B at N4335 Road. There are three two-way stop-controlled intersections within the study area, but the focus of the project is the junction of US 412 at SH 412B.

3.0 Existing Traffic Conditions

Current traffic conditions were observed, inventoried, and quantified using traffic analysis software. This section describes the existing lane configuration, traffic observations, daily and peak hour traffic volumes across the corridor, intersection level of service (LOS), and crash history.

3.1 Lane Configuration

The current lane configuration for the study area is captured in **Figure 7**. As shown, unsignalized intersections exist on US 412 at Old Highway 33 and SH 412B and along SH 412B at N4335 Road. The US 412 corridor features two through lanes in both directions along the study corridor and SH 412B features a single lane in both directions throughout the study corridor. The following describes the lane configuration at each intersection (see **Figure 7**):

• US 412 at SH 412B (Unsignalized)

- Two lanes (thru and shared thru-right) on eastbound and westbound approach with single left turn lane (395' storage length in eastbound direction and 340' storage length in westbound direction)
- Single lane approach in the northbound/southbound direction (stop-controlled)
- Approximately 45' median between the eastbound and westbound travel lanes
- MidAmerica Industrial Park Entrance on the northern leg
- Neosho River bridge approximately 600' to the east
- o Chouteau Bend recreational area to the south

• US 412 at Old Highway 33 E (Unsignalized)

- 3-leg intersection
- Two lanes (thru and shared thru-right) on eastbound and westbound approach with single left turn lane in the eastbound direction (350' of storage length) and a single U-turn lane in the westbound direction (340' of storage length)
- Approximately 45' median between the eastbound and westbound travel lanes
- o Single lane approach in the southbound direction (stop-controlled)

• SH 412B at N4335 Road (Unsignalized)

- Single left turn lane (65' of storage length) with one shared thru-right lane in the northbound direction
- o Single lane approach in the southbound direction with space for future single left turn lane
- Single lane approach in the eastbound/westbound direction (stop-controlled)
- o Grand River Dam Authority Entrance on the western leg
- Residential area to the east

3.2 Traffic Data

In February 2023, ODOT coordinated collection of 24-hour turning movement counts at the following locations along the US 412 and SH 412B corridors:

- 1. US 412 at Old Highway 33 N
- 2. US 412 at SH 412B
- 3. SH 412B at N4335 Road

The full 24-hr turning movement count sheets can be found in **Appendix A**. As shown in **Figure 8**, US 412 carries approximately 14,000 vehicles per day, SH 412B carries approximately 3,000 vehicles per day, and Old Highway 33 carries approximately 800 vehicles per day. The AM peak hour showed heavier volume traveling west on US 412 (approximately 60%) and traveling towards north along SH 412B (approximately 70%). The PM peak hour reversed to show heavier volume traveling east on US 412 (approximately 60%) and traveling SH 412B (approximately 60%) and traveling towards south along SH 412B (approximately 70%). The daily heavy vehicle percentage seen on US 412 ranged from 13-16% and SH 412B ranged from 16-17%.

3.3 Field Observations

Field observations were performed in May 2023. Photos from the site visit can be seen in **Figure 9** on the next page. US 412 is classified as a rural principal arterial with partial access control in this area. There are no private businesses or residences with driveways directly connecting to US 412 in the study area. The intersection of US 412 and SH 412B did not have any major observed delay issues. The width of the median allows for two-stage turn storage for the crossing and left turn movements. The heavy vehicles require larger gap acceptance to safely make left turns and to accelerate up to speed after turning onto US 412. When two or more heavy vehicles arrive at the same time, longer queues and delays will be seen for short periods. On SH 412B and Old Hwy 33, the stop bars are deficient or nonexistent.

The following field observations were conducted during the morning and evening peak periods:

Morning Peak Period

- Traffic begins to peak around the 6:15AM and remains steady throughout the middle of the day
- Volume is noticeably heavier in the westbound direction to the east of SH 412B but balanced on the west side of SH 412B
- The majority of vehicles using SH 412B are heading northbound into MAIP

• Evening Peak Period

- Traffic begins to peak around the 2:30PM and remains steady until starting to drop off around 6:30PM
- Volume is noticeably heavier in the eastbound direction to the east of SH 412B but balanced on the west side of SH 412B
- o The majority of vehicles using SH 412B are heading southbound out of MAIP
- o Multiple trucks are leaving MAIP at the same time created longer queues and delays

Figure 9: Site Visit Photos

3.4 Crash Data

Historical crash data was obtained within the study area for the five-year period of 2017 to 2021 using ODOT's crash database. **Figure 10** provides a crash summary graphic that provides insights on trends related to crash location, type, severity, and outside sources such as weather and light conditions. A total number of 25 crashes were recorded during this five-year period. Of these recorded crashes, 40% were non-injury, 20% were possible injury, 28% were non-incapacitating injury, 8% were incapacitating injury, and 4% were fatal. The study area includes one fatal crash involving a lane change, which caused a same direction sideswipe collision, followed by roadway departure. Crashes along high-speed routes can lead to very severe results. The full list of crashes during the five-year period can be found in **Appendix B**.

3.5 Capacity Analysis

The operation of the study intersections under the present configuration and demand was analyzed. The methodology and results of the capacity analysis for the existing conditions are presented below.

3.5.1 Methodology

The quality of operations at the study intersections was evaluated in terms of LOS. LOS is a concept defined by the *Highway Capacity Manual (HCM*) to qualitatively describe operating conditions within a traffic stream. LOS is typically stratified into six categories (A through F). These range from LOS A indicating free-flow, low density, or nearly negligible delay conditions to LOS F where demand exceeds capacity and large queues are experienced. LOS D is generally considered the minimal acceptable LOS for an intersection movement.

Synchro 11.1 software was used to determine the expected LOS using a procedure consistent with the equation-based *HCM* methodology. For unsignalized and signalized intersections, the *HCM* uses control delay for the basis of determining LOS. Control delay at an intersection is the average stopped time per vehicle traveling thru the intersection plus the movements at slower speeds due to the vehicles moving up in the queue or slowing down upstream of the approach. The LOS thresholds defined by *HCM* 7th *Edition* (pg. 905 for signalized intersections, pgs. 994 and 1085 for unsignalized intersections) are shown in **Table 1**.

Level of	Description	Control Delay Range (sec/veh)					
Service	Description	Unsignalized	Signalized				
А	Most vehicles do not stop	0 to 10	0 to 10				
В	Some vehicles stop	> 10 to 15	> 10 to 20				
С	Significant number of stops	> 15 to 25	> 20 to 35				
D	Many stop, individual cycle failure	> 25 to 35	> 35 to 55				
E	Frequent individual cycle failure, at capacity	> 35 to 50	> 55 to 80				
F	Arrival rate exceeds capacity	> 50	> 80				

Table 1: LOS Thresholds for Intersections

3.5.2 Intersection Level of Service

To evaluate the existing intersection LOS, roadway geometry, and an 13% truck factor were used to develop a traffic analysis model. The results of the intersection capacity analysis for 2023 are summarized in **Table 2** with full results provided in **Appendix B**. The operational analysis results reflect acceptable LOS conditions at all intersection in both the AM and PM peak periods. All movements are operating at LOS C or better. Since the majority of the volume at the intersections is free flow along US 412, low overall delay values were expected. *Synchro* allows turning vehicles from the minor street to use median storage to perform the left turn in two stages. This setting more accurately matches what was observed in the field.

Intersection	Time	Control	MOE	EB Movement		WBMovement		NBMovement		SB Movement			Overall			
intersection	Period	Control	MOL	Left	Thru F	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Overall
	A.M.		LOS	А	n/a ¹		А	n/a	1 ¹		С			В		Α
US 412 @ SH		TWEE	Delay	9.5	n/a ¹		8.2	n/a	a ¹		15.5			13.5		2.6
412B	DM	10050	LOS	А	n/a ¹		А	n/a	1 ¹		С			С		Α
	I-IVI		Delay	8.8	n/a ¹		9.1	n/a	1 ¹		15.1			16.5		
	АМ	TWSC	LOS	А	n/a ¹			n/a	1 1				С		n/a²	А
US 412 @ Old			Delay	8.8	n/a ¹			n/a	1				15.9		n/a²	0.6
Hw y 33	РМ		LOS	n/a ³	n/a ¹			n/a	1 ¹				В		n/a ³	А
			Delay	n/a ³	n/a ¹			n/a	a ¹				14.9		n/a ³	0.5
	AM		LOS		А			В		Α	n,	/a ¹		А		А
SH 412B @	ANI	TWSC	Delay		8.3		11.0		7.7	n/a ¹		0.0			1.7	
N4335 Rd	РМ		LOS		А			В		А	A n/a ¹		А			А
			Delay		8.0			10.3		7.8	n,	/a ¹		7.5		2.3

Table 2: Intersection Capacity Analysis (2023 Existing)

n/a1 free movement

n/a² right turn channelized movement

n/a³ no volume modeled

4.0 No Build Conditions

The future traffic demand at the study intersections was projected and analyzed to estimate the delay expected to occur in a No Build scenario. The projections were also made to assess the effectiveness of any proposed improvements. After the generation phase, the trips were assigned throughout the local street network and combined with a background growth to produce 2045 volume projections for the corridor.

4.1 Development Trip Generation

Garver analyzed 10 locations for planned or potential developments within MAIP with varied land uses from industrial, residential, and office. **Figure 11** depicts the location, approximate size of the known developments, and number of total daily trips added. Based on proximity to the main study intersection of US 412 and SH 412B, the development trips were reduced to adjust for the percentage of trips that would be using the intersection. Garver estimated the future trips for 2045 assuming 100% of the development was constructed. The trip generation process applied standard rates for multiple land use interactions as well as pass-by/diverted links trips to account for some trips that would use the development but not add new trips along the corridor. The total trip generation for the developments added approximately 9,900 daily trips on to SH 412B and approximately 1,450 trips in both the AM and PM peak hours. The trip generation increased the existing volume on US 412 by approximately 100% and along SH 412B by 350%. These additional trips were distributed throughout adjacent intersections with the assumption that 70% of the volume was coming from the west (Tulsa, OK) and 30% of the volume was coming from the east (Arkansas).

No. #	Development Name	Land Use	Total Daily Trips	Daily Trips using SH 412B	Acres				
1	Canoo	Industri	al 4,957	2,725 (55%)	615				
2	Estates at Ridgeview	Resident	ial 2,573	1,930 (75%)	570				
3	Apex	Industri	al 1,931	1,060 (55%)	200				
4	Josie	Industri	al 7,942	4,370 (55%)	180				
5	Google Campus	Office	1,038	310 (30%)	620				
6	Armin Road Developments	Industri	al 1,704	510 (30%)	416				
7	Future Development	Industri	al 748	225 (30%)	124				
8	Future Development	Industri	al 1,559	465 (30%)	365				
9	Future Development	Industri	al 1,222	365 (30%)	255				
10	Future Development	Industri	al 392	115 (30%)	48				
			Total Daily Trips	Total Daily Trips using SH 412B	Total Acres				
			24,066	12,075	3,033				
Legend Planned Development Future Developable Land									
	MidAmerica Industrial Park Development Map								

4.2 Background Growth

In addition to the growth from planned developments, historic traffic volumes were obtained at several nearby locations from ODOT's Interactive AADT Map to determine a background growth. Count stations on US 412, US 69, and SH 412B provided historical AADT data for the years of 2012-2021. Along US 412, mainline growth rate of 3.4% was used based on historical data and because of the future interstate demand. A separate growth rate of 1.2% was used for SH 412B because the growth in volume will be accounted for by the development trip generation. Future year 2045 traffic volumes, shown in **Figure 12**, were obtained by summing the volumes from the existing traffic data with an annual background growth, and the total trip generation volume. The volumes from the intersection of US 412 and SH 412B were used to determine the on and off ramp volumes and the turning movements that would be seen at the ramp terminal intersections.

4.3 No Build Traffic Operations

Synchro models were created for No Build 2045 traffic conditions. With the planned volume increase to/from SH 412B, the approaches at study intersections being stop-controlled will provide extremely high delay values and queues.

4.3.1 Intersection Capacity Analysis - 2045 No Build Intersection LOS

The results of the intersection capacity analysis for 2045 are summarized in **Table 3** with full results provided in **Appendix B**. The operational analysis results reflect failing LOS conditions for nearly all stop-controlled movements. The free movements have grown so large that the stop controlled movements are not able to find acceptable gaps. In the AM peak, the eastbound left from US 412 to SH 412B is also unable to find gaps and creates large delays that fail the overall level of service at the main study intersection. The intersections within the study area would operate poorly under the 2045 future no build conditions.

Intersection	Time	Control	MOE	=	BMovement	W	BMovement	N	BMovement	s	BMoveme	nt	Overall	
	Period	Control	MOE	Left	Thru Right	Left	Thru Right	Left	Thru Right	Left	Thru	Right	Overall	
	AM		LOS	F	n/a ¹	А	n/a ¹		F		F		F	
US 412 @ SH		TWEE	Delay	569.3	n/a ¹	9.0	n/a ¹		n/a ⁴		n/a ⁴		184.0	
412B	DM	TWSC	LOS	С	n/a ¹	В	n/a ¹		F		F		А	
	FINI		Delay	16.4	n/a ¹	11.0	n/a ¹		n/a ⁴		n/a ⁴		1.5	
	АМ	TWSC	LOS	В	n/a ¹		n/a ¹			F		n/a²	С	
US 412 @ Old			Delay	11.2	n/a ¹		n/a ¹			490.2		n/a²	18.8	
Hw y 33	РМ		LOS	n/a ³	n/a ¹		n/a ¹			F		n/a²	А	
			Delay	n/a ³	n/a ¹		n/a ¹			98.2		n/a²	2.1	
	AM		LOS		F		F	А	n/a ¹		А		D	
SH 412B @	~	TWSC	Delay		104.1		997.4	9.7	n/a ¹		0.0		31.6	
N4335 Rd	PM		LOS		F		F	B n/a ¹		А		F		
	PM					Delay		182.0		n/a ⁴	11.9	n/a ¹		8.4

Table 3: Intersection Capacity Analysis (2045 No Build)

n/a¹ free movement

n/a² right turn channelized movement

n/a³ no volume modeled n/a⁴ delay exceeds the methodology of HCM

5.0 Final Alternative Development

13 preliminary improvement alternatives were developed for initial review. Preliminary analysis and conceptual layouts were generated for each option. The preliminary alternatives included:

- Three roundabout interchange options which different levels of access to the south and Old Hwy 33
- Two diamond interchanges; One traditional diamond and one diamond with a button hook ramp and access to the south
- Three folded diamond options bridging over US 412 closer to the existing crossing and providing access to the south
- Three trumpet options providing access to Old Hwy 33 with different ramp locations and alignments to SH 412B
- One hybrid option combining the trumpet and folded diamond options
- One Single Point Urban Interchange (SPUI) option with US 412 bridging over the interchange

After review with ODOT, five of the preliminary alternatives were brought forward for further refinement. Traffic volumes, operational performance, conceptual layouts, cost estimates, environmental impacts, utility impacts, right-of-way impacts, and construction impacts were generated for each option. Example of

preliminary alternatives analyzed can be seen in **Figure 13** and **Figure 14** below. The results of the five alternatives brought forward from the preliminary analysis are described in the following sections.

Figure 13: Preliminary Alternative Examples

Figure 14: Preliminary Alternative Examples

5.1 Final Alternative Analysis

The five final alternatives were analyzed differently because of the configurations and intersection types they create. The diamond, roundabout, and folded diamond interchanges would create traditional intersections at the ramp terminals that could be analyzed using *Synchro*. However, the trumpet interchange would create free flow access from the freeway ramps. This condition lacks traditional intersections and cannot be evaluated in *Synchro*, so it was necessary to evaluate the LOS using Highway Capacity Software (HCS2023). HCS can produce operational analyses for basic freeway, merge, diverge, and weaving segments. The software uses the guidelines set forth in the HCM to provide LOS based on density. **Table 4** shows the relationship between density and LOS for basic freeway segments, weaving segments, and merge/diverge ramps. According to the HCM, for acceptable degrees of congestion, freeways should generally be design for LOS C in the design year.

Level of Service (LOS)	Basic Freeway Segment Density (pc/mi/ln)	Freeway Weaving Segment Density (pc/mi/ln)	Freeway Merge & Diverge Segment Density (pc/mi/ln)
LOS A	0 to 11	0 to 10	0 to 10
LOS B	> 11 to 18	> 10 to 20	> 10 to 20
LOS C	> 18 to 26	> 20 to 28	> 20 to 28
LOS D	> 26 to 35	> 28 to 35	> 28 to 35
LOS E	> 35 to 45	> 35 to 43	> 35
LOS F	> 45	> 43	-

Table 4: HCM LOS Criteria for Transportation Facilities

After producing the alternative LOS at 100% development build out, each alternative was analyzed iteratively to determine the life of the configuration and where operations would start to break down. For the alternatives showing failing LOS at full build out, a reduced percentage was used to find how much of MAIP could be developed before the interchange would fail. The remaining alternatives saw an increase in volume higher than full build out to show the potential capacity the alternatives could provide. The results of the breakdown percentages can be found below in **Table 5**. **Appendix D** includes the Initial Concepts Matrix.

Alternative	Breakdown %	% Difference	Constraint
Alternative 3:	90%	-10%	Eastbound left to northbound through.
Diamond_v2 (Button Hook On)			Queueing between two interchange signals.
Alternative 10:	80%	-20%	Eastbound left from off-ramp is over 800 vph
Roundabout_v2	0078	-2076	and needs extra capacity in the roundabout.
Alternative 11:	170%	+70%	After additional 70% volume, eastbound
Trumpet_v5	17070	+7070	diverge becomes an issue in the AM
Alternative 12:	750/	250/	Westbound off-ramp volume at the northern
Folded D_v6	73%	-23%	intersection needs additional capacity
Alternative 13:	170%	170%	After additional 70% volume, eastbound
Trumpet v6	170%	+10%	diverge becomes an issue in the AM

5.1.1 Freeway, Weaving, and Ramp Analysis

The HCS 7 Freeway Facility module was used to recreate the freeway study area using segments (basic, weaving, or ramp) with the appropriate lengths, lane configurations, and volume demands. The study area was analyzed and evaluated for 2045 (design year) with the forecasted traffic volumes.

Table 6 and **Table 7** present the HCS Freeway Facility results for the Trumpet alternatives, under AM and PM peak, at 2045 full build out conditions (100%). Geometrically the ramp connections and spacing are similar enough between the two alternatives that they produce the same LOS results. As shown, LOS for all segments along US 412 will operate at LOS C or better in 2045.

Table 6: 2045 Build Conditions HCS Analysis Results (Eastbound Trumpet)

LIS 412 Easthound	2045 Build								
05 412 Eastbound	Density (pc/mi/ln)	D/C Ratio		LOS				
Segment	AM	PM	AM	PM	AM	ΡM			
Mainline - Before Off Ramp W/O SH 412B	14.0	11.2	0.41	0.33	В	В			
Ramp - Off Ramp W/O SH 412B	17.8	13.8	0.41	0.33	В	А			
Mainline - Between SH 412B Off and On Ramps	4.8	8.4	0.14	0.25	А	Α			
Ramp - On Ramp W/O SH 412B	6.3	13.2	0.17	0.35	В	В			
Mainline - After On Ramp W/O SH 412B	5.8	12.1	0.17	0.35	А	В			

Table 7: 2045 Build Conditions HCS Analysis Results (Westbound Trumpet)

	2045 Build								
US 412 Westbound	Density (pc/mi/ln)	D/C	Ratio	LOS				
Segment	AM	PM	AM	PM	AM	PM			
Mainline - Before Off Ramp E/O SH 412B	10.5	8.2	0.31	0.24	А	Α			
Ramp - Off Ramp E/O SH 412B	12.9	9.9	0.30	0.24	А	А			
Mainline - Between SH 412B Off and On Ramps	6.5	7.0	0.19	0.20	А	Α			
Ramp - On Ramp W/O SH 412B	9.7	16.5	0.26	0.44	В	С			
Mainline - After On Ramp W/O SH 412B	8.9	15.0	0.26	0.44	А	В			

5.1.2 Intersection Analysis

The intersections created by the alternatives were also evaluated to ensure safe and efficient traffic operations at the ramp terminals. *Synchro* software was used to perform intersection analysis. The intersections were evaluated based on the intersection delay and corresponding LOS. Synchro software uses HCM7 methodology to calculate delay. Detailed outputs from the Synchro analysis are provided in **Appendix C**.

Table 8, **Table 9**, and **Table 10** presents the intersection LOS analysis results, under AM and PM peak, for future year 2045 full build out conditions (100%). As a result of the proposed alternatives in the build

conditions, one of the ramp terminals in each alternative is projected to operate at LOS E or worse in the design year indicating the alternatives cannot handle the full build out of MAIP. LOS D is generally considered the minimal acceptable LOS for an intersection movement. Based on the results, queueing is expected to extend from the ramp terminals to the mainline in all options.

Alternative 3 (results in **Table 8**) is experiencing queuing issues at the eastbound ramps and on the bridge heading northbound over US 412 between the two signals. This alternative can acceptably handle 40-50% build out with unsignalized intersections and adding signals will extend the life to approximately 90% of the full build out conditions. A potential improvement for this alternative would be adding a second lane for the eastbound left to northbound through movement through the interchange.

Intersection	Time Period	Control	MOE	EB Movement			WB Movement			N	BMoverne	nt	S	0									
				Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Overall							
US 412 EB Ramps @ SH 412B Connector	АМ	Signal	LOS	E					А				E			E							
			Delay	62.1					0.0				68.5			61.7							
	РМ		LOS	С					А				В			В							
			Delay	27	7.2				0.0				13.1			18.7							
US 412 WB Ramps @ SH 412B Connector	A.M.	Signal	LOS				F		n/a²	(0			А	А	С							
	AM		Delay				83.1		n/a²	28	3.4			3.8	4.6	22.4							
	PM		LOS				D		n/a²		4			А	В	А							
													Delay				41.3		n/a ²	1	.2		

Table 8: 2045 Build Conditions Intersection Analysis Results (Alt 3 Diamond_v2)

n/a¹ free movement

n/a² right turn channelized movement

n/a³ no volume modeled

Alternative 10 (results in **Table 9**) is experiencing queuing issues on the eastbound ramps with the entry into the roundabout. With the entry volume being over 800 vehicles per hour there is a need for additional capacity entering and circulating in the roundabout. This alternative begins to provide unacceptable LOS conditions at approximately 80% of the full build out conditions. A potential improvement is to make the roundabouts multilane to provide the needed capacity and reduce the lengthy queues on the eastbound ramps.

									-	•						
Intersection	Time	Control	MOE	EBMovement			WBMovement			NBMovement			SBMovement			0
	Period			Left	Thru	Right	Overall									
US 412 EB Ramps @ SH 412B Connector	АМ	Round- about	LOS		F			С						А		F
			Delay	89.5			15.8							4.0		
	РМ		LOS	В			А							A		
			Delay		12.5			8.0						6.6		9.1
US 412 WB Ramps @ SH 412B Connector	АМ	Round- about	LOS					А			D			Ą	А	С
			Delay			9.8			32.4			4	.1	5.2	25.0	
	PM		LOS					А			А			Ą	С	В
			Delay					4.0			5.4		6	.9	19.3	13.3

Table 9: 2045 Build Conditions Intersection Analysis Results (Alt 10 Roundabout_v2)

Alternative 12 (results in **Table 10**) is experiencing delay issues at the westbound ramp terminal. This alternative can acceptably handle 40-50% build out with unsignalized intersections. Signalizing the ramp

terminals will extend the life of the alternative but the westbound off ramp volume is required to turn left to travel northbound on SH 412B and this strains the signal performance when competing for time with the high volume northbound through from the eastbound ramps. This alternative with signals begins to provide unacceptable LOS conditions at approximately 75% of the full build out conditions. Additional turn lanes at the westbound ramp terminal would increase the capacity of the intersection and reduce delay.

Intersection	Time	Control	MOE	EB Movement			WBMovement			NB Movement			SB Movement			Overall
	Period			Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Overall
US 412 EB Ramps @ SH 412B	АМ	Signal	LOS	В		n/a²				С				С	n/a²	В
			Delay	10.6		n/a²				27.4				27.7	n/a²	11.4
	РМ		LOS	А		n/a²				А				А	n/a²	А
			Delay	7.6		n/a²				6.	3			6.2	n/a²	7.4
US 412 WB Ramps @ SH 412B	АМ	Signal	LOS	F		F				F				А	n/a²	F
			Delay	157.3		157.3				83	.0			9.7	n/a²	98.7
	PM		LOS	В		В				A	1			А	n/a²	С
			Delav	13.6		13.6				4	7			56	n/a ²	22.4

Table 10: 2045 Build Conditions Intersection Analysis Results (Alt 12 Folded D_v6)

n/a¹ free movement

n/a² right turn channelized movement

n/a³ no volume modeled

6.0 Conclusion

Preliminary traffic analysis and conceptual development were explored to develop a grade separated interchange to replace the existing stop-controlled intersection of US 412 at SH 412B. This intersection serves as an entrance to MAIP, one of the largest industrial parks in the nation with plans for future growth and expansion. The goal of the proposed interchange alternative is to meet the future needs of MAIP as it begins to build out even more with a design year of 2045. Traffic data, lane configurations, and future planned/unplanned developments were considered to define existing 2023 and future year 2045 conditions. These conditions were set forth as a baseline to determine the level of congestion that would occur if no improvements were made. Due to the number of future planned developments, 2045 conditions will have poor level of service and block free flowing volume on US 412 without additional improvements.

Garver analyzed multiple configurations for the US 412 at SH 412B interchange. The critical elements needing improvement were capacity and safety needs for SH 412B turning and crossing volume. As part of a systems analysis, intersections to the west and north of the study intersection were considered as well as construction, environmental, and right-of-way impacts.

Numerous alternatives were initially evaluated for the US 412 interchange to provide connections between Old Hwy 33 and SH 412B. This list was narrowed down to five alternatives and discussed with ODOT in September 2023.

After reviewing the operational performance, the Trumpet Alternatives 11 and 13 provide the best results from a traffic performance perspective when considering 100% build out of MAIP in 2045. However, all

alternatives will provide acceptable performance upon opening and with the assumed background growth for 2045. The operations for the two Diamond Alternatives 3 and 12 can remain unsignalized until 40-50% of the MAIP build out and then will require signalization at the ramp terminals to continue providing acceptable conditions up to 75% of the full build out. All alternatives should be considered for further evaluation, and a recommendation should be made based on the alternative that limits construction, environmental, and right-of-way impacts while potentially offering access to Old Hwy 33 and Chouteau Bend to the south.

US 412 at SH 412B Junction Mayes County Traffic Analysis Memorandum

APPENDIX A

Traffic Data

US 412 at SH 412B Junction Mayes County Traffic Analysis Memorandum

APPENDIX B

Crash Data

Date Range: 01-01-2017 thru 12-31-2021

			2017						2018						2019			
	Fat	SRS Inj	Non-Incap Inj	Poss Inj	PD	Tot	Fat	SRS Inj	Non-Incap Inj	Poss Inj	PD	Tot	Fat	SRS Inj	Non-Incap Inj	Poss Inj	PD	Tot
Collisions	1	1	1			3			5	1	2	8			1		5	6
Persons	1	1	2			4			11	3		14			2			2

STUDY TOTALS (CONT.)

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

of Transportation				3								
			2020						2021*			
	Fat	SRS Inj	Non-Incap Inj	Poss Inj	PD	Tot	Fat	SRS Inj	Non-Incap Inj	Poss Inj	PD	Tot
Collisions				2	2	4		1		2	1	4
Persons				2		2		1		2	<u> </u>	3

				MAT BE INCOMPLETE.			
			Study Total				
Fa	atality S	Suspected Serious Injury	Non-Incapacitating Injury	Possible Injury	Property Damage	Total	
Collisions	1	2	7	5	10	25	
Persons	1	2	15	7		25	

STUDY TOTALS - BY CITY AND HWY CLASS

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

ED

U.				1		STUDY	7 TOTALS								(405) Creat	522-05 ed: 08
	Н	IGHWAY	COLLISIC	ONS	CIT	Y STREE	T COLLIS	IONS	cou	INTY ROA		SIONS		TOTAL CO	DLLISION	IS
Year	Fat	lnj *	PD	Tot	Fat	Inj *	PD	Tot	Fat	lnj *	PD	Tot	Fat	lnj *	PD	To
2017	1	2		3									1	2		3
2018		6	2	8										6	2	8
2019		1	5	6										1	5	6
2020		2	2	4										2	2	4
2021 *		3	1	4										3	1	4
Total:	1	14	10	25				0				0	1	14	10	25

* DENOTES A YEAR FOR WHICH DATA MAY BE INCOMPLETE.

						County: (49) MAYE	S								
	н	HIGHWAY COLLISIONS CITY STREET COLLISIONS COUNTY ROAD COLLISIONS TOTAL COLLISIONS														
	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot
(00) - RURAL -	1	14	10	25									1	14	10	25

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

oklanoma Department of Transportation				2.44						-						(40)5) 522-0	985		
																Cr	eated: 08	8/25/2023	by Ashl	ley Magg
						Collisio	ons Bv	Type O	f Collisi	on										
Turne Of Collision	V	20	017			20	18	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		20	019			20	20			20	21*	
Type Of Collision	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot	Fat	lnj *	PD	Tot
Rear-End (front-to-rear)		1		1							1	1		2		2		2		2
Head-On (front-to-front)						1		1												
Right Angle (front-to-side)						2	1	3												
Angle Turning		1		1		1		1			1	1			1	1				
Other Angle																				
Sideswipe Same Direction	1			1							1	1								
Sideswipe Opposite Direction																				
Fixed Object							1	1			1	1							1	1
Pedestrian																				
Pedal Cycle																				
Animal						1		1							1	1				
Overturn/Rollover																				
Vehicle-Train																				
Other Single Vehicle Crash																				
Other						1		1		1	1	2						1		1
Total	1	2		3		6	2	8		1	5	6		2	2	4		3	1	4
Percent	4.0	8.0		12.0		24.0	8.0	32.0		4.0	20.0	24.0		8.0	8.0	16.0		12.0	4.0	16.0

Collisions By	Type O	f Collisi	on		
Type Of Collision			Total		
	Fat	lnj *	PD	Tot	Pct
Rear-End (front-to-rear)		5	1	6	24.0
Head-On (front-to-front)		1		1	4.0
Right Angle (front-to-side)		2	1	3	12.0
Angle Turning		2	2	4	16.0
Other Angle					
Sideswipe Same Direction	1		1	2	8.0
Sideswipe Opposite Direction					
Fixed Object			3	3	12.0
Pedestrian					
Pedal Cycle					
Animal		1	1	2	8.0
Overturn/Rollover					
Vehicle-Train					
Other Single Vehicle Crash					
Other		3	1	4	16.0
Total	1	14	10	25	100
Percent	4.0	56.0	40.0	100	

* INCLUDES SUSPECTED SERIOUS, NON-INCAPACITATING, AND POSSIBLE INJURIES.

USC 409

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

Oklahama Department of Transportation		1	5													(40 Cro	05) 522-0 eated: 08	985 3/25/2023	by Ash	ley Maggio
		20	17			20	18	ся ву Ог	пстуре	20	19			20	20			20	21*	
Unit Type	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot	Fat	Inj *	PD	Tot
Train																				
Pedestrian																				
Animal						1		1							1	1				
Pedal Cycle																				
Parked Vehicle																				
CMV							1	1			1	1			7					
Other Single Vehicle						1		1			1	1			1	1			1	1
Other Multi-Vehicle	2	4		6		10	2	12		2	7	9		4	2	6		6		6
Total	2	4		6		12	3	15		2	9	11		4	4	8		6	1	7
Percent	4.3	8.5		12.8		25.5	6.4	31.9		4.3	19.1	23.4		8.5	8.5	17.0		12.8	2.1	14.9

Units By Unit Type

Unit Tyme	[/1	Total		
Unit Type	Fat	lnj *	PD	Tot	Pct
Train					
Pedestrian					
Animal		1	1	2	4.3
Pedal Cycle					
Parked Vehicle					
CMV			2	2	4.3
Other Single Vehicle		1	3	4	8.5
Other Multi-Vehicle	2	26	11	39	83.0
Total	2	28	17	47	100
Percent	4.3	59.6	36.2	100	

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: **Traffic Engineering Division Collision Analysis and Safety Branch** (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

Oldshama Department of Transportation				Dat	te Range	e: 01-01	-2017 T	⁻ hru 12-	31-2021						Co (40 Cr	Ilision A 05) 522-0 eated: 08	nalysis a 985 8/25/2023	and Safe 3 by Ash	ty Branc	h Jio	
[Vehicle	es By Ve	ehicle T	уре							1				1
Vehice Type	Fat	20 Ini *	D17	Tot	Fat	20 Ini *	PD	Tot	Fat	20 Ini *	D19 PD	Tot	Fat	20 Ini*	20 PD	Tot	Fat	20 Ini *	21* PD	Tot	
Passenger Vehicle-2 Door		,			. ut	1		1			1	1	T ut	,				,			1
Passenger Vehicle-4 Door			1	1		4		4		1	1	2		2	2	4			1	1	1
Passenger Vehicle-Convertible																					1
Pickup Truck	1	1	1	3		2	4	6			2	2			2	2		3	3	6	1
Single-Unit Truck (2 axles)			1	1																	1
Single-Unit Truck (3 or more axles)											1	1									1
School Bus																					
Truck/Trailer																					
Truck-Tractor (bobtail)																					1
Truck-Tractor/Semi-Trailer							1	1			1	1									1
Truck-Tractor/Double																					
Truck-Tractor/Triple																					
Bus/Large Van (9-15 seats)																					1
Bus (16+ seats)																					1
Motorcycle																					1
Motor Scooter/Moped																					1
Motor Home																					1
Farm Machinery																					1
ATV																					1
Sport Utility Vehicle (SUV)		1		1		2		2			3	3			1	1					1
Passenger Van																					1
Truck More Than 10,000 lbs.											1	1									1
Van (10,000 lbs. or less)																					
Other																					
Total	1	2	3	6		9	5	14		1	10	11		2	5	7		3	4	7	
Percent	2.2	4.4	6.7	13.3		20.0	11.1	31.1		2.2	22.2	24.4		4.4	11.1	15.6		6.7	8.9	15.6	1

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

or managementary					
Vehicles B	v Vehic	le Type			
Vakias Tema	y venic	ie i ype	Total		
venice Type	Fat	Inj *	PD	Tot	Pct
Passenger Vehicle-2 Door		1	1	2	4.4
Passenger Vehicle-4 Door		7	5	12	26.7
Passenger Vehicle-Convertible					
Pickup Truck	1	6	12	19	42.2
Single-Unit Truck (2 axles)			1	1	2.2
Single-Unit Truck (3 or more axles)			1	1	2.2
School Bus					
Truck/Trailer					
Truck-Tractor (bobtail)					
Truck-Tractor/Semi-Trailer			2	2	4.4
Truck-Tractor/Double					
Truck-Tractor/Triple					
Bus/Large Van (9-15 seats)					
Bus (16+ seats)					
Motorcycle					
Motor Scooter/Moped					
Motor Home					
Farm Machinery					
ATV					
Sport Utility Vehicle (SUV)		3	4	7	15.6
Passenger Van					
Truck More Than 10,000 lbs.			1	1	2.2
Van (10,000 lbs. or less)					
Other					
Total	1	17	27	45	100
Percent	2.2	37.8	60.0	100	

USC 409

RICTED

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

Day And Time Of Occurrence Of Collisions

												Hour Of	The Da	У												
Day						A	M											P	PM							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	Tot	Pcnt
Sunday							1		1																2	8.0
Monday					1		1			1	1					1			1						6	24.0
Tuesday								1								1									2	8.0
Wednesday										1			1												2	8.0
Thursday					1									2	1								1		5	20.0
Friday						1								1											2	8.0
Saturday			1										1		1		1					1	1		6	24.0
		Earl	y Morni	ng - Sur	nrise		Мо	rning P	eak		Mid	Mornin	g/Afterr	ioon			PM Pea	k		Ev	ening -	Late Ni	ght		Tot	100
Total				4				4				1	0				3					4			25	
Percent			16	6.0				16.0				4().0				12.0				1	6.0			100	

Roadway/Lighting

		Lig	ghting Condit	ions			
Roadway Conditions	Daylight	Darkness	Twilight	Lighted	Unknown	Total	Percent
Dry	13	5	1	1		20	80.0
Wet (Water)	1		1			2	8.0
Ice, Snow, or Slush	3					3	12.0
Mud, Dirt, Gravel, or Sand							
Other							
Total	17	5	2	1		25	100
Percent	68.0	20.0	8.0	4.0		100	
					4		
	Weather Conc	Weather ditions	Conditions	otal Perc	ent		

Weather	Conditions	
Weather Conditions	Total	Percent
Clear	14	56.0
Clouds Present	9	36.0
Raining/Fog	1	4.0
Snowing/Sleet/Hail	1	4.0
Other		
Total	25	100

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

Drivers By Driver Conditions

	A mm a	ronth Al	armal			Alcohol	Involve	d		Clas	n Cuan	a ta d	Davia	lloo Ind	laatad	Links		adition			Total		
Unsafe/Unlawful	Арра	rently N	ormai	Abi	lity Impa	aired	Od	or Detec	cted	Siee	p Suspe	ected	Drug	Use ind	Icated	Unkno		attion			Total		
	Fat	lnj *	PD	Fat	lnj *	PD	Fat	lnj *	PD	Fat	Inj *	PD	Fat	lnj *	PD	Fat	Inj *	PD	Fat	lnj *	PD	Total	Pcnt
Failed to Yield		2	2																	2	2	4	8.9
Failed to Stop		1																		1		1	2.2
Failed to Signal																							
Improper Turn																							
Improper Start																							
Improper Stop																							
Improper Backing																							
Improper Parking																							
Improper Passing																							
Improper Lane Change			1																		1	1	2.2
Left of Center		1																		1		1	2.2
Following Too Close		1																		1		1	2.2
Unsafe Speed		2	3																	2	3	5	11.1
DWI					1	1														1	1	2	4.4
Inattention		2									1									3		3	6.7
Negligent Driving		2	1																	2	1	3	6.7
Defective Vehicle			1																		1	1	2.2
Wrong Way																							
No Improper Action	1	14	7																1	14	7	22	48.9
Other	1																		1			1	2.2
Total	2	25	15		1	1					1								2	27	16	45	100
Percent	4.4	55.6	33.3		2.2	2.2					2.2								4.4	60.0	35.6	100	

Severities Indicate Highest Severity in Collision

Colli	sions B	y Speci	al Feat	ure
Special Feature		То	tal	
Special Feature	Fat	Inj *	PD	Tot
Bridge			1	1
Work Zone				
Cross Median				
Train Collision				

STUDY CRITERIA

Date Range: 01-01-2017 Thru 12-31-2021

Program Provided by: Traffic Engineering Division Collision Analysis and Safety Branch (405) 522-0985 Created: 08/25/2023 by Ashley Maggio

ROADWAY / REGION

QUERY OVER			SELECTIONS
Draw Area on Map	User Selection on Map		
	•		

DATE

Date Range

01-01-2017 to 12-31-2021

REPORT SECTIONS

Collision Map & Study Totals	(Included)
Collision Analysis Tables	(Included)
- Totals By City, Hwy Class	Checked
- Other Analysis Tables	Checked
Rate Analysis	(Included)
Query Criteria	(Included)

Roadway Type	All Collision Data
Incl. Crashes Assoc. w/ Every Int.	Checked
Environment Fields	
REPORT FORMAT OPTIONS	
Print Watermark	Checked

US 412 at SH 412B Junction Mayes County Traffic Analysis Memorandum

APPENDIX C

Operational Analysis Results

Garver Project No. 23T25010

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	† 1,-		5	† ĵ,			\$			\$	
Traffic Vol, veh/h	145	310	5	5	435	65	5	5	5	20	5	60
Future Vol, veh/h	145	310	5	5	435	65	5	5	5	20	5	60
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	375	-	-	355	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	2	-	-	2	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	154	330	5	5	463	69	5	5	5	21	5	64

Major/Minor	Major1		Μ	lajor2		N	/linor1		Ν	/linor2			
Conflicting Flow All	532	0	0	335	0	0	885	1183	168	984	1151	266	
Stage 1	-	-	-	-	-	-	641	641	-	508	508	-	
Stage 2	-	-	-	-	-	-	244	542	-	476	643	-	
Critical Hdwy	4.36	-	-	4.36	-	-	7.76	6.76	7.16	7.76	6.76	7.16	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-	
Follow-up Hdwy	2.33	-	-	2.33	-	-	3.63	4.13	3.43	3.63	4.13	3.43	
Pot Cap-1 Maneuver	959	-	-	1145	-	-	223	173	813	188	181	700	
Stage 1	-	-	-	-	-	-	404	441	-	488	510	-	
Stage 2	-	-	-	-	-	-	708	492	-	511	440	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	959	-	-	1145	-	-	175	145	813	161	151	700	
Mov Cap-2 Maneuver	-	-	-	-	-	-	297	268	-	312	309	-	
Stage 1	-	-	-	-	-	-	339	370	-	409	508	-	
Stage 2	-	-	-	-	-	-	634	490	-	420	369	-	
Approach	FB			WB			NB			SB			

Approach	ED	VVD	IND	<u>30</u>	
HCM Control Delay, s	3	0.1	15.5	13.5	
HCM LOS			С	В	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1			
Capacity (veh/h)	360	959	-	-	1145	-	-	512			
HCM Lane V/C Ratio	0.044	0.161	-	-	0.005	-	-	0.177			
HCM Control Delay (s)	15.5	9.5	-	-	8.2	-	-	13.5			
HCM Lane LOS	С	А	-	-	А	-	-	В			
HCM 95th %tile Q(veh)	0.1	0.6	-	-	0	-	-	0.6			

Intersection							
Int Delay, s/veh	0.6						
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	5		đ	≜ ↑₽		Y	
Traffic Vol, veh/h	5	430	0	460	40	30	5
Future Vol, veh/h	5	430	0	460	40	30	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	Yield
Storage Length	350	-	330	-	-	0	-
Veh in Median Storage	, # -	0	-	0	-	0	-
Grade, %	-	0	-	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13
Mvmt Flow	5	457	0	489	43	32	5

Major/Minor	Major1	Ν	Major2			Minor2		 	
Conflicting Flow All	532	0	457	-	0	750	266		
Stage 1	-	-	-	-	-	511	-		
Stage 2	-	-	-	-	-	239	-		
Critical Hdwy	4.36	-	6.66	-	-	7.06	7.16		
Critical Hdwy Stg 1	-	-	-	-	-	6.06	-		
Critical Hdwy Stg 2	-	-	-	-	-	6.06	-		
Follow-up Hdwy	2.33	-	2.63	-	-	3.63	3.43		
Pot Cap-1 Maneuver	959	-	691	-	-	325	700		
Stage 1	-	-	-	-	-	537	-		
Stage 2	-	-	-	-	-	746	-		
Platoon blocked, %		-		-	-				
Mov Cap-1 Maneuver	959	-	691	-	-	323	700		
Mov Cap-2 Maneuver	• -	-	-	-	-	323	-		
Stage 1	-	-	-	-	-	534	-		
Stage 2	-	-	-	-	-	746	-		
Approach	EB		WB			SB			
HCM Control Delay, s	s 0.1		0			15.6			
HCM LOS						С			
Minor Lane/Major Mvi	mt	EBL	EBT	WBU	WBT	WBR	SBLn1		
Capacity (veh/h)		959	-	691	-	-	377		
HCM Lane V/C Ratio		0.006	-	-	-	-	0.099		
HCM Control Delay (s	6)	8.8	-	0	-	-	15.6		
HCM Lane LOS		А	-	А	-	-	С		
HCM 95th %tile Q(vel	h)	0	-	0	-	-	0.3		

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		٢	ţ,			\$	
Traffic Vol, veh/h	5	0	5	10	0	5	45	165	5	0	70	45
Future Vol, veh/h	5	0	5	10	0	5	45	165	5	0	70	45
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	65	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	5	0	5	11	0	5	48	176	5	0	74	48

Major/Minor	Minor2			Minor1			Major1			Ма	jor2			
Conflicting Flow All	375	375	98	373	397	179	122	0	0)	181	0	0	
Stage 1	98	98	-	275	275	-	-	-	-	-	-	-	-	
Stage 2	277	277	-	98	122	-	-	-	-	•	-	-	-	
Critical Hdwy	7.23	6.63	6.33	7.23	6.63	6.33	4.23	-	-	. 2	4.23	-	-	
Critical Hdwy Stg 1	6.23	5.63	-	6.23	5.63	-	-	-	-	•	-	-	-	
Critical Hdwy Stg 2	6.23	5.63	-	6.23	5.63	-	-	-	-	•	-	-	-	
Follow-up Hdwy	3.617	4.117	3.417	3.617	4.117	3.417	2.317	-	-	· 2.	317	-	-	
Pot Cap-1 Maneuver	563	539	929	564	524	836	1400	-	-	- 1	331	-	-	
Stage 1	882	793	-	708	663	-	-	-	-	•	-	-	-	
Stage 2	706	662	-	882	774	-	-	-	-	•	-	-	-	
Platoon blocked, %								-	-	-		-	-	
Mov Cap-1 Maneuver	545	521	929	546	506	836	1400	-	-	• 1	331	-	-	
Mov Cap-2 Maneuver	545	521	-	546	506	-	-	-	-	•	-	-	-	
Stage 1	852	793	-	684	640	-	-	-	-	•	-	-	-	
Stage 2	677	639	-	877	774	-	-	-	-	•	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	8.3	11	1.6	0	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1400	-	-	1090	617	1331	-	-
HCM Lane V/C Ratio	0.034	-	-	0.01	0.026	-	-	-
HCM Control Delay (s)	7.7	-	-	8.3	11	0	-	-
HCM Lane LOS	А	-	-	А	В	А	-	-
HCM 95th %tile Q(veh)	0.1	-	-	0	0.1	0	-	-

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	≜ †₽		٦	≜ †₽			4			4	
Traffic Vol, veh/h	45	570	5	5	450	20	5	5	5	70	5	145
Future Vol, veh/h	45	570	5	5	450	20	5	5	5	70	5	145
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	375	-	-	355	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	2	-	-	2	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	48	606	5	5	479	21	5	5	5	74	5	154

Major/Minor	Major1		Ν	/lajor2		Ν	/linor1		Ν	/linor2			
Conflicting Flow All	500	0	0	611	0	0	957	1215	306	902	1207	250	
Stage 1	-	-	-	-	-	-	705	705	-	500	500	-	
Stage 2	-	-	-	-	-	-	252	510	-	402	707	-	
Critical Hdwy	4.36	-	-	4.36	-	-	7.76	6.76	7.16	7.76	6.76	7.16	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-	
Follow-up Hdwy	2.33	-	-	2.33	-	-	3.63	4.13	3.43	3.63	4.13	3.43	
Pot Cap-1 Maneuver	987	-	-	893	-	-	196	165	658	216	167	717	
Stage 1	-	-	-	-	-	-	369	411	-	494	515	-	
Stage 2	-	-	-	-	-	-	700	509	-	567	411	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	987	-	-	893	-	-	146	156	658	203	158	717	
Mov Cap-2 Maneuver	-	-	-	-	-	-	298	314	-	376	323	-	
Stage 1	-	-	-	-	-	-	351	391	-	470	512	-	
Stage 2	-	-	-	-	-	-	541	506	-	528	391	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.6			0.1			15.1			16.5			
HCM LOS							С			С			

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	372	987	-	-	893	-	-	545
HCM Lane V/C Ratio	0.043	0.049	-	-	0.006	-	-	0.429
HCM Control Delay (s)	15.1	8.8	-	-	9.1	-	-	16.5
HCM Lane LOS	С	А	-	-	А	-	-	С
HCM 95th %tile Q(veh)	0.1	0.2	-	-	0	-	-	2.1

11/30/20	23
----------	----

Intersection							
Int Delay, s/veh	0.5						
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	5	^	Ą	≜ ↑₽		Y	
Traffic Vol, veh/h	0	580	0	570	30	40	0
Future Vol, veh/h	0	580	0	570	30	40	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	Yield
Storage Length	350	-	330	-	-	0	-
Veh in Median Storage	, # -	0	-	0	-	2	-
Grade, %	-	0	-	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13
Mvmt Flow	0	617	0	606	32	43	0

Major/Minor	Major1	Ν	/lajor2		I	Minor2		
Conflicting Flow All	638	0	617	-	0	931	319	
Stage 1	-	-	-	-	-	622	-	
Stage 2	-	-	-	-	-	309	-	
Critical Hdwy	4.36	-	6.66	-	-	7.06	7.16	
Critical Hdwy Stg 1	-	-	-	-	-	6.06	-	
Critical Hdwy Stg 2	-	-	-	-	-	6.06	-	
Follow-up Hdwy	2.33	-	2.63	-	-	3.63	3.43	
Pot Cap-1 Maneuver	871	-	543	-	-	246	645	
Stage 1	-	-	-	-	-	469	-	
Stage 2	-	-	-	-	-	686	-	
Platoon blocked, %		-		-	-			
Mov Cap-1 Maneuver	871	-	543	-	-	246	645	
Mov Cap-2 Maneuver	-	-	-	-	-	414	-	
Stage 1	-	-	-	-	-	469	-	
Stage 2	-	-	-	-	-	686	-	
Approach	EB		WB			SB		
HCM Control Delay, s	0		0			14.7		
HCM LOS						В		
Minor Lane/Major Mvn	nt	EBL	EBT	WBU	WBT	WBR S	SBLn1	
Capacity (veh/h)		871	-	543	-	-	414	
HCM Lane V/C Ratio		-	-	-	-	-	0.103	
HCM Control Delay (s))	0	-	0	-	-	14.7	
HCM Lane LOS		Α	-	А	-	-	В	
HCM 95th %tile Q(veh)	0	-	0	-	-	0.3	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		٦	Þ			4	
Traffic Vol, veh/h	35	0	35	5	5	5	5	60	5	5	180	5
Future Vol, veh/h	35	0	35	5	5	5	5	60	5	5	180	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	65	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	37	0	37	5	5	5	5	64	5	5	191	5

Minor2		l	Minor1			Major1			Majo	or2			
286	283	194	281	283	67	196	0	0		69	0	0	
204	204	-	77	77	-	-	-	-		-	-	-	
82	79	-	204	206	-	-	-	-		-	-	-	
7.23	6.63	6.33	7.23	6.63	6.33	4.23	-	-	4.	23	-	-	
6.23	5.63	-	6.23	5.63	-	-	-	-		-	-	-	
6.23	5.63	-	6.23	5.63	-	-	-	-		-	-	-	
3.617	4.117	3.417	3.617	4.117	3.417	2.317	-	-	2.3	17	-	-	
645	608	820	650	608	967	1314	-	-	14	65	-	-	
773	713	-	905	810	-	-	-	-		-	-	-	
900	808	-	773	711	-	-	-	-		-	-	-	
							-	-			-	-	
633	603	820	617	603	967	1314	-	-	14	65	-	-	
633	603	-	617	603	-	-	-	-		-	-	-	
770	710	-	901	807	-	-	-	-		-	-	-	
886	805	-	735	708	-	-	-	-		-	-	-	
	Minor2 286 204 82 7.23 6.23 6.23 3.617 645 773 900 633 633 633 770 886	Minor2 286 283 204 204 82 79 7.23 6.63 6.23 5.63 6.23 5.63 3.617 4.117 645 608 773 713 900 808 633 603 633 603 633 603 770 710 886 805	Minor2 Image: Constraint of the state of th	Minor2 Minor1 286 283 194 281 204 204 - 77 82 79 - 204 7.23 6.63 6.33 7.23 6.23 5.63 - 6.23 6.23 5.63 - 6.23 3.617 4.117 3.417 3.617 645 608 820 650 773 713 - 905 900 808 - 773 633 603 820 617 633 603 - 617 633 603 - 617 633 603 - 617 633 603 - 617 633 603 - 735	Minor2 Minor1 286 283 194 281 283 204 204 - 77 77 82 79 - 204 206 7.23 6.63 6.33 7.23 6.63 6.23 5.63 - 6.23 5.63 6.23 5.63 - 6.23 5.63 3.617 4.117 3.417 3.617 4.117 645 608 820 650 608 773 713 - 905 810 900 808 - 773 711 633 603 820 617 603 633 603 - 617 603 633 603 - 617 603 633 603 - 735 708	Minor2 Minor1 286 283 194 281 283 67 204 204 - 77 77 - 82 79 - 204 206 - 7.23 6.63 6.33 7.23 6.63 6.33 6.23 5.63 - 6.23 5.63 - 6.23 5.63 - 6.23 5.63 - 6.45 608 820 650 608 967 773 713 - 905 810 - 900 808 - 773 711 - 633 603 820 617 603 967 773 713 - 905 810 - 900 808 - 773 711 - 633 603 - 617 603 - 770 710 - 901 807	Minor2Minor1Major128628319428128367196204204-77778279-2042067.236.636.337.236.636.334.236.235.63-6.235.636.235.63-6.235.633.6174.1173.4173.6174.1173.4172.3176456088206506089671314773713-905810900808-7737116336038206176039671314633603-617603770710-901807886805-735708	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Minor2 Minor1 Major1 Major 286 283 194 281 283 67 196 0 0 0 204 204 - 77 77 - - - 82 79 - 204 206 - - - 7.23 6.63 6.33 7.23 6.63 6.33 4.23 - - 7.23 5.63 - 6.23 5.63 - - - 6.23 5.63 - 6.23 5.63 - - - 3.617 4.117 3.417 3.617 4.117 3.417 2.317 - 2.3 645 608 820 650 608 967 1314 - 14 773 713 - 905 810 - - - 900 808 773 711 - - - -	Minor2 Minor1 Major1 Major2 286 283 194 281 283 67 196 0 0 69 204 204 - 77 77 - - - - 82 79 - 204 206 - - - - - 7.23 6.63 6.33 7.23 6.63 6.33 4.23 - - 4.23 6.23 5.63 - 6.23 5.63 - - - - 3.617 4.117 3.417 2.317 - 2.317 645 608 820 650 608 967 1314 - 1465 773 713 - 905 810 - - - 900 808 773 711 - - - - 633 603 820 617 603 967	Minor2 Minor1 Major1 Major2 286 283 194 281 283 67 196 0 0 69 0 204 204 - 77 77 -	Minor2 Minor1 Major1 Major2 286 283 194 281 283 67 196 0 0 69 0 0 204 204 - 77 77 -

Approach	EB	WB	NB	SB	
HCM Control Delay, s	8	10.3	0.6	0.2	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1314	-	-	1266	696	1465	-	-	
HCM Lane V/C Ratio	0.004	-	-	0.059	0.023	0.004	-	-	
HCM Control Delay (s)	7.8	-	-	8	10.3	7.5	0	-	
HCM Lane LOS	А	-	-	А	В	А	А	-	
HCM 95th %tile Q(veh)	0	-	-	0.2	0.1	0	-	-	

Intersection Int Delay, s/veh 184.5 Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR **↔** 10 **†1**→ 730 **4** 10 Lane Configurations ٦ 1Þ ٦ 545 Traffic Vol, veh/h 1030 10 10 445 10 10 105 265 Future Vol, veh/h 1030 545 10 10 730 445 10 10 10 105 10 265 Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 Sign Control Free Stop Stop Free Free Free Free Free Stop Stop Stop Stop RT Channelized None None None ---_ None ----Storage Length 375 355 ----------Veh in Median Storage, # -0 _ 0 -_ 2 _ _ 2 _ -Grade, % 0 0 0 0 --------Peak Hour Factor 94 94 94 94 94 94 94 94 94 94 94 94 Heavy Vehicles, % 13 13 13 13 13 13 13 13 13 13 13 13 Mvmt Flow 1096 580 11 777 473 11 11 11 112 11 282 11

Major/Minor	Major1		Ν	/lajor2		1	Minor1		1	Minor2				
Conflicting Flow All	1250	0	0	591	0	0	3194	4050	296	3524	3819	625		
Stage 1	-	-	-	-	-	-	2778	2778	-	1036	1036	-		
Stage 2	-	-	-	-	-	-	416	1272	-	2488	2783	-		
Critical Hdwy	4.36	-	-	4.36	-	-	7.76	6.76	7.16	7.76	6.76	7.16		
Critical Hdwy Stg 1	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-		
Critical Hdwy Stg 2	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-		
Follow-up Hdwy	2.33	-	-	2.33	-	-	3.63	4.13	3.43	3.63	4.13	3.43		
Pot Cap-1 Maneuver	~ 496	-	-	909	-	-	~ 3	~ 2	669	~ 2	~ 3	402		
Stage 1	-	-	-	-	-	-	16	34	-	228	284	-		
Stage 2	-	-	-	-	-	-	556	217	-	~ 25	34	-		
Platoon blocked, %		-	-		-	-								
Mov Cap-1 Maneuver	~ 496	-	-	909	-	-	-	0	669	-	0	402		
Mov Cap-2 Maneuver	-	-	-	-	-	-	15	0	-	~ -11	~ -10	-		
Stage 1	-	-	-	-	-	-	16	0	-	228	281	-		
Stage 2	-	-	-	-	-	-	158	214	-	-	0	-		
Approach	FB			WB			NB			SB				
HCM Control Delay s	\$ 370			0.1										
HCM LOS	ψοιο			0.1										
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	~ 496	-	-	909	-	-	-					
HCM Lane V/C Ratio		-	2.209	-	-	0.012	-	-	-					
HCM Control Delay (s))	-\$	569.3	-	-	9	-	-	-					
HCM Lane LOS		-	F	-	-	A	-	-	-					
HCM 95th %tile Q(veh)	-	80.1	-	-	0	-	-	-					
Notes														
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30)0s	+: Com	putation	Not De	fined	*: All	major v	olume ir	n platoon	

11/30/20	23
----------	----

L. L							
Intersection							
Int Delay, s/veh	18.8						
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	5	^	Ą	^		Y	
Traffic Vol, veh/h	10	1495	0	940	65	90	10
Future Vol, veh/h	10	1495	0	940	65	90	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	Yield
Storage Length	350	-	330	-	-	0	-
Veh in Median Storage	e, # -	0	-	0	-	0	-
Grade, %	-	0	-	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13
Mvmt Flow	11	1590	0	1000	69	96	11

Major/Minor	Major1	Ν	/lajor2			Minor2				
Conflicting Flow All	1069	0	1590	-	0	1852	535			
Stage 1	-	-	-	-	-	1035	-			
Stage 2	-	-	-	-	-	817	-			
Critical Hdwy	4.36	-	6.66	-	-	7.06	7.16			
Critical Hdwy Stg 1	-	-	-	-	-	6.06	-			
Critical Hdwy Stg 2	-	-	-	-	-	6.06	-			
Follow-up Hdwy	2.33	-	2.63	-	-	3.63	3.43			
Pot Cap-1 Maneuver	587	-	122	-	-	~ 58	462			
Stage 1	-	-	-	-	-	280	-			
Stage 2	-	-	-	-	-	368	-			
Platoon blocked, %		-		-	-					
Mov Cap-1 Maneuver	587	-	122	-	-	~ 57	462			
Mov Cap-2 Maneuver	-	-	-	-	-	~ 57	-			
Stage 1	-	-	-	-	-	275	-			
Stage 2	-	-	-	-	-	368	-			
Approach	EB		WB			SB				
HCM Control Delay, s	0.1		0		\$	490.2				
HCM LOS					*	F				
Minor Lane/Major Myr	nt	FRI	FRT	WRU	WRT	WRR	SBI n1			
Canacity (veh/h)		587		122			62			
HCM Lane V/C Ratio		0.018	_	122	_	_	1 716			
HCM Control Delay (s	1	11.2		0		- \$_	100 2			
HCM Lane LOS	')	R	_	Δ	_	-Ψ -	-30.2 F			
HCM 95th %tile O(ver	1)	01	_	0		_	97			
	'/	0.1		0			5.1			
Notes										
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s	+: Comp	outation No	t Defined	*: All major volume in platoon	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	ħ			4	
Traffic Vol, veh/h	10	0	25	45	0	10	315	1130	40	0	310	60
Future Vol, veh/h	10	0	25	45	0	10	315	1130	40	0	310	60
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	65	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	11	0	27	48	0	11	335	1202	43	0	330	64

Major/Minor	Minor2		I	Minor1		ļ	Major1		Ν	/lajor2				
Conflicting Flow All	2261	2277	362	2256	2288	1224	394	0	0	1245	0	0		
Stage 1	362	362	-	1894	1894	-	-	-	-	-	-	-		
Stage 2	1899	1915	-	362	394	-	-	-	-	-	-	-		
Critical Hdwy	7.23	6.63	6.33	7.23	6.63	6.33	4.23	-	-	4.23	-	-		
Critical Hdwy Stg 1	6.23	5.63	-	6.23	5.63	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.23	5.63	-	6.23	5.63	-	-	-	-	-	-	-		
Follow-up Hdwy	3.617	4.117	3.417	3.617	4.117	3.417	2.317	-	-	2.317	-	-		
Pot Cap-1 Maneuver	27	37	659	~ 27	37	207	1107	-	-	523	-	-		
Stage 1	635	606	-	84	111	-	-	-	-	-	-	-		
Stage 2	83	108	-	635	587	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	20	26	659	~ 20	26	207	1107	-	-	523	-	-		
Mov Cap-2 Maneuver	20	26	-	~ 20	26	-	-	-	-	-	-	-		
Stage 1	443	606	-	59	77	-	-	-	-	-	-	-		
Stage 2	55	75	-	609	587	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	104.1		\$	997.4			2			0				
HCM LOS	F			F										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		1107	-	-	70	24	523	-	-					
HCM Lane V/C Ratio		0.303	-	-	0.532	2.438	-	-	-					
HCM Control Delay (s)	9.7	-	-	104.1\$	997.4	0	-	-					
HCM Lane LOS	,	А	-	-	F	F	А	-	-					
HCM 95th %tile Q(veh	ı)	1.3	-	-	2.2	7.3	0	-	-					
Notes														
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 3	00s -	+: Com	putation	Not De	fined	*: All r	major volu	ume in p	latoon	

L D	tor	00	0 t I	0r	•
	е	SE	(:11	()	
	LO1	00	υu	U 1	
_					

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	† 1,-		5	† 1,-			\$			\$	
Traffic Vol, veh/h	310	955	10	10	780	135	10	10	10	405	10	915
Future Vol, veh/h	310	955	10	10	780	135	10	10	10	405	10	915
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	375	-	-	355	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	2	-	-	2	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	330	1016	11	11	830	144	11	11	11	431	11	973

Major/Minor	Major1		Ν	/lajor2		1	Minor1		I	Minor2			
Conflicting Flow All	974	0	0	1027	0	0	2125	2678	514	2098	2611	487	
Stage 1	-	-	-	-	-	-	1682	1682	-	924	924	-	
Stage 2	-	-	-	-	-	-	443	996	-	1174	1687	-	
Critical Hdwy	4.36	-	-	4.36	-	-	7.76	6.76	7.16	7.76	6.76	7.16	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.76	5.76	-	6.76	5.76	-	
Follow-up Hdwy	2.33	-	-	2.33	-	-	3.63	4.13	3.43	3.63	4.13	3.43	
Pot Cap-1 Maneuver	640	-	-	610	-	-	25	18	478	~ 26	20	~ 498	
Stage 1	-	-	-	-	-	-	88	133	-	~ 269	322	-	
Stage 2	-	-	-	-	-	-	535	297	-	~ 187	133	-	
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	640	-	-	610	-	-	-	~ 9	478	-	~ 10	~ 498	
Mov Cap-2 Maneuver	-	-	-	-	-	-	40	~ 1	-	~ 51	50	-	
Stage 1	-	-	-	-	-	-	43	64	-	~ 130	316	-	
Stage 2	-	-	-	-	-	-	-	292	-	~ 74	64	-	
Annroach	FB			WB			NR			SB			
HCM Control Delay, s HCM LOS	4			0.1			-			-			
Minor Lane/Major Mvn	nt NE	3Ln1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		-	640	-	-	610	-	-	-				
HCM Lane V/C Ratio		-	0.515	-	-	0.017	-	-	-				
HCM Control Delay (s))	-	16.4	-	-	11	-	-	-				
HCM Lane LOS		-	С	-	-	В	-	-	-				

Notes

~: Volume exceeds capacity

HCM 95th %tile Q(veh)

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

0.1

_

3

-

_

11/30/20	23
----------	----

Intersection							
Int Delay, s/veh	2.1						
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR
Lane Configurations	1		A	1		Y	
Traffic Vol, veh/h	0	1210	0	1630	75	65	0
Future Vol, veh/h	0	1210	0	1630	75	65	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	-	None	-	Yield
Storage Length	350	-	330	-	-	0	-
Veh in Median Storage	e, # -	0	-	0	-	2	-
Grade, %	-	0	-	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13
Mvmt Flow	0	1287	0	1734	80	69	0

Major/Minor	Major1	Ν	/lajor2			Minor2				
Conflicting Flow All	1814	0	1287	-	0	2418	907			
Stage 1	-	-	-	-	-	1774	-			
Stage 2	-	-	-	-	-	644	-			
Critical Hdwy	4.36	-	6.66	-	-	7.06	7.16			
Critical Hdwy Stg 1	-	-	-	-	-	6.06	-			
Critical Hdwy Stg 2	-	-	-	-	-	6.06	-			
Follow-up Hdwy	2.33	-	2.63	-	-	3.63	3.43			
Pot Cap-1 Maneuver	292	-	195	-	-	~ 23	258			
Stage 1	-	-	-	-	-	108	-			
Stage 2	-	-	-	-	-	456	-			
Platoon blocked, %		-		-	-					
Mov Cap-1 Maneuver	292	-	195	-	-	~ 23	258			
Mov Cap-2 Maneuver	· -	-	-	-	-	100	-			
Stage 1	-	-	-	-	-	108	-			
Stage 2	-	-	-	-	-	456	-			
Approach	EB		WB			SB				
HCM Control Delay, s	0		0			98.2				
HCM LOS						F				
Minor Lane/Major Mvi	mt	EBL	EBT	WBU	WBT	WBR S	SBLn1			
Capacity (veh/h)		292	-	195	-	-	100			
HCM Lane V/C Ratio		-	-	-	-	-	0.691			
HCM Control Delay (s	5)	0	-	0	-	-	98.2			
HCM Lane LOS	/	А	-	А	-	-	F			
HCM 95th %tile Q(veh	ר)	0	-	0	-	-	3.5			
Notes										
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s ·	+: Com	outation No	t Defined	*: All major volume in platoc	n

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		1	ţ,			\$	
Traffic Vol, veh/h	45	0	210	35	10	10	35	385	35	10	1085	10
Future Vol, veh/h	45	0	210	35	10	10	35	385	35	10	1085	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	65	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	13	13	13	13	13	13	13	13	13	13	13	13
Mvmt Flow	48	0	223	37	11	11	37	410	37	11	1154	11

Major/Minor	Minor2			Minor1			Major1		Ν	/lajor2				
Conflicting Flow All	1696	1703	1160	1685	1690	429	1165	0	0	447	0	0		
Stage 1	1182	1182	-	503	503	-	-	-	-	-	-	-		
Stage 2	514	521	-	1182	1187	-	-	-	-	-	-	-		
Critical Hdwy	7.23	6.63	6.33	7.23	6.63	6.33	4.23	-	-	4.23	-	-		
Critical Hdwy Stg 1	6.23	5.63	-	6.23	5.63	-	-	-	-	-	-	-		
Critical Hdwy Stg 2	6.23	5.63	-	6.23	5.63	-	-	-	-	-	-	-		
Follow-up Hdwy	3.617	4.117	3.417	3.617	4.117	3.417	2.317	-	-	2.317	-	-		
Pot Cap-1 Maneuver	69	86	226	70	88	603	562	-	-	1057	-	-		
Stage 1	220	251	-	531	524	-	-	-	-	-	-	-		
Stage 2	524	514	-	220	250	-	-	-	-	-	-	-		
Platoon blocked, %								-	-		-	-		
Mov Cap-1 Maneuver	57	78	226	~ 1	80	603	562	-	-	1057	-	-		
Mov Cap-2 Maneuver	57	78	-	~ 1	80	-	-	-	-	-	-	-		
Stage 1	205	243	-	496	489	-	-	-	-	-	-	-		
Stage 2	470	480	-	~ 2	243	-	-	-	-	-	-	-		
Approach	EB			WB			NB			SB				
HCM Control Delay, s	182.6		\$ 10	6169.6			0.9			0.1				
HCM LOS	F			F										
Minor Lane/Major Mvr	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR					
Capacity (veh/h)		562	-	-	220	2	1057	-	-					
HCM Lane V/C Ratio		0.066	-	-	1.233	29.255	0.01	-	-					
HCM Control Delay (s)	11.9	-	-	182\$6	6169.6	8.4	0	-					
HCM Lane LOS	/	В	-	-	F	F	A	A	-					
HCM 95th %tile Q(veh	I)	0.2	-	-	13.8	9.4	0	-	-					
Notes														
~: Volume exceeds ca	pacity	\$: De	elav exc	eeds 3	00s	+: Com	outation	Not De	fined	*: All r	maior volu	ume in p	latoon	

HCM 6th Edition methodology does not support Non-NEMA phasing.

HCM 6th Signalized Intersection Summary 3: OK 412B & WB On-Ramp/WB Off-Ramp

11/30/2023

	٠	-	7	1	+	*	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				٢		7		ŧ			•	7
Traffic Volume (veh/h)	0	0	0	10	0	445	10	1040	0	0	115	265
Future Volume (veh/h)	0	0	0	10	0	445	10	1040	0	0	115	265
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1575	0	1575	1575	1575	0	0	1575	1575
Adj Flow Rate, veh/h				11	0	0	11	1143	0	0	126	291
Peak Hour Factor				0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %				16	0	16	16	16	0	0	16	16
Cap, veh/h				19	0		35	1188	0	0	1196	1014
Arrive On Green				0.01	0.00	0.00	0.76	0.76	0.00	0.00	0.76	0.76
Sat Flow, veh/h				1500	0	1335	6	1565	0	0	1575	1335
Grp Volume(v), veh/h				11	0	0	1154	0	0	0	126	291
Grp Sat Flow(s),veh/h/ln				1500	0	1335	1571	0	0	0	1575	1335
Q Serve(g_s), s				0.9	0.0	0.0	24.2	0.0	0.0	0.0	2.5	8.1
Cycle Q Clear(g_c), s				0.9	0.0	0.0	79.8	0.0	0.0	0.0	2.5	8.1
Prop In Lane				1.00		1.00	0.01		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				19	0		1223	0	0	0	1196	1014
V/C Ratio(X)				0.57	0.00		0.94	0.00	0.00	0.00	0.11	0.29
Avail Cap(c_a), veh/h				131	0		1345	0	0	0	1319	1118
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				58.9	0.0	0.0	13.0	0.0	0.0	0.0	3.8	4.4
Incr Delay (d2), s/veh				24.2	0.0	0.0	15.4	0.0	0.0	0.0	0.0	0.2
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln				0.5	0.0	0.0	24.5	0.0	0.0	0.0	0.6	1.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh				83.1	0.0	0.0	28.4	0.0	0.0	0.0	3.8	4.6
LnGrp LOS				F	A		С	A	A	A	Α	<u> </u>
Approach Vol, veh/h					11			1154			417	
Approach Delay, s/veh					83.1			28.4			4.4	
Approach LOS					F			С			А	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				95.6		6.0		95.6				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				100.5		10.5		100.5				
Max Q Clear Time (g_c+I1), s				10.1		2.9		81.8				
Green Ext Time (p_c), s				1.7		0.0		9.3				
Intersection Summary												
HCM 6th Ctrl Delay			22.4									
HCM 6th LOS			С									

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

Movement EBL EBT WBT WBR SBL SBR Lane Configurations 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		٠	-	←	•	4	~		
Lane Configurations 4 b N Traffic Volume (veh/h) 0 0 0 0 0 Future Volume (veh/h) 0 0 0 0 0 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A, pDT) 1.00 1.00 1.00 1.00 1.00 1.00 Vork Zone On Approach No No No No No No Adj Elow Rate, veh/h 0 0 0 0 0 0 0 0 Peak Hour Factor 0.91 <th>Movement</th> <th>EBL</th> <th>EBT</th> <th>WBT</th> <th>WBR</th> <th>SBL</th> <th>SBR</th> <th></th> <th></th>	Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Traffic Volume (veh/h) 0 0 0 0 0 0 Future Volume (veh/h) 0 0 0 0 0 0 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pDT) 1.00 1.00 1.00 1.00 1.00 1.00 Ped-Bike Adj(A_pDT) 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sta Flow, veh/h/n 0 0 0 0 0 0 0 Percent Heavy Veh, % 16 10 100 100 100 100 <td>Lane Configurations</td> <td></td> <td>é.</td> <td>î,</td> <td></td> <td>5</td> <td></td> <td></td> <td>Ī</td>	Lane Configurations		é.	î,		5			Ī
Future Volume (veh/h) 0	Traffic Volume (veh/h)	0	0	0	0	0	0		
Initial Q (Qb), veh 0	Future Volume (veh/h)	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No Adj Sat Flow, veh/hln 1575 1575 1575 1575 Adj Flow Rate, veh/h 0 0 0 0 0 Percent Heavy Veh, % 16 16 16 16 0 Cap, veh/h 0 630 630 0 0 Arrive On Green 0.00 0.00 0.00 0.00 0.00 Sat Flow, veh/h 0 1575 1575 0 0 0 Grp Sat Flow(s), veh/h/ln 0 1575 1575 0 0 0 Grp Sat Flow(s), veh/h/ln 0 1575 1575 0 0 0 Querce(g.s), s 0.0 0.0 0.0 0.0 0.0 0.0 Qre Carl(g.), veh/h 630 630 0 0 0 0 V/C Ratio(X) 0.00 0.00	Initial Q (Qb), veh	0	0	0	0	0	0		
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone Cn Approach No No No No No Adj Sat Flow, veh/h/ln 1575 1575 1575 1575 0 Adj Flow Rate, veh/h 0 0 0 0 0 0 Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91 Percent Heavy Veh, % 16 16 16 16 16 0 Cap, veh/h 0 630 630 0 0 0 Grey Volume(v), veh/h 0 1575 1575 0 0 0 Grey Sat Flow(s),veh/h/ln 0 1575 1575 0 0 0 Gysta (g.s), s 0.0 0.0 0.0 0.0 0.0 0.0 0 Gysta (g.s), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q Serve(g.s), s 0.0 0.00 0.00 0.00 0.00 0.00 0.0 Lane Gre Dap(c), veh/	Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00		
Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1575 1575 1575 0 Adj Flow Rate, veh/h 0 0 0 0 0 Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 Percent Heavy Veh, % 16 16 16 16 0 Cap, veh/h 0 630 630 0 0 Arrive On Green 0.00 0.00 0.00 0.00 0.00 Grp Volume(v), veh/h 0 0 0 0 0 0 Grp Volume(v), veh/h 0 0.00 0.0 0.0 0.0 0.0 Grp Volume(v), veh/h 0 1575 1575 0 0 0 Grp Volume(v), veh/h 0 1575 1575 0 0 0 Grep Cap(c), seh/h 0 630 630 0 0 0 Araid Cap(C_a), veh/h 0 630 630 0<	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln 1575 1575 1575 1575 0 Adj Flow Rate, veh/h 0 0 0 0 0 0 Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91 0.91 Percent Heavy Veh, % 16 16 16 16 16 0 0 Cap, veh/h 0 630 630 0 0 0 0 Grp Sat Flow, veh/h 0 1575 1575 0 0 0 0 Grp Sat Flow, (s), veh/h/ln 0 1575 1575 0 </td <td>Work Zone On Approach</td> <td></td> <td>No</td> <td>No</td> <td></td> <td>No</td> <td></td> <td></td> <td></td>	Work Zone On Approach		No	No		No			
Adj Flow Rate, veh/h 0 0 0 0 0 0 Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91 Percent Heavy Veh, % 16 16 16 16 16 16 0 Cap, veh/h 0 630 630 0 0 0 Arrive On Green 0.00 0.00 0.00 0.00 0.00 Grp Volume(v), veh/h 0 1575 1575 0 0 0 Gy Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q Serve(g_s), s 0.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 Q Serve(g_s), s 0.0 0.0 0.00 0.00 0.00 0.00 0.0 0.0 Q Serve(g_s), s/sh 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>Adj Sat Flow, veh/h/ln</td><td>1575</td><td>1575</td><td>1575</td><td>1575</td><td>1575</td><td>0</td><td></td><td></td></t<>	Adj Sat Flow, veh/h/ln	1575	1575	1575	1575	1575	0		
Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91 Percent Heavy Veh, % 16 16 16 16 16 0 Cap, veh/h 0 630 630 0 0 Arrive On Green 0.00 0.00 0.00 0.00 0.00 Sat Flow, veh/h 0 1575 1575 0 0 0 Grp Volume(v), veh/h 0 1575 1575 0 0 0 Grey Cag_(g_c), s 0.0 0.0 0.0 0.0 0.0 0.0 Qserve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Avait Cap(c, a), veh/h 0 630 630 0 0 0 Hour Bate 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.0 0.0 0.0	Adj Flow Rate, veh/h	0	0	0	0	0	0		
Percent Heavy Veh, % 16 16 16 16 16 16 16 16 0 Cap, veh/h 0 630 630 0 0 0 Arrive On Green 0.00 0.00 0.00 0.00 0.00 0.00 Sat Flow, veh/h 0 1575 1575 0 0 0 Grp Volume(v), veh/h 0 1575 1575 0 0 0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 0.0 0.00 0.00 0.00 0.00 0.00 Lane D 0.00 0.00 0.00 0.00 0.00 0.00 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 0.00 Upstream Filter(1) 0.00 0.00 0.00 0.00 0.0 0.0 Uni	Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91		
Cap, veh/h 0 630 630 0 0 Arrive On Green 0.00 0.00 0.00 0.00 0.00 Sat Flow, veh/h 0 1575 1575 0 0 0 Grp Volume(v), veh/h 0 0 0 0 0 0 0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 YCe Ratio(X) 0.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 630 630 0 0 0 V/C Ratio(X) 0.00	Percent Heavy Veh, %	16	16	16	16	16	0		
Arrive On Green 0.00 0.00 0.00 0.00 0.00 Sat Flow, veh/h 0 1575 1575 0 0 0 Grp Volume(v), veh/h 0 1575 1575 0 0 0 Grp Sat Flow(s), veh/h 0 1575 1575 0 0 0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 0.0 0.0 0.0 0.0 0.0 0.0 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 0.00 Upstream Filter(I) 0.00 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3),siveh 0.0 0	Cap, veh/h	0	630	630		0	0		
Sat Flow, veh/h 0 1575 1575 0 0 0 Grp Volume(v), veh/h 0	Arrive On Green	0.00	0.00	0.00	0.00	0.00	0.00		
Grp Volume(v), veh/h 0 0 0 0 0 0 0 Grp Sat Flow(s), veh/h/ln 0 1575 1575 0 <t< td=""><td>Sat Flow, veh/h</td><td>0</td><td>1575</td><td>1575</td><td>0</td><td>0</td><td>0</td><td></td><td></td></t<>	Sat Flow, veh/h	0	1575	1575	0	0	0		
Grp Sat Flow(s), veh/h/ln 0 1575 1575 0 0 0 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 0.0 0.0 0.0 0.0 0.0 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 630 630 0 0 0 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 0.00 Avail Cap(c, a), veh/h 0 630 630 0 0 0 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d2), s/veh 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d),s/veh	Grp Volume(v), veh/h	0	0	0	0	0	0		
Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 0.0 Cycle Q Clear(g_c), s 0.0 0.0 0.0 0.0 0.0 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 0.00 Lane 0.00 0.00 0.00 0.00 0.00 0.00 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 0 630 630 0 0 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Uniform Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Uniform Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Unifor Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0	Grp Sat Flow(s),veh/h/ln	0	1575	1575	0	0	0		
Cycle Q Clear(g_c), s 0.0 0.0 0.0 0.0 0.0 0.0 Prop In Lane 0.00 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 630 630 0 0 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 0 630 630 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.0 0.0 0.0 0.0 0.0 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Uniform Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 A </td <td>Q Serve(g_s), s</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0		
Prop In Lane 0.00 0.00 0.00 0.00 Lane Grp Cap(c), veh/h 0 630 630 0 0 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 Avail Cap(c, a), veh/h 0 630 630 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, S/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Approach Vol, veh/h 0 0 0 <td>Cycle Q Clear(g_c), s</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	Cycle Q Clear(g_c), s	0.0	0.0	0.0	0.0	0.0	0.0		
Lane Grp Cap(c), veh/h 0 630 630 0 0 0 V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 0 630 630 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp LOS A A A A A A Approach Vol, veh/h 0 0 0 0 Approach LOS Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+11), s 0.0 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 0.0 HCM 6th Ctrl Delay 0.0 HCM 6th LOS A	Prop In Lane	0.00			0.00	0.00	0.00		
V/C Ratio(X) 0.00 0.00 0.00 0.00 0.00 Avail Cap(c_a), veh/h 0 630 630 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, (s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Approach Vol, veh/h 0 0 0 0.0 0.0 Approach LOS 4 6	Lane Grp Cap(c), veh/h	0	630	630		0	0		
Avail Cap(c_a), veh/h 0 630 630 0 0 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%), veh/ln 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Approach Vol, veh/h 0 0 0 0.0 Approach LOS 4 6 8 Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 22.5	V/C Ratio(X)	0.00	0.00	0.00		0.00	0.00		
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/In 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh Unsig. Movement Delay, s/veh Unsig. Novement Delay, s/veh 0.0 0.0 0.0 LnGrp Delay(d),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Approach Vol, veh/h 0 0 0 0 0.0 0.0 Approach LOS Timer - Assigned Phs 4 6 8 8 Phs Duration (G+Y+Rc), s 18.0 18.0 18.0 18.0	Avail Cap(c_a), veh/h	0	630	630		0	0		
Upstream Filter(I) 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/In 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, s/veh 0.0 0.0 0.0 0.0 0.0 LnGrp Delay, s/veh 0.0 0.0 0.0 0.0 Approach Vol, veh/h 0 0 0 0 Approach LOS Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (p_c), s	HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Unitorm Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Upstream Filter(I)	0.00	0.00	0.00	0.00	0.00	0.00		
Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Unitorm Delay (d), s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
Initial Q Delay(Q3),s/ven 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln 0.0 0.0 0.0 0.0 0.0 0.0 Unsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp LOS A A A A A A A Approach Vol, veh/h 0 0 0 0 0 0.0 Approach LOS A	Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
White BackGrug(50%),ven/in U.U U.U </td <td>Initial Q Delay(d3),s/veh</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
Unsig. Wovement Delay, s/ven LnGrp Delay(d),s/veh 0.0 0.0 0.0 0.0 LnGrp LOS A A A A A Approach Vol, veh/h 0 0 0 0 Approach Delay, s/veh 0.0 0.0 0.0 Approach Delay, s/veh 0.0 0.0 Approach LOS Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 22.5 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 0.0 0.0 0.0 0.0 0.0 Intersection Summary HCM 6th Ctrl Delay 0.0 A A A	%IIE BackOfQ(50%),veh/In	0.0	0.0	0.0	0.0	0.0	0.0		
Lingrp Delay(d),s/ven 0.0	Unsig. Movement Delay, s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
Lmorp LOS A	Lingrp Delay(d),s/ven	0.0	0.0	0.0	0.0	0.0	0.0		
Approach vol, ven/n 0 0 0 0 Approach Delay, s/veh 0.0 0.0 0.0 Approach LOS		A	A	A		A	A		
Approach Delay, s/ven 0.0 0.0 0.0 Approach LOS Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 A 4 HCM 6th Ctrl Delay 0.0 A 4	Approach Vol, veh/h		0	0		0			
Approach LOS 4 6 8 Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+l1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 4 4 HCM 6th Ctrl Delay 0.0 0.0 0.0	Approach Delay, s/veh		0.0	0.0		0.0			
Timer - Assigned Phs 4 6 8 Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 A 100 HCM 6th Ctrl Delay 0.0 A 100	Approach LUS								
Phs Duration (G+Y+Rc), s 22.5 22.5 22.5 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 4.5 4.5 HCM 6th Ctrl Delay 0.0 0.0 0.0 HCM 6th LOS A 4.5 4.5	Timer - Assigned Phs				4		6	8	
Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+l1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 0.0 0.0 HCM 6th Ctrl Delay 0.0 A 100	Phs Duration (G+Y+Rc), s				22.5		22.5	22.5	
Max Green Setting (Gmax), s 18.0 18.0 18.0 Max Q Clear Time (g_c+I1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 0.0 0.0 HCM 6th Ctrl Delay 0.0 A 0.0	Change Period (Y+Rc), s				4.5		4.5	4.5	
Max Q Clear Time (g_c+l1), s 0.0 0.0 0.0 Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 0.0 0.0 HCM 6th Ctrl Delay 0.0 0.0 0.0 HCM 6th LOS A A 0.0	Max Green Setting (Gmax), s				18.0		18.0	18.0	
Green Ext Time (p_c), s 0.0 0.0 0.0 Intersection Summary 0.0 4 4 4 HCM 6th LOS A A 4	Max Q Clear Time (g_c+l1), s				0.0		0.0	0.0	
Intersection Summary HCM 6th Ctrl Delay 0.0 HCM 6th LOS A	Green Ext Time (p_c), s				0.0		0.0	0.0	
HCM 6th Ctrl Delay 0.0 HCM 6th LOS A	Intersection Summary								
HCM 6th LOS A	HCM 6th Ctrl Delay			0.0					
	HCM 6th LOS			А					

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

Lanes, Volumes, Timings <u>1: EB Off-Ramp/N4340 Rd & OK 412B</u>

11/30/2023

	٠	-	-	*	1	-			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø6		
Lane Configurations		4		1	5	-			
Traffic Volume (vph)	1030	10	0	20	125	0			
Future Volume (vph)	1030	10	0	20	125	0			
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800			
Lane Litil Factor	1 00	1 00	1 00	1 00	1 00	1 00			
Frt	1.00	1.00	1.00	0.865	1.00	1.00			
Flt Protected		0 953		0.000	0 950				
Satd Flow (prot)	0	1479	0	1342	1474	0			
Elt Permitted	v	0.953	Ū	1012	0.950	Ū			
Satd Flow (nerm)	0	1479	0	1342	1474	0			
Right Turn on Red	U	1475	0	Yes	1777	Yes			
Satd Flow (RTOR)				103		103			
Link Speed (mph)		45	45		45				
Link Distance (ff)		1065	533		580				
Travel Time (s)		16 1	8 1		8.8				
Peak Hour Factor	0 01	0.1	0.1	0 01	0.0	0.91			
Adi Flow (vnh)	1132	11	0.91	0.01	137	0.91			
Shared Lane Traffic (%)	1152	11	U	22	157	U			
Lano Group Flow (uph)	٥	11/2	0	າງ	127	0			
Enter Blocked Interception	No	No	No	ZZ No	No	No			
Long Alignment	INU Loft	INU Loft	INU Loff	Dight	INU Loft	Diaht			
Lane Alignment Modion Width(ft)	Leit	Leit	Leit	Right	12	Right			
link Offect(ft)		0	0		12				
Crocowalk Width/ft)		24	24		24				
		24	24		24				
Two way Leit Turn Lane	1.07	1.07	1.07	1.07	1.07	1.07			
Turning Crood (mph)	1.07	1.07	1.07	1.07	1.07	1.07			
Turning Speed (mpn)	15	0		9	15	9			
Number of Detectors	l off	Z		U	U				
Detector Template	Len	100		0	0				
Leading Detector (II)	20	100		0	0				
Trailing Detector (ft)	0	0		0	0				
Detector 1 Position(π)	0	0		0	0				
Detector 1 Size(ft)	20	0		20	20				
Detector 1 Type	CI+EX	CI+EX		CI+EX	CI+EX				
Detector 1 Channel	0.0	0.0		0.0	0.0				
Detector 1 Extend (s)	0.0	0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0		0.0	0.0				
Detector 2 Position(ft)		94							
Detector 2 Size(ft)		6							
Detector 2 Type		CI+Ex							
Detector 2 Channel									
Detector 2 Extend (s)	_	0.0			_				
Turn Type	Perm	NA		pm+ov	Prot				
Protected Phases		2		4	4		6		
Permitted Phases	2			6					
Detector Phase	2	2		4	4				
Switch Phase									
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0		

Diamond_v2 Alternative.syn 7H - Total Future 70-30 AM Synchro 10 Report Page 1

Lanes, Volumes, Timings <u>1: EB Off-Ramp/N4340 Rd & OK 412B</u>

11	/30/	20	23
----	------	----	----

	٨	-	-	*	1	1			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø6		
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5		
Total Split (s)	95.0	95.0		25.0	25.0		95.0		
Total Split (%)	79.2%	79.2%		20.8%	20.8%		79%		
Maximum Green (s)	90.5	90.5		20.5	20.5		90.5		
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5		
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0		
Lost Time Adjust (s)		0.0		0.0	0.0				
Total Lost Time (s)		4.5		4.5	4.5				
Lead/Lag									
Lead-Lag Optimize?									
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		
Recall Mode	C-Min	C-Min		None	None		Min		
Act Effct Green (s)		95.1		120.0	15.9				
Actuated g/C Ratio		0.79		1.00	0.13				
v/c Ratio		0.98		0.02	0.70				
Control Delay		34.9		0.0	68.5				
Queue Delay		27.1		0.0	0.0				
Total Delay		62.1		0.0	68.5				
LOS		E		А	E				
Approach Delay		62.1			68.5				
Approach LOS		E			E				
Intersection Summary									
Area Type:	Other								
Cycle Length: 120									
Actuated Cycle Length: 120	0								
Offset: 0 (0%), Referenced	to phase 2:	EBTL, Sta	art of Gre	en					
Natural Cycle: 120									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.98									
Intersection Signal Delay: 6	61.7			lr	ntersectior	LOS: E			
Intersection Capacity Utilization	ation 75.6%			IC	CU Level o	of Service	D		
Analysis Period (min) 15									

Splits and Phases: 1: EB Off-Ramp/N4340 Rd & OK 412B

Lanes, Volumes, Timings 3: OK 412B & WB On-Ramp/WB Off-Ramp

11/:	30/2	023
------	------	-----

	٠	→	7	4	-	*	1	t	٢	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				2		1		ŧ			•	1
Traffic Volume (vph)	0	0	0	10	0	445	10	1040	0	0	115	265
Future Volume (vph)	0	0	0	10	0	445	10	1040	0	0	115	265
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	0		0	0		30	0		0	0		0
Storage Lanes	0		0	1		1	0		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850						0.850
Flt Protected				0.950								
Satd, Flow (prot)	0	0	0	1474	0	1319	0	1552	0	0	1552	1319
Flt Permitted				0.950				0.998				
Satd. Flow (perm)	0	0	0	1474	0	1319	0	1549	0	0	1552	1319
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						268						291
Link Speed (mph)		45			45			45			45	
Link Distance (ft)		656			816			580			3418	
Travel Time (s)		9.9			12.4			8.8			51.8	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adi, Flow (vph)	0	0	0	11	0	489	11	1143	0	0	126	291
Shared Lane Traffic (%)	•	•	•	••	, in the second s				•	•		
Lane Group Flow (vph)	0	0	0	11	0	489	0	1154	0	0	126	291
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		24			24			24			24	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	.•		· ·	1		1	1	2	•		2	1
Detector Template				Left		Right	Left	Thru			Thru	Right
Leading Detector (ft)				20		20	20	100			100	20
Trailing Detector (ft)				0		0	0	0			0	0
Detector 1 Position(ft)				0		0	0	0			0	0
Detector 1 Size(ft)				20		20	20	6			6	20
Detector 1 Type				Cl+Ex		CI+Ex	CI+Ex	CI+Ex			Cl+Ex	CI+Ex
Detector 1 Channel				0 . 1 .		0 . – <i>n</i>	•. =	• •			U	0 . 1 .
Detector 1 Extend (s)				0.0		0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)				0.0		0.0	0.0	0.0			0.0	0.0
Detector 1 Delay (s)				0.0		0.0	0.0	0.0			0.0	0.0
Detector 2 Position(ft)				0.0		0.0	0.0	94			94	010
Detector 2 Size(ft)								6			6	
Detector 2 Type								CI+Ex			Cl+Ex	
Detector 2 Channel								• • _ /			0/.	
Detector 2 Extend (s)								0.0			0.0	
Turn Type				Prot		Free	Perm	NA			NA	Perm
Protected Phases				1		. 100	. 5	8			4	
Permitted Phases						Free	8	-				4
							v					'

Diamond_v2 Alternative.syn 7H - Total Future 70-30 AM Synchro 10 Report Page 3 Lanes, Volumes, Timings 3: OK 412B & WB On-Ramp/WB Off-Ramp

	٠	→	7	4	+	*	1	t	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase				1			8	8			4	4
Switch Phase												
Minimum Initial (s)				5.0			5.0	5.0			5.0	5.0
Minimum Split (s)				9.5			22.5	22.5			22.5	22.5
Total Split (s)				15.0			105.0	105.0			105.0	105.0
Total Split (%)				12.5%			87.5%	87.5%			87.5%	87.5%
Maximum Green (s)				10.5			100.5	100.5			100.5	100.5
Yellow Time (s)				3.5			3.5	3.5			3.5	3.5
All-Red Time (s)				1.0			1.0	1.0			1.0	1.0
Lost Time Adjust (s)				0.0				0.0			0.0	0.0
Total Lost Time (s)				4.5				4.5			4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)				3.0			3.0	3.0			3.0	3.0
Recall Mode				None			C-Min	C-Min			None	None
Act Effct Green (s)				6.5		120.0		116.6			116.6	116.6
Actuated g/C Ratio				0.05		1.00		0.97			0.97	0.97
v/c Ratio				0.14		0.37		0.77			0.08	0.23
Control Delay				57.2		0.8		6.9			0.6	0.5
Queue Delay				0.0		0.0		0.8			0.0	0.0
Total Delay				57.2		0.8		7.7			0.6	0.5
LOS				E		А		Α			A	A
Approach Delay					2.0			7.7			0.5	
Approach LOS					А			A			А	
Intersection Summary												
Area Type: Ot	her											
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 50 (42%), Referenced t	o phase	8:NBTL,	Start of G	Green								
Natural Cycle: 80												
Control Type: Actuated-Coord	nated											
Maximum v/c Ratio: 0.77												
Intersection Signal Delay: 4.9				In	tersection	n LOS: A						
Intersection Capacity Utilizatio Analysis Period (min) 15	n 83.2%			IC	CU Level o	of Service	ε					

Splits and Phases: 3: OK 412B & WB On-Ramp/WB Off-Ramp

Ø1	Ø4	
15 s	105 s	
	Ø8 (R)	
	105 s	

11/30/2023

	٠	-	-	*	1	~
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		÷.	1÷			
Traffic Volume (vph)	105	30	20	10	0	0
Future Volume (vph)	105	30	20	10	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.955			
Flt Protected		0.963				
Satd. Flow (prot)	0	1494	1482	0	0	0
Flt Permitted		0.963				
Satd. Flow (perm)	0	1494	1482	0	0	0
Link Speed (mph)		30	30		30	
Link Distance (ft)		533	1970		600	
Travel Time (s)		12.1	44.8		13.6	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	115	33	22	11	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	148	33	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		0	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		40	40		40	
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	15			9	15	9
Sign Control		Yield	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	ation 17.8%			IC	ULevel	of Service A

Analysis Period (min) 15
* ٠ 5 1 + EBL EBT WBT SBL Lane Group WBR SBR Lane Configurations đ Þ ٦ Traffic Volume (vph) 0 0 0 0 0 0 Future Volume (vph) 0 0 0 0 0 0 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frt **Flt Protected** 0 1552 0 1552 0 Satd. Flow (prot) 1552 Flt Permitted 1552 Satd. Flow (perm) 0 1552 1552 0 0 Right Turn on Red Yes Yes Satd. Flow (RTOR) Link Speed (mph) 30 30 30 Link Distance (ft) 338 484 251 Travel Time (s) 5.7 7.7 11.0 Peak Hour Factor 0.91 0.91 0.91 0.91 0.91 0.91 Adj. Flow (vph) 0 0 0 0 0 0 Shared Lane Traffic (%) 0 0 Lane Group Flow (vph) 0 0 0 0 Enter Blocked Intersection No No No No No No Lane Alignment Left Left Left Right Left Right Median Width(ft) 0 0 12 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.07 1.07 Headway Factor 1.07 1.07 1.07 1.07 Turning Speed (mph) 60 60 60 60 Turn Type Prot Protected Phases 8 4 6 Permitted Phases 4 Minimum Split (s) 22.5 22.5 22.5 22.5 Total Split (s) 22.5 22.5 22.5 22.5 Total Split (%) 28.1% 28.1% 28.1% 28.1% Maximum Green (s) 18.0 18.0 18.0 18.0 3.5 Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? 7.0 7.0 Walk Time (s) 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay

Diamond_v2 Alternative.syn 7H - Total Future 70-30 AM

	٠	-	+	*	4	∢		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
LOS								
Approach Delay								
Approach LOS								
Intersection Summary								
Area Type:	Other							
Cycle Length: 80								
Actuated Cycle Length: 80								
Offset: 0 (0%), Referenced	to phase 2:	and 6:SBL	., Start o	f Green				
Natural Cycle: 45								
Control Type: Pretimed								
Maximum v/c Ratio: 0.00								
Intersection Signal Delay: (0.0			Int	tersection	LOS: A		
Intersection Capacity Utilization	ation 0.0%			IC	U Level o	f Service A		
Analysis Period (min) 15								
Splits and Phases: 12:								
A _{Ø4}								

HCM 6th Edition methodology does not support Non-NEMA phasing.

HCM 6th Signalized Intersection Summary 3: OK 412B & WB On-Ramp/WB Off-Ramp

11/30/2023

	٠	-	7	1	+	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7		1		ŧ			•	1
Traffic Volume (veh/h)	0	0	0	10	0	135	10	320	0	0	415	915
Future Volume (veh/h)	0	0	0	10	0	135	10	320	0	0	415	915
Initial Q (Qb), veh				0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)				1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach					No			No			No	
Adj Sat Flow, veh/h/ln				1688	0	1688	1688	1688	0	0	1688	1688
Adj Flow Rate, veh/h				12	0	0	12	376	0	0	488	1076
Peak Hour Factor				0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %				8	0	8	8	8	0	0	8	8
Cap, veh/h				24	0		80	1361	0	0	1386	1174
Arrive On Green				0.02	0.00	0.00	0.82	0.82	0.00	0.00	0.82	0.82
Sat Flow, veh/h				1607	0	1430	15	1658	0	0	1688	1430
Grp Volume(v), veh/h				12	0	0	388	0	0	0	488	1076
Grp Sat Flow(s),veh/h/ln				1607	0	1430	1673	0	0	0	1688	1430
Q Serve(g_s), s				0.4	0.0	0.0	0.0	0.0	0.0	0.0	4.0	29.9
Cycle Q Clear(g_c), s				0.4	0.0	0.0	2.9	0.0	0.0	0.0	4.0	29.9
Prop In Lane				1.00		1.00	0.03		0.00	0.00		1.00
Lane Grp Cap(c), veh/h				24	0		1441	0	0	0	1386	1174
V/C Ratio(X)				0.49	0.00		0.27	0.00	0.00	0.00	0.35	0.92
Avail Cap(c_a), veh/h				219	0		1441	0	0	0	1386	1174
HCM Platoon Ratio				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)				1.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh				26.9	0.0	0.0	1.1	0.0	0.0	0.0	1.2	3.6
Incr Delay (d2), s/veh				14.4	0.0	0.0	0.1	0.0	0.0	0.0	0.7	12.6
Initial Q Delay(d3),s/veh				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In				0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3	4.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh				41.3	0.0	0.0	1.2	0.0	0.0	0.0	1.9	16.1
LnGrp LOS				D	Α		Α	Α	Α	Α	Α	<u> </u>
Approach Vol, veh/h					12			388			1564	
Approach Delay, s/veh					41.3			1.2			11.7	
Approach LOS					D			А			В	
Timer - Assigned Phs				4		6		8				
Phs Duration (G+Y+Rc), s				49.7		5.3		49.7				
Change Period (Y+Rc), s				4.5		4.5		4.5				
Max Green Setting (Gmax), s				38.5		7.5		38.5				
Max Q Clear Time (g_c+l1), s				31.9		2.4		4.9				
Green Ext Time (p_c), s				4.2		0.0		2.3				
Intersection Summary												
HCM 6th Ctrl Delay			9.8									
HCM 6th LOS			Α									

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

	٠	-	-	•	1	-	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	Þ		٦		
Traffic Volume (veh/h)	0	0	0	0	0	0	
Future Volume (veh/h)	0	0	0	0	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1688	1688	1688	1688	1688	0	
Adj Flow Rate, veh/h	0	0	0	0	0	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Percent Heavy Veh, %	8	8	8	8	8	0	
Cap, veh/h	0	675	675		0	0	
Arrive On Green	0.00	0.00	0.00	0.00	0.00	0.00	
Sat Flow, veh/h	0	1688	1688	0	0	0	
Grp Volume(v), veh/h	0	0	0	0	0	0	
Grp Sat Flow(s),veh/h/In	0	1688	1688	0	0	0	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	
Cycle Q Clear(g_c), s	0.0	0.0	0.0	0.0	0.0	0.0	
Prop In Lane	0.00			0.00	0.00	0.00	
Lane Grp Cap(c), veh/h	0	675	675		0	0	
V/C Ratio(X)	0.00	0.00	0.00		0.00	0.00	
Avail Cap(c_a), veh/h	0	675	675		0	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	0.0	0.0	0.0	0.0	0.0	0.0	
Unsig. Movement Delay, s/ve	h						
LnGrp Delay(d),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
LnGrp LOS	A	A	A		A	A	
Approach Vol, veh/h		0	0		0		
Approach Delay, s/veh		0.0	0.0		0.0		
Approach LOS							
Timer - Assigned Phs				4		6	
Phs Duration (G+Y+Rc), s				22.5		22.5	
Change Period (Y+Rc), s				4.5		4.5	
Max Green Setting (Gmax), s				18.0		18.0	
Max Q Clear Time (g_c+I1), s	3			0.0		0.0	
Green Ext Time (p_c), s				0.0		0.0	
Intersection Summary							
HCM 6th Ctrl Delay			0.0				
HCM 6th LOS			A				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

Notes

Unsignalized Delay for [WBR] is excluded from calculations of the approach delay and intersection delay.

#### Lanes, Volumes, Timings <u>1: EB Off-Ramp/N4340 Rd & OK 412B</u>

11/30/2023

Lane Group         EBL         EBT         WBT         WBR         SBL         SBR         Ø6           Lane Configurations         4         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7		•	-	+	•	1	-			
Lane Configurations 4 4 7 7 9 Traffic Volume (vph) 310 10 0 20 425 0 Traffic Volume (vph) 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 100 1.00 1.00 1.00 Fit Permitted 0.954 0.950 Satd Flow (prot) 0 1590 0 1442 1583 0 Fit Permitted 0.954 0.950 Satd Flow (prot) 0 1590 0 1442 1583 0 Fit Permitted 0.954 0.950 Satd Flow (Prot) 0 1590 0 1442 1583 0 Fit Permitted 0.954 0.950 Satd Flow (Prot) 0 1590 0 1442 1583 0 Fit Permitted 0.954 0.950 Satd Flow (Prot) 0 1590 0 1442 1583 0 Fit Permitted 0.954 0.950 Satd Flow (Prot) 45 45 45 Link Obtaine (th) 1065 533 580 Travel Time (s) 16.1 8.1 8.8 Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 Adj. Flow (vph) 365 12 0 24 500 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 377 0 24 500 0 Crosswalk Width(th) 24 24 24 24 Headway Factor 1.07 1.07 1.07 1.07 Turning Speed (mph) 60 60 60 Number of Detectors 1 2 0 0 Detector 1 Size(th) 20 6 20 20 Detector 1 Size(th) 44 Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Size(th) 20 6 20 20 Detector 1 Size(th) 44 Detector 2 Extend (s) 0.0 0.0 0.0 Detector 1 Size(th) 44 Detector 1 Size(th) 44 Detector 2 Extend (s) 0.0 0.0 Detector 1 Size(th) 44 Detector 2 Extend (s) 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Detector 1 Size(th) 44 Detector 2 Extend (s) 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Detector 1 Size(th) 50 50 50 50 50 Size 1 Size(th) 50 50 50 50 Size 1 Size 1 Siz	Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø6		
Traffic Volume (vph) 310 10 0 20 425 0 Future Volume (vph) 310 10 0 20 425 0 Future Volume (vph) 310 100 1800 1800 1800 1800 1800 1800 1	Lane Configurations		4		1	5	•=			
Tubus Volume (upp)         310         10         0         20         425         0           Ideal Flow (vphp)         1800         1800         1800         1800         1800         1800           Eft Protected         0.954         0.950         0.885         0         0           Stadt Flow (prot)         0         1590         0         1442         1583         0           Fit Permitted         0.954         0.950         Stadt Flow (prot)         0         1590         0         1442         1583         0           Stadt Flow (prot)         0         1590         0         1442         1583         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>Traffic Volume (vph)</td> <td>310</td> <td>10</td> <td>0</td> <td>20</td> <td>425</td> <td>0</td> <td></td> <td></td> <td></td>	Traffic Volume (vph)	310	10	0	20	425	0			
ale Flow (vph)         1800         1800         1800         1800         1800           Lane Uli, Factor         1.00         1.00         1.00         1.00         1.00           Fit         0.855         0.950         0.950         0.950           Stad. Flow (prot)         0         1590         0         1442         1583         0           Fit Protected         0.954         0.950         0         1442         1583         0           Stad. Flow (prot)         0         1590         0         1442         1583         0           Stad. Flow (prot)         0         1590         0         1442         1583         0           Stad. Flow (port)         0         1590         0         1442         1583         0           Link Speed (mph)         45         45	Future Volume (vph)	310	10	0	20	425	0			
Base Uil, Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Fit         0.865         0.950         0.950         0.950         0.950           Satid, Flow (pron)         0         1590         0         1442         1583         0           Satid, Flow (pron)         0         1590         0         1442         1583         0           Satid, Flow (perm)         0         1590         0         1442         1583         0           Satid, Flow (perm)         0         1590         0         1442         1583         0           Satid, Flow (perm)         0         1590         0         1442         1583         0           Satid, Flow (perm)         0         150         0         550         580         152         45           Link Distance (ft)         1065         533         580         175         0         24         500         0           Travel Time (s)         161         8.1         8.8         0         0         0         0         0         0         0         0         0         0         0         0         0         0	Ideal Flow (vnhnl)	1800	1800	1800	1800	1800	1800			
Fit       0.065       No       No       No         FIt Protected       0.954       0.950       Statumed Stat	Lane Util Eactor	1 00	1 00	1 00	1 00	1 00	1 00			
Bit Protected       0.954       0.950         Satd. Flow (prot)       0       1590       0       1442       1583       0         Satd. Flow (prot)       0       1590       0       1442       1583       0         Satd. Flow (prom)       0       1590       0       1442       1583       0         Right Tum on Red       Yes       Yes       Yes       Yes         Satd. Flow (PTOR)       1065       533       580       161       8.1       8.8         Travel Time (s)       161       8.1       8.8       0.85       0.85       0.85       0.85       0.85         Alf, Flow (ryh)       365       12       0       24       500       0       500       0       510       500       0       510       500       0       510       510       500       0       510       500       0       510       510       500       0       510       510       500       0       510       510       510       510       510       500       0       510       510       510       510       510       510       510       510       510       510       510       510       510	Frt	1.00	1.00	1.00	0.865	1.00	1.00			
Said, Flow (prot)       0       1590       0       1442       1583       0         FIL Permitted       0.954       0.950       50         Said, Flow (perm)       0       1590       0       1442       1583       0         Right Turn on Red       Yes       Yes       Yes       Yes         Said, Flow (Porm)       45       45       45         Link Distance (rth)       1065       533       580         Travel Time (s)       16.1       8.1       8.8         Peak Hour Factor       0.85       0.85       0.85       0.85         Adj, Flow (vph)       365       12       0       24       500       0         Enter Blocked Intersection       No       No       No       No       No       No         Lane Alignment       Left       Left       Right       Left       Right       Left       Right         Median Width(ft)       0       0       0       12       100       107       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07 <t< td=""><td>Flt Protected</td><td></td><td>0 954</td><td></td><td>0.000</td><td>0 950</td><td></td><td></td><td></td><td></td></t<>	Flt Protected		0 954		0.000	0 950				
File Permitted       0.954       0.950         Satd. Flow (perm)       0       1590       0       1442       1583       0         Satd. Flow (perm)       0       1590       0       1442       1583       0         Satd. Flow (RTOR)       1       160       533       580       1       161       8.1       8.8         Peak Hour Factor       0.85       0.85       0.85       0.85       0.85       0.85       0.85         Aj. Flow (vph)       365       12       0       24       500       0         Shared Lane Traffic (%)	Satd Flow (prot)	0	1590	0	1442	1583	0			
Said. Flow (perm)         0         1590         0         1442         1883         0           Right Turm on Red         Yes         Yes         Yes         Yes           Said. Flow (RTOR)         1         45         45         45           Link Distance (It)         1065         533         580         Travel Time (s)         16.1         8.1         8.8           Peak Hour Factor         0.85         0.85         0.85         0.85         0.85         0.85           Shared Lane Traffic (%)         365         12         0         24         500         0           Enter Blocked Intersection         No         No         No         No         No         No           Lane Alignment         Left         Left         Right         Left         Right         Left         Right           Versey Left Turn Lane         Headway Factor         1.07         1.07         1.07         1.07         1.07         1.07           Trailing Detector (ft)         0         0         0         0         0         0           Detector Papiate         Left         Thru         Leading Detector (ft)         0         0         0         0	Flt Permitted	Ū	0.954	Ŭ		0.950	•			
Right Tum on Red       Yes       Yes         Sald. Flow (RTOR)       1065       533       580         Link Distance (tt)       1065       533       580         Travel Time (s)       16.1       8.1       8.8         Peak Hour Factor       0.85       0.85       0.85       0.85         Lane Group Flow (vph)       0       377       0       24       500       0         Shared Lane Traffic (%)       Lane Group Flow (vph)       0       377       0       24       500       0         Enter Blocked Intersection       No       No       No       No       No       No       No         Lane Group Flow (vph)       0       377       0       24       500       0         Lane Group Flow (vph)       0       377       0       24       500       0         Lane Group Flow (vph)       0       0       12       1       1       1         Lane Alignment       Left       Left       Right       Left       Right       107         Median Width(ft)       0       0       0       0       0       0       0       0       107       1.07       1.07       1.07       1.07	Satd Flow (perm)	0	1590	0	1442	1583	0			
Sign Flow (RTOR)       106       106         Link Distance (ft)       1065       533       580         Travel Time (s)       16.1       8.1       8.8         Peak Hour Factor       0.85       0.85       0.85       0.85         Adj. Flow (vph)       365       12       0       24       500       0         Shared Lane Traffic (%)       1       0       377       0       24       500       0         Enter Blocked Intersection       No       No       No       No       No       No       No         Median Width(ft)       0       0       12       12       12       12       12         Crosswaik Width(ft)       24       24       24       24       14       100       0       0       107       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       1.07       <	Right Turn on Red	Ū	1000	Ŭ	Yes	1000	Yes			
Link Discord (mph)         45         45         45           Link Distance (ft)         1065         533         580           Travel Time (s)         16.1         8.1         8.8           Peak Hour Factor         0.85         0.85         0.85         0.85           Lane Group Flow (vph)         365         12         0         24         500         0           Shared Lane Traffic (%)	Satd Flow (RTOR)				100		100			
Bink Distance (ft)         1065         53         580           Travel Time (s)         16.1         8.1         8.8           Peak Hour Factor         0.85         0.85         0.85         0.85           Adj. Flow (vph)         365         12         0         24         500         0           Shared Lane Traffic (%)         1         1         8.8         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Link Speed (mph)		45	45		45				
Link Lift (y)       Link       Link<	Link Distance (ft)		1065	533		580				
Instruction         Instruction         Instruction         Instruction           Peak Hour Factor         0.85         0.85         0.85         0.85           Adj. Flow (vph)         365         12         0         24         500         0           Shared Lane Traffic (%)         Lane Group Flow (vph)         0         377         0         24         500         0           Eane Group Flow (vph)         0         377         0         24         500         0           Eane Group Flow (vph)         0         377         0         24         500         0           Lane Alignment         Left         Left         Right         Left         Right         Median Widht(ft)           0         0         0         0         0         0         0         0           Headway Factor         1.07         1.07         1.07         1.07         1.07         1.07           Turning Speed (mph)         60         60         60         60         60           Detector flopalate         Left         Thru         Leading Detector (ft)         20         0         0         0         0         0         0         0         0         0 <td>Travel Time (s)</td> <td></td> <td>16 1</td> <td>8 1</td> <td></td> <td>8.8</td> <td></td> <td></td> <td></td> <td></td>	Travel Time (s)		16 1	8 1		8.8				
Hamman Letter         0.00         0.00         0.00         0.00         0.00           Shared Lane Traffic (%)	Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85			
Lane Group Flow (vph)       0       377       0       24       500       0         Lane Group Flow (vph)       0       377       0       24       500       0         Enter Blocked Intersection       No       No       No       No       No       No         Lane Alignment       Left       Left       Left       Right       Median Width(ft)       0       0         Link Offset(ft)       0       0       0       12       1.07       1.07       1.07       1.07         Wow ay Left Turn Lane	Adi, Flow (vnh)	365	12	0.00	24	500	0.00			
Lane Group Flow (vph)         0         377         0         24         500         0           Enter Blocked Intersection         No         No         No         No         No         No           Lane Group Flow (vph)         0         377         0         24         500         0           Lane Group Flow (vph)         0         377         0         24         500         0           Lane Alignment         Left         Left         Left         Right         Left         Right           Median Width(ft)         0         0         0         0         Crosswalk Width(ft)         24         24         24           Two way Left Turn Lane         Headway Factor         1.07         1.07         1.07         1.07           Headway Factor         1         2         0         0         0         0           Detector Template         Left         Thru         Leading Detector (ft)         20         0         0           Leading Detector (ft)         0         0         0         0         0         0           Detector 1 Size(ft)         0         0         0         0         0         0         0 <t< td=""><td>Shared Lane Traffic (%)</td><td>000</td><td>12</td><td>v</td><td><b>4</b>7</td><td>000</td><td>U U</td><td></td><td></td><td></td></t<>	Shared Lane Traffic (%)	000	12	v	<b>4</b> 7	000	U U			
Land Bidgment       Left       Left       Left       Right         Median Width(ft)       0       0       12         Link Offset(ft)       0       0       0         Crosswalk Width(ft)       24       24       24         Two way Left Tum Lane       107       1.07       1.07       1.07         Headway Factor       1.07       1.07       1.07       1.07         Turning Speed (mph)       60       60       60         Number of Detectors       1       2       0       0         Detector Template       Left       Thru       Leading Detector (ft)       0       0         Detector 1 Position(ft)       0       0       0       0       0         Detector 1 Size(ft)       20       6       20       20       0         Detector 1 Size(ft)       20       6       20       20       0         Detector 1 Size(ft)       20       0.0       0.0       0.0       0       0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0       0.0       0       0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0       0       0       <	Lane Group Flow (vph)	0	377	0	24	500	0			
Link Discrete indication         Indication <thindication< th="">         Indication</thindication<>	Enter Blocked Intersection	No	No	No	No	No	No			
Land rught better         Lon         Lon         Lon         Hight           Wedian Width(ft)         0         0         12           Link Offset(ft)         0         0         0           Crosswalk Width(ft)         24         24         24           Two way Left Turn Lane         Headway Factor         1.07         1.07         1.07           Headway Factor         1.07         1.07         1.07         1.07           Turning Speed (mph)         60         60         60           Number of Detectors         1         2         0         0           Detector Template         Left         Thru         Leading Detector (ft)         0         0         0           Detector 1 Position(ft)         0         0         0         0         0         0           Detector 1 Size(ft)         20         6         20         20         0           Detector 1 Size(ft)         20         6         20         20         0           Detector 1 Size(ft)         0.0         0.0         0.0         0         0         0           Detector 1 Size(ft)         0.0         0.0         0.0         0         0         0 </td <td>Lane Alignment</td> <td>Left</td> <td>Left</td> <td>Left</td> <td>Right</td> <td>Left</td> <td>Right</td> <td></td> <td></td> <td></td>	Lane Alignment	Left	Left	Left	Right	Left	Right			
Index Offset(ft)       0       0       12         Link Offset(ft)       24       24       24         Two way Left Turn Lane	Median Width(ft)	Lon	0	0	rtigitt	12	rugitt			
Link Obs(h)       24       24       24         Two way Left Turn Lane       1.07       1.07       1.07       1.07       1.07         Headway Factor       1.07       1.07       1.07       1.07       1.07       1.07         Turning Speed (mph)       60       60       60       60       60         Number of Detectors       1       2       0       0       0         Detector Template       Left       Thru	Link Offset(ft)		0	0		0				
Detector 1 Channel       Li       Li       Li         Headway Factor       1.07       1.07       1.07       1.07       1.07         Turning Speed (mph)       60       60       60       60         Number of Detectors       1       2       0       0         Detector Template       Left       Thru       Leading Detector (ft)       20       0         Detector Template       Left       Thru       Leading Detector (ft)       0       0       0         Detector 1 Position(ft)       0       0       0       0       0       0       0         Detector 1 Size(ft)       20       6       20       20       20       20       20         Detector 1 Channel       Detector 1 Channel       Detector 1 Queue (s)       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0<	Crosswalk Width(ft)		24	24		24				
Notice of the construction       1.07       1.07       1.07       1.07       1.07       1.07         Turning Speed (mph)       60       60       60       60       60         Number of Detectors       1       2       0       0         Detector Template       Left       Thru       Leading Detector (ft)       20       100       0       0         Trailing Detector (ft)       0       0       0       0       0       0       0         Detector 1 Position(ft)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <	Two way Left Turn Lane		21	21		21				
Indiana (1)       Indiana (1)       Indiana (1)       Indiana (1)         Intrining Speed (mph)       60       60       60         Number of Detectors       1       2       0       0         Detector Template       Left       Thru       Indiana       Indiana         Leading Detector (ft)       20       100       0       0       0         Detector 1 Position(ft)       0       0       0       0       0         Detector 1 Position(ft)       0       0       0       0       0         Detector 1 Size(ft)       20       6       20       20       0         Detector 1 Channel       0       0       0       0       0       0         Detector 1 Channel       0       0       0       0       0       0       0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <	Headway Eactor	1 07	1 07	1 07	1 07	1 07	1 07			
Humber of Detectors       1       2       0       0         Detector Template       Left       Thru	Turning Speed (mph)	60	1.07	1.07	60	60	60			
Names of Detector Template       Left       Thru         Leading Detector (ft)       20       100       0       0         Trailing Detector (ft)       0       0       0       0         Detector 1 Position(ft)       0       0       0       0         Detector 1 Size(ft)       20       6       20       20         Detector 1 Size(ft)       20       6       20       20         Detector 1 Type       CI+Ex       CI+Ex       CI+Ex       CI+Ex         Detector 1 Channel       0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       0       0       0         Detector 2 Size(ft)       6       0       0       0       0         Detector 2 Size(ft)       6       0       0       0       0       0         Detector 2 Size(ft)       6       0       0       0       0       0       0       0       0       0       0 <td>Number of Detectors</td> <td>1</td> <td>2</td> <td></td> <td>0</td> <td>0</td> <td>00</td> <td></td> <td></td> <td></td>	Number of Detectors	1	2		0	0	00			
Leading Detector (ft)       20       100       0       0         Trailing Detector (ft)       0       0       0       0         Detector 1 Position(ft)       0       0       0       0         Detector 1 Size(ft)       20       6       20       20         Detector 1 Size(ft)       20       6       20       20         Detector 1 Size(ft)       20       6       20       20         Detector 1 Channel       0       0       0       0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       94       0       0         Detector 2 Size(ft)       6       0.0       0.0       0.0       0.0       0.0         Detector 2 Channel       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0	Detector Template	l eft	Thru		U	U				
Detector (it)       10       0       0       0         Detector 1 Position(ft)       0       0       0       0         Detector 1 Size(ft)       20       6       20       20         Detector 1 Size(ft)       20       6       20       20         Detector 1 Size(ft)       20       6       20       20         Detector 1 Channel       0       0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       94       94         Detector 2 Size(ft)       6       6       94         Detector 2 Channel       94       94       94         Detector 2 Extend (s)       0.0       0.0       94       94         Detector 2 Extend (s)       0.0       94       94       94         Detector Phases       2       4       4       94      <	Leading Detector (ft)	20	100		0	0				
Indimg Dotedor, (iv)       0       0       0       0         Detector 1 Position(ft)       0       0       0       0         Detector 1 Size(ft)       20       6       20       20         Detector 1 Type       CI+Ex       CI+Ex       CI+Ex       CI+Ex         Detector 1 Channel       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       0       0.0       0.0         Detector 2 Size(ft)       6       0.0       0.0       0.0       0.0         Detector 2 Channel       0.0       0.0       0.0       0.0       0.0       0.0         Detector 2 Extend (s)       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0	Trailing Detector (ft)	_0	0		0	0				
Detector 1 Size(ft)       20       6       20       20         Detector 1 Type       CI+Ex       CI+Ex       CI+Ex       CI+Ex       CI+Ex         Detector 1 Channel       Detector 1 Channel       00       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       94       0       0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <td>Detector 1 Position(ft)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td>	Detector 1 Position(ft)	0	0		0	0				
Detector 1 Type       CI+Ex       CI+Ex       CI+Ex       CI+Ex         Detector 1 Channel       0.0       0.0       0.0       0.0         Detector 1 Extend (s)       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       0.0       0.0       0.0         Detector 2 Size(ft)       6       0.0       0.0       0.0         Detector 2 Channel       0.0       0.0       0.0       0.0         Detector 2 Extend (s)       0.0       0.0       0.0       0.0         Turn Type       Perm< NA	Detector 1 Size(ft)	20	6		20	20				
Detector 1 Channel       01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.1 01.0.0.1 01.0.0.0.1 01.0.0.0.1 01.0.0 01.0.0.1 01.0.0 01.0.0.0.0	Detector 1 Type	CI+Ex	Cl+Fx		CI+Ex	Cl+Fx				
Detector 1 Extend (s)       0.0       0.0       0.0       0.0         Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       94       94         Detector 2 Size(ft)       6       6       94         Detector 2 Size(ft)       6       94       94         Detector 2 Channel       94       94       94         Detector 2 Channel       94       94       94         Detector 2 Extend (s)       0.0       0.0       94         Turn Type       Perm       NA       pm+ov       Prot         Protected Phases       2       4       4       6         Permitted Phases       2       6       94       6         Detector Phase       2       2       4       4       6         Detector Phase       2       2       4       4       6         Detector Phase       2       2       4       4       6         Detector Phase       2       2       5       5       5       5	Detector 1 Channel									
Detector 1 Queue (s)       0.0       0.0       0.0       0.0         Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94       94       94         Detector 2 Size(ft)       6       6       94         Detector 2 Size(ft)       6       94       94         Detector 2 Size(ft)       6       94       94         Detector 2 Channel       94       94       94         Detector 2 Extend (s)       0.0       0.0       94         Turn Type       Perm       NA       pm+ov       Prot         Protected Phases       2       4       4       6         Permitted Phases       2       6       94       10         Detector Phase       2       2       4       4         Switch Phase       2       2       4       4         Switch Phase       50       50       50       50	Detector 1 Extend (s)	0.0	0.0		0.0	0.0				
Detector 1 Delay (s)       0.0       0.0       0.0       0.0         Detector 2 Position(ft)       94         Detector 2 Size(ft)       6         Detector 2 Size(ft)       6         Detector 2 Channel       0.0         Detector 2 Extend (s)       0.0         Turn Type       Perm         Protected Phases       2         4       4         Permitted Phases       2         0       6         Detector Phase       2         2       4         4       6         Permitted Phases       2         4       4         Switch Phase       2         Minimum Initial (s)       50       50       50	Detector 1 Queue (s)	0.0	0.0		0.0	0.0				
Detector 2 Position(ft) 94 Detector 2 Size(ft) 6 Detector 2 Type Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type Perm NA pm+ov Prot Protected Phases 2 4 4 6 Permitted Phases 2 6 Detector Phase 2 2 4 4 Switch Phase Minimum Initial (s) 50 50 50 50 50	Detector 1 Delay (s)	0.0	0.0		0.0	0.0				
Detector 2 Size(ft) 6 Detector 2 Type Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type Perm NA pm+ov Prot Protected Phases 2 4 4 6 Permitted Phases 2 6 Detector Phase 2 2 4 4 Switch Phase Minimum Initial (s) 50 50 50 50 50	Detector 2 Position(ft)	0.0	.94		0.0	0.0				
Detector 2 Type CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type Perm NA pm+ov Prot Protected Phases 2 4 4 6 Permitted Phases 2 6 Detector Phase 2 2 4 4 Switch Phase Minimum Initial (s) 50 50 50 50 50	Detector 2 Size(ft)		6							
Detector 2 Channel Detector 2 Extend (s) Turn Type Perm NA pm+ov Prot Protected Phases 2 4 4 6 Permitted Phases 2 6 Detector Phase 2 2 4 4 Switch Phase Minimum Initial (s) 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	Detector 2 Type		Cl+Fx							
Detector 2 Extend (s)     0.0       Turn Type     Perm     NA     pm+ov     Prot       Protected Phases     2     4     4     6       Permitted Phases     2     6     6       Detector Phase     2     2     4     4       Switch Phase     50     50     50     50	Detector 2 Channel									
Turn Type     Perm     NA     pm+ov     Prot       Protected Phases     2     4     4     6       Permitted Phases     2     6       Detector Phase     2     2     4     4       Switch Phase     50     50     50     50	Detector 2 Extend (s)		0.0							
Protected Phases 2 4 4 6 Permitted Phases 2 6 Detector Phase 2 2 4 4 Switch Phase		Perm	NA		nm+ov	Prot				
Permitted Phases 2 6 Detector Phase 2 2 4 4 Switch Phase Minimum Initial (s) 50 50 50 50 50	Protected Phases	1 CHI	2		4	4		6		
Detector Phase 2 2 4 4 Switch Phase 50 50 50 50 50	Permitted Phases	2	L		6	г		v		
Switch Phase Minimum Initial (s) 50 50 50 50 50	Detector Phase	2	2		4	4				
$\begin{array}{c} \text{Minimum Initial (s)} \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$	Switch Phase	2	2		7	т				
	Minimum Initial (s)	5.0	5.0		5.0	5.0		50		

Diamond_v2 Alternative.syn 7H - Total Future 70-30 PM Synchro 10 Report Page 1

#### Lanes, Volumes, Timings 1: EB Off-Ramp/N4340 Rd & OK 412B

11	/30/	20	23
----	------	----	----

	٠	-	+	*	1	~		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø6	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	
Total Split (s)	25.0	25.0		30.0	30.0		25.0	
Total Split (%)	45.5%	45.5%		54.5%	54.5%		45%	
Maximum Green (s)	20.5	20.5		25.5	25.5		20.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	
Lost Time Adjust (s)		0.0		0.0	0.0			
Total Lost Time (s)		4.5		4.5	4.5			
Lead/Lag								
Lead-Lag Optimize?								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	
Recall Mode	None	None		C-Min	C-Min		None	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	
Act Effct Green (s)		17.2		55.0	28.8			
Actuated g/C Ratio		0.31		1.00	0.52			
v/c Ratio		0.76		0.02	0.60			
Control Delay		27.2		0.0	13.1			
Queue Delay		0.0		0.0	0.0			
Total Delay		27.2		0.0	13.1			
LOS		С		A	В			
Approach Delay		27.2			13.1			
Approach LOS		С			В			
Intersection Summary								
Area Type:	Other							
Cycle Length: 55								
Actuated Cycle Length: 55	5							
Offset: 10 (18%), Reference	ced to phase	4:SBL, S	tart of Gr	een				
Natural Cycle: 50								
Control Type: Actuated-Co	oordinated							
Maximum v/c Ratio: 0.76								
Intersection Signal Delay:	18.7			lr	ntersectior	LOS: B		
Intersection Capacity Utiliz	zation 51.0%			IC	CU Level o	of Service	А	
Analysis Period (min) 15								

#### Splits and Phases: 1: EB Off-Ramp/N4340 Rd & OK 412B

	Ø4 (R)	25
25 s	30 s	
~		
Ø6		
25 s		

Lanes, Volumes, Timings 3: OK 412B & WB On-Ramp/WB Off-Ramp

	٠	<b>→</b>	7	4	+	•	1	Ť	1	4	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				5		1		đ			*	1
Traffic Volume (vph)	0	0	0	10	0	135	10	320	0	0	415	915
Future Volume (vph)	0	0	0	10	0	135	10	320	0	0	415	915
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (ft)	0		0	0		30	0		0	0		0
Storage Lanes	0		0	1		1	0		0	0		1
Taper Length (ft)	25		-	25			25		-	25		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850						0.850
Flt Protected				0.950				0.998				
Satd. Flow (prot)	0	0	0	1583	0	1417	0	1663	0	0	1667	1417
Flt Permitted	-	-	-	0.950			-	0.986	-	-		
Satd. Flow (perm)	0	0	0	1583	0	1417	0	1643	0	0	1667	1417
Right Turn on Red	Ŭ	Ű	Yes	1000	Ű	Yes	Ŭ	1010	Yes	Ű	1001	Yes
Satd Flow (RTOR)			100			159						1076
Link Speed (mph)		45			45	100		45			45	1010
Link Distance (ft)		656			816			580			3418	
Travel Time (s)		99			12.4			8.8			51.8	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adi Flow (vph)	0.00	0.00	0.00	12	0.00	159	12	376	0.00	0.00	488	1076
Shared Lane Traffic (%)	U	U	U	12	Ū	100	12	010	U	U	400	1070
Lane Group Flow (vph)	0	0	0	12	0	159	0	388	0	0	488	1076
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	l off	Left	Right	l off	Left	Right	Left	Left	Right		Left	Right
Median Width(ft)	Lon	12	rtigitt	Lon	12	rugitt	Lon	0	rugiit	Lon	0	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		24			24			24			24	
		27			27			27			27	
Headway Eactor	1 07	1 07	1 07	1 07	1 07	1 07	1 07	1 07	1 07	1 07	1 07	1 07
Turning Speed (mph)	60	1.01	60	60	1.07	60	60	1.07	60	60	1.07	60
Number of Detectors	00		00	1		1	1	2	00	00	2	1
Detector Template				Left		Right	Left	Thru			Thru	Right
Leading Detector (ft)				20		20	20	100			100	20
Trailing Detector (ft)				20		20	0	0			0	20
Detector 1 Position(ft)				0		0	0	0			0	0
Detector 1 Size(ft)				20		20	20	6			6	20
Detector 1 Type				CI+Ex		CI+Ex	CI+Ex	CI+Ex			CI+Ex	CI+Ex
Detector 1 Channel								OILX				
Detector 1 Extend (s)				0.0		0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)				0.0		0.0	0.0	0.0			0.0	0.0
Detector 1 Delay (s)				0.0		0.0	0.0	0.0			0.0	0.0
Detector 2 Position(ft)				0.0		0.0	0.0	0.0 Q/			0.0 Q/	0.0
Detector 2 Size(ft)								6			6	
Detector 2 Type												
Detector 2 Channel												
Detector 2 Extend (a)								0.0			0.0	
				Drot		Froo	Dorm	0.0				Dorm
Protected Phases				1		TIEE	r enn	Ω			IN/A	r enn
Pormitted Phases				I		Erco	0	0			4	
remilleu rhases						LIGE	0					4

Diamond_v2 Alternative.syn 7H - Total Future 70-30 PM

Synchro 10 Report Page 3

Lanes, Volumes, Timings 3: OK 412B & WB On-Ramp/WB Off-Ramp

11/30/2023	3
------------	---

	٠	→	7	1	+	*	1	Ť	1	4	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase				1			8	8			4	4
Switch Phase												
Minimum Initial (s)				5.0			5.0	5.0			5.0	5.0
Minimum Split (s)				9.5			22.5	22.5			22.5	22.5
Total Split (s)				12.0			43.0	43.0			43.0	43.0
Total Split (%)				21.8%			78.2%	78.2%			78.2%	78.2%
Maximum Green (s)				7.5			38.5	38.5			38.5	38.5
Yellow Time (s)				3.5			3.5	3.5			3.5	3.5
All-Red Time (s)				1.0			1.0	1.0			1.0	1.0
Lost Time Adjust (s)				0.0				0.0			0.0	0.0
Total Lost Time (s)				4.5				4.5			4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)				3.0			3.0	3.0			3.0	3.0
Recall Mode				None			Min	Min			C-Min	C-Min
Act Effct Green (s)				6.0		55.0		51.8			51.8	51.8
Actuated g/C Ratio				0.11		1.00		0.94			0.94	0.94
v/c Ratio				0.07		0.11		0.25			0.31	0.77
Control Delay				22.6		0.2		0.8			1.7	5.6
Queue Delay				0.0		0.0		0.0			0.0	0.0
Total Delay				22.6		0.2		0.8			1.7	5.6
LOS				С		А		А			А	Α
Approach Delay					1.7			0.8			4.4	
Approach LOS					А			А			А	
Intersection Summary												
Area Type: Oth	ner											
Cycle Length: 55												
Actuated Cycle Length: 55												
Offset: 51 (93%), Referenced to	o phase	4:SBT, St	tart of Gi	reen								
Natural Cycle: 60												
Control Type: Actuated-Coordin	nated											
Maximum v/c Ratio: 0.77												
Intersection Signal Delay: 3.5				In	tersection	LOS: A						
Intersection Capacity Utilization	1 85.7%			IC	CU Level o	of Service	ε					
Analysis Period (min) 15												

Splits and Phases: 3: OK 412B & WB On-Ramp/WB Off-Ramp

Ø1	🛛 🗸 Ø4 (R)	
12 s		
	✓ Ø8	
	43 s	

	٠	-	-	*	1	1
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ŧ	f,			
Traffic Volume (vph)	405	30	20	10	0	0
Future Volume (vph)	405	30	20	10	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.955			
Flt Protected		0.955				
Satd. Flow (prot)	0	1592	1592	0	0	0
Flt Permitted		0.955				
Satd. Flow (perm)	0	1592	1592	0	0	0
Link Speed (mph)		45	45		45	
Link Distance (ft)		533	1970		600	
Travel Time (s)		8.1	29.8		9.1	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	476	35	24	12	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	511	36	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width(ft)		0	0		0	
Link Offset(ft)		0	0		0	
Crosswalk Width(ft)		40	40		40	
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07
Turning Speed (mph)	60			60	60	60
Sign Control		Yield	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						
Intersection Capacity Utiliza	ation 35.3%			IC	U Level o	of Service

Analysis Period (min) 15

#### * ٠ 5 1 + EBL EBT WBT SBL Lane Group WBR SBR Lane Configurations đ Þ ٦ Traffic Volume (vph) 0 0 0 0 0 0 Future Volume (vph) 0 0 0 0 0 0 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frt **Flt Protected** 0 1667 1667 0 1667 0 Satd. Flow (prot) Flt Permitted Satd. Flow (perm) 0 1667 1667 0 1667 0 Right Turn on Red Yes Yes Satd. Flow (RTOR) Link Speed (mph) 45 45 45 Link Distance (ft) 338 484 251 Travel Time (s) 5.1 7.3 3.8 Peak Hour Factor 0.85 0.85 0.85 0.85 0.85 0.85 Adj. Flow (vph) 0 0 0 0 0 0 Shared Lane Traffic (%) 0 0 Lane Group Flow (vph) 0 0 0 0 Enter Blocked Intersection No No No No No No Lane Alignment Left Left Left Right Left Right Median Width(ft) 0 0 12 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 Two way Left Turn Lane 1.07 1.07 Headway Factor 1.07 1.07 1.07 1.07 Turning Speed (mph) 60 60 60 60 Turn Type Prot Protected Phases 4 8 6 Permitted Phases 4 Minimum Split (s) 22.5 22.5 22.5 22.5 Total Split (s) 22.5 22.5 22.5 22.5 Total Split (%) 28.1% 28.1% 28.1% 28.1% Maximum Green (s) 18.0 18.0 18.0 18.0 3.5 Yellow Time (s) 3.5 3.5 3.5 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 4.5 4.5 4.5 Lead/Lag Lead-Lag Optimize? 7.0 7.0 Walk Time (s) 7.0 7.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay

Diamond_v2 Alternative.syn 7H - Total Future 70-30 PM Synchro 10 Report Page 6

	٠	-	+	*	4	∢		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		
LOS								
Approach Delay								
Approach LOS								
Intersection Summary								
Area Type:	Other							
Cycle Length: 80								
Actuated Cycle Length: 80								
Offset: 0 (0%), Referenced	to phase 2:	and 6:SBL	., Start o	f Green				
Natural Cycle: 45								
Control Type: Pretimed								
Maximum v/c Ratio: 0.00								
Intersection Signal Delay: (	0.0			Int	tersection	LOS: A		
Intersection Capacity Utilization	ation 0.0%			IC	U Level o	f Service A		
Analysis Period (min) 15								
Splits and Phases: 12:								
A _{Ø4}								



	٠	7	1	<b>†</b>	ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			et.	ţ,	
Traffic Volume (veh/h)	1030	10	10	20	20	105
Future Volume (veh/h)	1030	10	10	20	20	105
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1575	1575	1575	1575	1575	1575
Adj Flow Rate, veh/h	1132	0	11	22	22	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	16	16	16	16	16	16
Cap. veh/h	1184		103	41	81	
Arrive On Green	0.79	0.00	0.05	0.05	0.05	0.00
Sat Flow, veh/h	1499	0	355	805	1575	0
Grp Volume(v) veh/h	1133	0	33	0	22	0
Grn Sat Flow(s) veh/h/ln	1500	0	1160	0	1575	0
O Serve(a, s) s	36.7	0.0	1 1	0.0	0.8	0.0
Cycle O Clear(a, c)	36.7	0.0	1.1	0.0	0.0	0.0
Pron In Lane	1 00	0.00	0.33	0.0	0.0	0.0
Lane Grn Can(c) veh/h	1185	0.00	144	0	81	0.00
V/C Ratio(X)	0.96		0.23	0.00	0.27	
Avail $Can(c, a)$ veh/h	2423		567	0.00	542	
HCM Platoon Ratio	1 00	1.00	1 00	1 00	1 00	1.00
Instream Filter(I)	1.00	0.00	1.00	0.00	1.00	0.00
Uniform Delay (d) s/veb	5.1	0.00	26.6	0.00	25.9	0.00
Incr Delay (d2) s/veh	5.5	0.0	0.8	0.0	1.8	0.0
Initial O Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
% ile Back $OfO(50\%)$ yeb/lp	1.8	0.0	0.0	0.0	0.0	0.0
Unsig Movement Delay, s/vel	1.0 h	0.0	0.4	0.0	0.5	0.0
LnGrn Delay(d) s/veb	10.6	0.0	27 /	0.0	27.7	0.0
	10.0 D	0.0	21.4	0.0	21.1	0.0
	1122		U	A		
Approach Vol, ven/n	1133			33	22	
Approach Delay, s/ven	10.6			27.4	27.7	
Approach LUS	В			C	C	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		7.4		49.3		7.4
Change Period (Y+Rc), s		4.5		4.5		4.5
Max Green Setting (Gmax), s		19.5		91.5		19.5
Max Q Clear Time (g c+l1), s		3.8		38.7		2.8
Green Ext Time (p c), s		0.1		6.1		0.0
Intersection Summary						
HCM 6th Ctrl Delay			11.4			
HCM 6th LOS			В			

User approved volume balancing among the lanes for turning movement. Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Folded Diamond Alternative-Signalized.syn 7H - Total Future 70-30 AM

	٠	7	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			et.	1.	
Traffic Volume (veh/h)	445	10	10	1040	115	265
Future Volume (veh/h)	445	10	10	1040	115	265
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adi Sat Flow, veh/h/ln	1575	1575	1575	1575	1575	1575
Adj Flow Rate, veh/h	489	11	11	1143	126	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh. %	16	16	16	16	16	16
Cap. veh/h	414	9	28	1029	1034	
Arrive On Green	0.28	0.28	0.66	0.66	0.66	0.00
Sat Flow, veh/h	1461	33	6	1566	1575	0
Grn Volume(v) veh/h	501	0	1154	0	126	0
Grn Sat Flow(s) veh/h/ln	1/06	0	1573	0	1575	0
O[p] O[n] O[n] O[n] O[n] O[n] O[n] O[n] O[n	/2 5	0.0	1070	0.0	1575	0.0
$Q$ $Oel Ve(Q_3), 3$	42.5	0.0	98.5	0.0	4.5	0.0
Pron ln l ane	42.5 0.08	0.0	0.01	0.0	<del>ч</del> .Ј	0.0
Lane Grn Can(c) veh/h	121	0.02	1057	٥	103/	0.00
V/C Patio(X)	1 1 2	0 00	1 00	0 00	0.12	
V/C (Allo(X))	1.10	0.00	1057	0.00	103/	
HCM Platoon Patio	1 00	1 00	1 00	1 00	1 00	1 00
Lingtroom Filtor(I)	1.00	0.00	1.00	0.00	1.00	0.00
Upstream Filter(I)	1.00 52 0	0.00	1.00	0.00	1.00	0.00
Uniform Delay (d), s/ven	102 5	0.0	20.0	0.0	9.0	0.0
Inci Delay (uz), s/ven	103.5	0.0	2.00	0.0	0.1	0.0
Initial Q Delay(03),S/ven	0.0	0.0	0.0	0.0	0.0	0.0
%IIe BackOfQ(50%),Ven/In	Z1.1	0.0	51.1	0.0	1.5	0.0
Unsig. Wovement Delay, s/ve		0.0	02.0	0.0	0.7	0.0
LnGrp Delay(d),s/ven	157.3	0.0	83.0	0.0	9.7	0.0
LINGIP LOS	F	A		A	A	
Approach Vol, veh/h	501			1154	126	
Approach Delay, s/veh	157.3			83.0	9.7	
Approach LOS	F			F	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		103.0		47.0		103.0
Change Period (Y+Rc), s		4.5		4.5		4.5
Max Green Setting (Gmax), s	5	98.5		42.5		98.5
Max Q Clear Time (g_c+I1),	s	100.5		44.5		6.5
Green Ext Time (p_c), s		0.0		0.0		0.7
Intersection Summary						
HCM 6th Ctrl Delay			98.7			
HCM 6th LOS			F			

User approved volume balancing among the lanes for turning movement. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Folded Diamond Alternative-Signalized.syn 7H - Total Future 70-30 AM

	٠	7	1	T.	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	Ţ.	
Traffic Volume (veh/h)	310	10	10	20	20	405
Future Volume (veh/h)	310	10	10	20	20	405
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1688	1688	1688	1688	1688	1688
Adj Flow Rate, veh/h	365	0	12	24	24	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	8	8	8	8	8	8
Cap, veh/h	534		296	316	402	
Arrive On Green	0.33	0.00	0.24	0.24	0.24	0.00
Sat Flow, veh/h	1603	0	283	1326	1688	0
Grp Volume(v) veh/h	366	0	36	0	24	0
Grn Sat Flow(s) veh/h/ln	1608	0	1609	0	1688	0
O Serve(a, s) s	<u>4</u> 1	0.0	0.0	0.0	0.2	0.0
Cycle O Clear(a, c) s	<u>4</u> 1	0.0	0.0	0.0	0.2	0.0
Prop In Lane	1 00	0.00	0.33	0.0	0.2	0.00
Lane Grn Can(c) veh/h	536	0.00	612	0	402	0.00
V/C Ratio(X)	0.68		0.06	0.00	0.06	
Avail Can(c_a) veh/h	1378		1568	0.00	1447	
HCM Platoon Batio	1 00	1 00	1 00	1 00	1 00	1 00
Instream Filter(I)	1.00	0.00	1.00	0.00	1.00	0.00
Uniform Delay (d) s/veb	6.0	0.00	6.2	0.00	6.2	0.00
Incr Delay (d2), s/veh	1.5	0.0	0.2	0.0	0.2	0.0
Initial O Delay(d3) s/yeb	0.0	0.0	0.0	0.0	0.1	0.0
%ile BackOfO(50%) veh/lp	0.0	0.0	0.0	0.0	0.0	0.0
Unsig Movement Delay, s/ve	0.4 h	0.0	0.0	0.0	0.0	0.0
La Gra Dolov(d) s/veb	76	0.0	63	0.0	6.2	0.0
Lingip Delay(u),s/ven	7.0	0.0	0.5	0.0	0.2	0.0
	A		A	A	A 04	
Approach Vol, ven/h	366			30	24	
Approach Delay, s/ven	7.6			6.3	6.2	
Approach LOS	A			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		9.5		11.5		9.5
Change Period (Y+Rc), s		4.5		4.5		4.5
Max Green Setting (Gmax), s	i	18.0		18.0		18.0
Max Q Clear Time (q c+l1), s	3	2.3		6.1		2.2
Green Ext Time (p_c), s		0.1		0.9		0.0
Intersection Summary						
HCM 6th Ctrl Delay			74			
HCM 6th LOS			Δ			
			А			

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	٠	7	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्स	ţ,	
Traffic Volume (veh/h)	135	10	10	320	415	915
Future Volume (veh/h)	135	10	10	320	415	915
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1688	1688	1688	1688	1688	1688
Adj Flow Rate, veh/h	159	12	12	376	488	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh. %	8	8	8	8	8	8
Cap. veh/h	216	16	174	746	761	-
Arrive On Green	0.15	0.15	0.45	0.45	0.45	0.00
Sat Flow, veh/h	1474	111	18	1653	1688	0
Grn Volume(v) veh/h	172	0	388	0	/88	0
Grn Sat Flow(s) veh/h/ln	150/	0	1671	0	1688	0
O Serve( $a$ , $s$ ) s	23	0.0	0.0	0.0	5.0	0.0
$Q$ Serve( $\underline{y}_{3}$ ), s	2.3	0.0	3.7	0.0	5.0	0.0
$\frac{O(1)}{O(1)}$	0.92	0.0	0.03	0.0	5.0	0.0
Lane Grn Can(c) yeh/h	23/	0.07	0.03	٥	761	0.00
V/C Patio(X)	0.74	0.00	0.42	0 00	0.64	
$\sqrt{C} \operatorname{Railo}(X)$	1380	0.00	0.42	0.00	0162	
HCM Plateon Patio	1.00	1 00	1 00	1 00	1 00	1 00
Lingtroom Eiltor(I)	1.00	0.00	1.00	0.00	1.00	0.00
Upstream Filter(I)	0.1	0.00	1.00	0.00	1.00	0.00
Unitonii Deidy (u), s/ven	9.1	0.0	4.4	0.0	4.7	0.0
Inci Delay (uz), s/ven	4.5	0.0	0.3	0.0	0.9	0.0
Initial Q Delay(03), s/ven	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ven/in	0.0	0.0	0.1	0.0	0.2	0.0
Unsig. Movement Delay, s/v	en 42.0	0.0	4 7	0.0	F (	0.0
LnGrp Delay(d),s/ven	13.6	0.0	4.7	0.0	5.6	0.0
LINGIP LOS	B	A	A	A	A	
Approach Vol, veh/h	172			388	488	
Approach Delay, s/veh	13.6			4.7	5.6	
Approach LOS	В			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		14.6		7.8		14.6
Change Period (Y+Rc), s		4.5		4.5		4.5
Max Green Setting (Gmax),	S	121.5		19.5		121.5
Max Q Clear Time (g_c+l1),	S	5.7		4.3		7.0
Green Ext Time (p_c), s		2.4		0.4		3.1
Intersection Summary						
HCM 6th Ctrl Delay			6.6			
HCM 6th LOS			A			

User approved volume balancing among the lanes for turning movement. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

Folded Diamond Alternative-Signalized.syn 7H - Total Future 70-30 PM

Intersection					
Intersection Delay, s/veh	78.7				
Intersection LOS	F				
Approach	Ν	3	SB	SE	SW
Entry Lanes		1	1	1	1
Conflicting Circle Lanes		1	1	1	1
Adj Approach Flow, veh/h	3	3	137	1143	0
Demand Flow Rate, veh/h	3	9	159	1326	0
Vehicles Circulating, veh/h	144	6	0	159	1339
Vehicles Exiting, veh/h	3	9 1	1339	0	146
Ped Vol Crossing Leg, #/h		0	0	0	0
Ped Cap Adj	1.00	0 1	.000	1.000	1.000
Approach Delay, s/veh	15.	8	4.0	89.5	0.0
Approach LOS		0	А	F	-
Lane	Left	Left	Left	Left	
Designated Moves	TR	LT	LR	R	
Assumed Moves	TR	LT	LR	R	
RT Channelized					
Lane Util	1.000	1.000	1.000	1.000	
Follow-Up Headway, s	2.609	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	4.976	
Entry Flow, veh/h	39	159	1326	0	
Cap Entry Lane, veh/h	316	1380	1173	352	
Entry HV Adj Factor	0.857	0.864	0.862	1.000	
Flow Entry, veh/h	33	137	1143	0	
Cap Entry, veh/h	271	1193	1011	352	
V/C Ratio	0.124	0.115	1.130	0.000	
Control Delay, s/veh	15.8	4.0	89.5	10.2	
LOS	С	А	F	В	
95th %tile Queue, veh	0	0	31	0	

Intersection					
Intersection Delay, s/veh	25.0				
Intersection LOS	С				
Approach	EB	WB	NB		SB
Entry Lanes	1	1	1		2
Conflicting Circle Lanes	2	2	2		2
Adj Approach Flow, veh/h	0	11	1154		417
Demand Flow Rate, veh/h	0	13	1339		484
Vehicles Circulating, veh/h	159	1339	0		26
Vehicles Exiting, veh/h	351	0	159		1326
Ped Vol Crossing Leg, #/h	0	0	0		0
Ped Cap Adj	1.000	1.000	1.000		1.000
Approach Delay, s/veh	0.0	9.8	32.4		4.9
Approach LOS	-	А	D		А
Lane	Left	Left	Left	Left	Right
Designated Moves	R	LT	LT	LT	R
Assumed Moves	R	LT	LT	LT	R
RT Channelized					
Lane Util	1.000	1.000	1.000	0.302 (	).698
Follow-Up Headway, s	2.535	2.535	2.535	2.667 2	2.535
Critical Headway, s	4.328	4.328	4.328	4.645 4	1.328
Entry Flow, veh/h	0	13	1339	146	338
Cap Entry Lane, veh/h	1241	455	1420	1318	1389
Entry HV Adj Factor	1.000	0.846	0.862	0.862 (	).861
Flow Entry, veh/h	0	11	1154	126	291
Cap Entry, veh/h	1241	385	1224	1136	1196
V/C Ratio	0.000	0.029	0.943	0.111 (	).243
Control Delay, s/veh	2.9	9.8	32.4	4.1	5.2
LOS	А	А	D	А	А
95th %tile Queue, veh	0	0	17	0	1

Intersection				
Intersection Delay, s/veh	9.1			
Intersection LOS	А			
Approach	NB	SB	SE	SW
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	36	500	377	0
Demand Flow Rate, veh/h	39	540	407	0
Vehicles Circulating, veh/h	908	0	540	420
Vehicles Exiting, veh/h	39	420	0	527
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	8.0	6.6	12.5	0.0
Approach LOS	А	А	В	-
Lane	Left	Left	Left	Left
Designated Moves	TR	LT	LR	R
Assumed Moves	TR	LT	LR	R
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	39	540	407	0
Cap Entry Lane, veh/h	547	1380	796	899
Entry HV Adj Factor	0.925	0.926	0.926	1.000
Flow Entry, veh/h	36	500	377	0
Cap Entry, veh/h	506	1278	737	899
V/C Ratio	0.071	0.391	0.512	0.000
Control Delay, s/veh	8.0	6.6	12.5	4.0
LOS	А	А	В	A
95th %tile Queue, veh	0	2	3	0

Intersection				
Intersection Delay, s/veh	13.3			
Intersection LOS	В			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	2
Conflicting Circle Lanes	2	2	2	2
Adj Approach Flow, veh/h	0	12	388	1564
Demand Flow Rate, veh/h	0	13	419	1689
Vehicles Circulating, veh/h	540	419	0	26
Vehicles Exiting, veh/h	1175	0	540	406
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	0.0	4.0	5.4	15.4
Approach LOS	-	А	А	С
Lane	Left	Left	Left	Left Right
Designated Moves	R	LT	LT	LT R
Assumed Moves	R	LT	LT	LT R
RT Channelized				
Lane Util	1.000	1.000	1.000	0.312 0.688
Follow-Up Headway, s	2.535	2.535	2.535	2.667 2.535
Critical Headway, s	4.328	4.328	4.328	4.645 4.328
Entry Flow, veh/h	0	13	419	527 1162
Cap Entry Lane, veh/h	897	995	1420	1318 1389
Entry HV Adj Factor	1.000	0.923	0.926	0.926 0.926
Flow Entry, veh/h	0	12	388	488 1076
Cap Entry, veh/h	897	918	1315	1220 1286
V/C Ratio	0.000	0.013	0.295	0.400 0.837
Control Delay, s/veh	4.0	4.0	5.4	6.9 19.3
LOS	А	A	А	A C
95th %tile Queue, veh	0	0	1	2 11

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023		
Agency	Garver	Analysis Year	2045 Build		
Jurisdiction	Mayes County, OK	Time Analyzed	АМ		
Facility Name		Units	U.S. Customary		
Project Description	US 412 EB - 70-30 Split (Trumpet_v5)				

## Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.49		

#### Facility Segment Data

No.	Coded	Analyzed	nalyzed Name		Lanes
1	Basic	Basic	Before Off Ramp W/O OK412B	2000	2
2	Diverge	Diverge	Off Ramp W/O OK412B	1500	2
3	Basic	Basic	Between OK412B Off and On Ramps	875	2
4	Merge	Merge	On Ramp W/O OK412B	1500	2
5	Basic	Basic	After On Ramp W/O OK412B	2000	2

							Segme	nt 1: Ba	asic						
AP	PI	HF	fł	ΗV	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	19	56	480	00	0.	41	70	).0	14	4.0	В
							Segmen	t 2: Div	erge						
АР	PI	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1956	1284	4800	2000	0.41	0.64	54.8	54.8	17.8	10.3	В
	Segment 3: Basic														
AP	PI	HF	fł	٩V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	67	'3	480	00	0.	14	6	7.8	4.8		A
							Segmer	nt 4: Me	erge						
AP	PI	HF	fł	٠v	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	815	142	4800	2000	0.17	0.07	64.4	64.4	6.3	11.8	В
							Segme	nt 5: Ba	asic						
АР	PI	HF	fł	IV	Flow	Rate	Сара	city	d	/c	Sp	eed	Der	sity	LOS

			(pc/h)	(pc/h	)	Ratio	(mi/h	ı)	(pc/mi/ln)		
1	0.94	0.862	815	4800	4800 0.17 69.7			5.		A	
Facility Analysis Results											
AP         VMT         VMT-Demand         VHD         Total Delay Cost         Speed         Density           veh-mi/AP         veh-mi/AP         veh-h/AP         \$/AP         mi/h         pc/mi/h							Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS
1	420	386	0.60	15.08		64.1	10.2	8.	7	1.40	В
Fac	ility Overal	l Results									
Spac	e Mean Speed,	mi/h	64.1		Average Density, veh/mi/ln 8.7						
Average Travel Time, min 1.40					Average Density, pc/mi/ln 10				10.2		
Total VMT, veh-mi 420					Total VHD, veh-h 0.60				)		
Vehicle Value of Time (VOT), \$/h         25.00         Total Delay Cost, \$         15.08											

HCSTM Freeways Version 2023 2043 AM - US 412 EB_Build Trumpet_v5 (70-30).xuf Generated: 11/30/2023 11:31:56

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023
Agency	Garver	Analysis Year	2045 Build
Jurisdiction	Mayes County, OK	Time Analyzed	РМ
Facility Name		Units	U.S. Customary
Project Description	US 412 EB - 70-30 Split (Trumpe	et_v5)	

## Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.49		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp W/O OK412B	2000	2
2	Diverge	Diverge	Off Ramp W/O OK412B	1500	2
3	Basic	Basic	Between OK412B Off and On Ramps	875	2
4	Merge	Merge	On Ramp W/O OK412B	1500	2
5	Basic	Basic	After On Ramp W/O OK412B	2000	2

							Segme	nt 1: Ba	asic							
AP	P	HF	fl	٩V	Flow (pc	Rate /h)	Capa (pc,	city /h)	d Ra	/c itio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS	
1	0.	94	0.8	862	15	74	480	00	0.	33	7(	0.0	1'	1.2	В	
							Segmen	t 2: Div	erge							
АР	P	HF	fł	٩V	Flow (pc,	Rate /h)	Capa (pc,	Capacity (pc/h)		/c tio	Sp (m	eed i/h)	Der (pc/r	Density (pc/mi/ln)		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.94	0.94	0.862	0.862	1574	395	4800	2000	0.33	0.20	57.0	57.0	13.8	7.0	A	
	Segment 3: Basic															
AP	P	HF	fl	٩V	Flow (pc	Rate /h)	Capa (pc,	city /h)	d Ra	/c itio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS	
1	0.	94	0.8	862	11	79	480	00	0.	0.25 68.1 8.4		.4	A			
							Segmer	nt 4: Me	erge							
АР	PI	HF	fł	٩V	Flow (pc	Rate /h)	Capa (pc,	city /h)	d Ra	/c itio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.94	0.94	0.862	0.862	1691	512	4800	2000	0.35	0.26	64.0	64.0	13.2	18.5	В	
							Segme	nt 5: Ba	asic							
АР	P	HF	fł	IV	Flow	Rate	Сара	city	d	/c	Sp	eed	Der	nsity	LOS	

			(pc/h)	(pc/h	)	Ratio	(mi/h	ı)	(pc/mi/ln)		
1	0.94	0.862	1691	1691         4800         0.35         69.6					12.1	В	
Fac	Facility Analysis Results										
AP         VMT         VMT-Demand         VHD         Total Delay Cost         Speed         Density           veh-mi/AP         veh-mi/AP         veh-h/AP         \$/AP         mi/h         pc/mi/ln							Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS
1	509	448	0.59	14.63		65.7	12.0	10	.3	1.40	В
Fac	ility Overal	l Results									
Spac	e Mean Speed,	mi/h	65.7		Average Density, veh/mi/ln 10.3						
Average Travel Time, min 1.40					Average Density, pc/mi/ln				12.0		
Total VMT, veh-mi 509					Total V	HD, veh-h		0.59	0.59		
Vehicle Value of Time (VOT), \$/h         25.00         Total Delay Cost, \$         14.63											

HCS T Freeways Version 2023

Generated: 11/30/2023 11:46:00

2043 PM - US 412 EB_Build Trumpet_v5 (70-30).xuf

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023
Agency	Garver	Analysis Year	2045 Build
Jurisdiction	Mayes County, OK	Time Analyzed	AM
Facility Name		Units	U.S. Customary
Project Description	US 412 EB - 70-30 Split (Trumpe	et_v6)	

## Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.52		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp W/O OK412B	2000	2
2	Diverge	Diverge	Off Ramp W/O OK412B	1500	2
3	Basic	Basic	Between OK412B Off and On Ramps	1015	2
4	Merge	Merge	On Ramp W/O OK412B	1500	2
5	Basic	Basic	After On Ramp W/O OK412B	2000	2

							Segme	nt 1: Ba	asic						
АР	PI	HF	fl	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d, Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	19	56	480	00	0.	41	70	).0	14	4.0	В
							Segmen	t 2: Div	erge						
АР	PI	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1956	1284	4800	2000	0.41	0.64	54.8	54.8	17.8	10.3	В
	Segment 3: Basic														
АР	PI	HF	fł	٩V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d, Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	67	'3	480	00	0.	14	68	3.0	4.8		A
							Segmer	nt 4: Me	erge						
АР	PI	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	815	142	4800	2000	0.17	0.07	64.4	64.4	6.3	11.8	В
							Segme	nt 5: Ba	asic						
АР	PI	HF	fl	١V	Flow	Rate	Сара	city	d	/c	Sp	eed	Der	nsity	LOS

			(pc/h)	(pc/h	)	Ratio	(mi/h	ı)	(pc/mi/ln)		
1	0.94	0.862	815	4800	00 0.17 69.7 5.8		5.8	A			
Facility Analysis Results											
AP         VMT         VMT-Demand         VHD         Total Delay Cost         Speed         Density           veh-mi/AP         veh-mi/AP         veh-h/AP         \$/AP         mi/h         pc/mi/h							Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS
1	424	390	0.60	15.09		64.1	10.1	8.	7	В	
Fac	ility Overal	ll Results									
Spac	e Mean Speed,	mi/h	64.1		Average Density, veh/mi/In 8.7						
Average Travel Time, min 1.40					Average Density, pc/mi/ln 10.1				1		
Total VMT, veh-mi 424					Total V	HD, veh-h		0.60	)		
Vehicle Value of Time (VOT), \$/h         25.00         Total Delay Cost, \$         15.09											

HCS M Freeways Version 2023

Generated: 11/30/2023 11:32:22

2043 AM - US 412 EB_Build Trumpet_v6 (70-30).xuf

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023			
Agency	Garver	Analysis Year	2045 Build			
Jurisdiction	Mayes County, OK	Time Analyzed	PM			
Facility Name		Units	U.S. Customary			
Project Description	JS 412 EB - 70-30 Split (Trumpet_v6)					

## Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.52		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp W/O SH 412B	2000	2
2	Diverge	Diverge	Off Ramp W/O SH 412B	1500	2
3	Basic	Basic	Between SH 412B Off and On Ramps	1015	2
4	Merge	Merge	On Ramp W/O SH 412B	1500	2
5	Basic	Basic	After On Ramp W/O SH 412B	2000	2

							Segme	nt 1: Ba	asic						
ΑΡ	PI	HF	fł	IV	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Spo (mi	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	15	74	480	00	0.	33	7(	).0	1'	1.2	В
	Segment 2: Diverge														
АР	PI	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Spo (mi	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1574	395	4800	2000	0.33	0.20	57.0	57.0	13.8	7.0	A
	Segment 3: Basic														
ΑΡ	PI	HF	fł	IV	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	d/c Ratio		Speed (mi/h)		nsity ni/ln)	LOS
1	0.	94	0.8	362	117	79	480	00	0.	25	68	3.3	8	.4	A
							Segmer	nt 4: Me	erge						
AP	PI	HF	fł	IV	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Spo (mi	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1691	512	4800	2000	0.35	0.26	64.0	64.0	13.2	18.5	В
							Segme	nt 5: Ba	asic						
АР	PI	HF	fł	١V	Flow	Rate	Сара	city	d	/c	Spe	eed	Der	nsity	LOS

			(pc/h)	(pc/h	/h) Ratio		(mi/h	I)	(р	c/mi/ln)		
1	0.94	0.862	1691	4800	)	0.35	69.6			12.1	В	
Fac	Facility Analysis Results											
АР	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay C \$/AP	Cost	Speed mi/h	Density pc/mi/ln	Dens veh/r	sity ni/ln	TT min	LOS	
1	515	455	0.59	14.65		65.7	11.9	10	.3	1.40	В	
Facility Overall Results												
Spac	e Mean Speed,	mi/h	65.7		Averag	e Density, ve	h/mi/ln	10.3	3			
Aver	age Travel Time	, min	1.40		Averag	e Density, po	/mi/ln	11.9	11.9			
Total	VMT, veh-mi		515	515			Total VHD, veh-h			0.59		
Vehi	cle Value of Tim	ie (VOT), \$/h	25.00		Total Delay Cost, \$ 14.			14.6	4.65			
OD	Travel Tim	es (s)										
	ID		Orig	in-Destination	l				Α	P1		
	1	1 (Basic) -> 2 (Off-Ramp)						0.6				
	2		1 (Basic) -> 5 (Basic)						1.4			
	3		4 (On-F	Ramp) -> 5 (Bas	sic)			0.6				
Copyri	aht © 2023 Univer	sity of Florida All Ri	ahts Reserved	HCSTM Freewa	vs Version	2023			Genera	ted: 11/30/2	023 11.48.10	

Copyrigi τy ıg

nts Reserved. HCS אין Freeways version 2025 2043 PM - US 412 EB_Build Trumpet_v6 (70-30).xuf

Generated: 11/30/2023

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023				
Agency	Garver	Analysis Year	2045 Build				
Jurisdiction	Mayes County, OK	Time Analyzed	АМ				
Facility Name		Units	U.S. Customary				
Project Description	JS 412 WB - 70-30 Split (Trumpet_v5)						

## Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.51		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp E/O SH 412B	2000	2
2	Diverge	Diverge	Off Ramp E/O SH 412B	1500	2
3	Basic	Basic	Between SH 412B Off and On Ramps	975	2
4	Merge	Merge	On Ramp W/O SH 412B	1500	2
5	Basic	Basic	After On Ramp W/O SH 412B	2000	2

							Segme	nt 1: Ba	asic						
АР	PI	HF	fl	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d, Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	14	64	480	00	0.	31	70	).0	1(	).5	A
	Segment 2: Diverge														
АР	PI	HF	fl	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1464	549	4800	2000	0.30	0.27	56.6	56.6	12.9	3.3	А
	Segment 3: Basic														
АР	PI	HF	fł	٩V	Flow (pc,	Rate /h)	Capa (pc,	Capacity d/c (pc/h) Ratio		Speed (mi/h)		Der (pc/r	nsity ni/ln)	LOS	
1	0.	94	0.8	362	91	4	480	00	0.	19	68	3.2	6	.5	A
							Segmer	nt 4: Me	erge						
АР	PI	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1241	327	4800	2000	0.26	0.16	64.2	64.2	9.7	15.1	В
							Segme	nt 5: Ba	asic						
АР	PI	HF	fl	IV	Flow	Rate	Сара	city	d	/c	Sp	eed	Der	nsity	LOS

			(pc/h)	(pc/h)	)	Ratio	(mi/h	ı)	(p	c/mi/ln)	
1	0.94	0.862	1242	4800		0.26	69.7			8.9	A
Facility Analysis Results											
АР	VMT veh-mi/AP	VMT-Demano veh-mi/AP	l VHD veh-h/AP	Total Delay Co \$/AP	ost	Speed mi/h	Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS
1	423	379	0.50	12.50		65.4	9.9	8.	6	1.40	В
Fac	ility Overa	ll Results									
Spac	e Mean Speed,	mi/h	65.4		Averag	e Density, ve	h/mi/ln	8.6			
Average Travel Time, min 1.40					Average Density, pc/mi/ln 9.9						
Total VMT, veh-mi 423						Total VHD, veh-h			0.50		
Vehicle Value of Time (VOT), \$/h 25.00					Total Delay Cost, \$ 12.50						

HCS T Freeways Version 2023 2043 AM - US 412 WB_Build Trumpet_v5 (70-30).xuf Generated: 11/30/2023 11:39:10

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023			
Agency	Garver	Analysis Year	2045 Build			
Jurisdiction	Mayes County, OK	Time Analyzed	PM			
Facility Name		Units	U.S. Customary			
Project Description	JS 412 WB - 70-30 Split (Trumpet_v5)					

## Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.51		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp E/O SH 412B	2000	2
2	Diverge	Diverge	Off Ramp E/O SH 412B	1500	2
3	Basic	Basic	Between SH 412B Off and On Ramps	975	2
4	Merge	Merge	On Ramp W/O SH 412B	1500	2
5	Basic	Basic	After On Ramp W/O SH 412B	2000	2

							Segme	nt 1: Ba	asic						
АР	P	HF	fł	٩V	Flow (pc,	Rate /h)	Capa (pc,	icity /h)	d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.	94	0.8	362	114	43	480	00	0.	24	7(	0.0	8	.2	A
							Segmen	t 2: Div	erge						
АР	AP PHF		fHV		Flow Rate Capacity (pc/h) (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	FR		R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1143	167	4800	2000	0.24	0.08	57.6	57.6	9.9	0.6	A
	Segment 3: Basic														
АР	P	HF	fł	٩V	Flow (pc,	Rate /h)	Capa (pc,	icity /h)	d Ra	/c itio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	97	'6	4800		0.20 68.3		3.3	7.0		A	
							Segmer	nt 4: Me	erge						
АР	P	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	icity /h)	d/c Speed Den Ratio (mi/h) (pc/n		Speed (mi/h)		nsity ni/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	1 0.94 0.94 0.862 0.862 2105 1129					1129	4800	2000	0.44	0.56	63.6	63.6	16.5	21.4	С
							Segme	nt 5: Ba	asic						
АР	AP PHF fHV		١V	Flow	Rate	Сара	city	d	/c	Speed		Density		LOS	

			(pc/h)	(pc/h	)	Ratio	(mi/h	ı)	(pc/mi/ln)			
1	0.94	0.862	2105	4800		0.44	69.6		15.0		В	
Facility Analysis Results												
АР	VMT veh-mi/AP	VMT-Demano veh-mi/AP	l VHD veh-h/AP	ost	Speed mi/h	Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS		
1	503	408	0.56	0.56 13.98			66.1 11.6		.0	1.40	В	
Fac	ility Overa	ll Results										
Spac	e Mean Speed,	mi/h	66.1		Average Density, veh/mi/ln 10.0							
Aver	age Travel Time	e, min	1.40	1.40			Average Density, pc/mi/ln					
Tota	l VMT, veh-mi		503	503			Total VHD, veh-h					
Vehi	cle Value of Tim	ne (VOT), \$/h	25.00	25.00			Total Delay Cost, \$			13.98		

HCSTM Freeways Version 2023 2043 PM - US 412 WB_Build Trumpet_v5(70-30).xuf Generated: 11/30/2023 11:51:25

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023			
Agency	Garver	Analysis Year	2045 Build			
Jurisdiction	Mayes County, OK	Time Analyzed	АМ			
Facility Name		Units	U.S. Customary			
Project Description	US 412 WB - 70-30 Split (Trumpet_v6)					

## Facility Global Input

Jam Density, pc/mi/ln	190.0	45.0	
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.60		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp E/O SH 412B	2000	2
2	Diverge	Diverge	Off Ramp E/O SH 412B	1500	2
3	Basic	Basic	Between SH 412B Off and On Ramps	1450	2
4	Merge	Merge	On Ramp W/O SH 412B	1500	2
5	Basic	Basic	After On Ramp W/O SH 412B	2000	2

							Segme	nt 1: Ba	asic						
АР	PI	HF	fl	١V	Flow (pc,	Rate /h)	Capa (pc,	icity /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	14	64	480	00	0.	31	7(	).0	1(	).5	A
							Segmen	t 2: Div	erge						
AP PHF		fł	١V	Flow (pc,	Rate /h)	Capa (pc,	city /h)	d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1464	549	4800	2000	0.30	0.27	56.6	56.6	12.9	3.3	A
	Segment 3: Basic														
АР	PI	HF	fł	٩V	Flow Rate (pc/h)		Capa (pc,	city /h)	d Ra	/c tio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	91	4	4800		0.19 68.8		3.8	6.5		A	
							Segmer	nt 4: Me	erge						
АР	PI	HF	fł	١V	Flow (pc,	Rate /h)	Capa (pc,	icity /h)	d Ra	d/c Speed Ratio (mi/h)		Speed (mi/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	1         0.94         0.94         0.862         0.862         1241         327				327	4800	2000	0.26	0.16	64.2	64.2	9.7	15.1	В	
							Segme	nt 5: Ba	asic						
АР	AP PHF fHV			١V	Flow	Rate	Сара	city	d	/c	Speed		Density		LOS

			(pc/h)	(pc/h	)	Ratio	(mi/h	ı)	(pc/mi/ln)		
1	0.94	0.862	1242	4800		0.26	69.7		8.9		A
Facility Analysis Results											
АР	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay C \$/AP	ost	Speed mi/h	Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS
1	441	395	0.50		65.6	9.7	8.	4	1.50	В	
Fac	ility Overa	ll Results									
Spac	e Mean Speed,	mi/h	65.6		Averag	e Density, ve	h/mi/ln	8.4			
Aver	age Travel Time	e, min	1.50	1.50			Average Density, pc/mi/ln				
Tota	l VMT, veh-mi		441	441			Total VHD, veh-h				
Vehi	cle Value of Tim	ne (VOT), \$/h	25.00	Total Delay Cost, \$			12.5	12.50			

HCST Freeways Version 2023 2043 AM - US 412 WB_Build Trumpet_v6 (70-30).xuf Generated: 11/30/2023 11:46:33

#### **Project Information**

Analyst	Thomas Cusick	Date	09/01/2023				
Agency	Garver	Analysis Year	2045 Build				
Jurisdiction	Mayes County, OK	Time Analyzed	PM				
Facility Name		Units	U.S. Customary				
Project Description	US 412 WB - 70-30 Split (Trumpet_v6)						

## Facility Global Input

Jam Density, pc/mi/ln	190.0	45.0	
Queue Discharge Capacity Drop, %	7	Total Segments	5
Total Analysis Periods	1	Analysis Period Duration, min	15
Facility Length, mi	1.60		

#### Facility Segment Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	Before Off Ramp E/O SH 412B	2000	2
2	Diverge	Diverge	Off Ramp E/O SH 412B	1500	2
3	Basic	Basic	Between SH 412B Off and On Ramps	1450	2
4	Merge	Merge	On Ramp W/O SH 412B	1500	2
5	Basic	Basic	After On Ramp W/O SH 412B	2000	2

							Segme	nt 1: Ba	asic						
AP	P	HF	fł	٩V	Flow (pc	Rate /h)	Capa (pc,	Capacity (pc/h)		/c itio	Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.	94	0.8	0.862 1		43	4800		0.24		70.0		8.2		А
							Segmen	t 2: Div	erge						
АР	AP PHF		fHV		Flow Rate Capacity (pc/h) (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	1143	167	4800	2000	0.24	0.08	57.6	57.6	9.9	0.6	A
	Segment 3: Basic														
AP	P	HF	fHV		Flow Rate (pc/h)		Capa (pc,	city /h)	d Ra	/c itio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
1	0.	94	0.8	362	97	'6	4800		0.20		68.9		7.0		A
							Segmer	nt 4: Me	erge						
АР	P	HF	fł	١V	Flow (pc	Rate /h)	Capa (pc,	city /h)	d Ra	/c itio	Sp (m	eed i/h)	Der (pc/r	nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.862	0.862	2105	1129	4800	2000	0.44	0.56	63.6	63.6	16.5	21.4	C
							Segme	nt 5: Ba	asic						
АР	AP PHF fHV			Flow	Rate	Сара	city	d	/c	Speed		Density		LOS	

			(pc/h)	(pc/h	)	Ratio	(mi/h	(mi/h)		(pc/mi/ln)		
1	0.94	0.862	2105	4800		0.44	69.6		15.0		В	
Facility Analysis Results												
АР	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay C \$/AP	ost	Speed mi/h	Density pc/mi/ln	Den: veh/r	sity ni/ln	TT min	LOS	
1	522	425	0.56	13.98		66.2	11.4	9.8		1.50	В	
Facility Overall Results												
Spac	e Mean Speed,	mi/h	66.2		Average Density, veh/mi/ln			9.8	9.8			
Aver	age Travel Time	e, min	1.50		Average Density, pc/mi/ln			11.4	11.4			
Tota	VMT, veh-mi		522		Total VHD, veh-h			0.56	0.56			
Vehi	cle Value of Tim	ne (VOT), \$/h	25.00		Total Delay Cost, \$			13.9	13.98			

HCSTM Freeways Version 2023

Generated: 11/30/2023 11:54:23

2043 PM - US 412 WB_Build Trumpet_v6 (70-30).xuf


US 412 at SH 412B Junction Mayes County Traffic Analysis Memorandum

## **APPENDIX D**

## **Initial Concepts Matrix**



Garver Project No. 23T25010

	ALTERNATIVE			PERFORMANCE		ACCESS	ENVIRONMENTAL IMPACTS				UTILITY IMPACTS					R.O.W. IMPACTS		CONSTRUCTION IMPACTS				
	NO.	DESC.	CONCEPTUAL SKETCH	% OF FULL MAIP BUILD-OUT FAILURE	FREE-FLOW?	ACCESS TO OLD HWY-33?	DIRECT ACCESS TO THE SOUTH?	SETTLEMENT PONDS	WETLANDS	STREAMS (LF)	RECREATION AREA	GRDA OHP Trans.	ОНР	FIBER / TUG	WATER	GAS	USACE	MAIP	US-412 RAISED (412 over 412B)	BRIDGES (No. of Bridges)	BRIDGES (SF of Deck)	ROAD (LF of lane mi.)
WEST	3	Diamond_v2 (button hook on)		90%	No	POSSIBLE (Not Shown, but included in Costs & Impacts)	Yes	Moderate	Moderate	650	No	0	2	2	1	0	x	x	x	2	15,200	45,850
	10	Roundabout_v2		80%	Semi-Free	Yes	Yes	Moderate	Moderate	650	No	0	2	2	1	0	x	x	x	2	15,200	50,580
	11	Trumpet_v5		170%	Yes	Yes	POSSIBLE (Not Shown, but included in Costs & Impacts)	Moderate	Moderate	250	Moderate	0	2	3	3	0	x	х	х	3	23,200	46,380
EAST	12	Folded D_v6	CPRUA	75%	Semi-Free	Yes	Yes	Yes	Moderate	1050	Moderate	0	3	3	3	0	x	x		2	20,800	34,580
	13	Trumpet_v6		170%	Yes	Yes	Yes	Yes	Moderate	1300	Moderate	0	3	3	3	0	x	x		3	29,760	35,860

Notes:

- This matrix should be considered preliminary and used for general interchange configuration comparitive purposes only.

- Information shown in this table is based on conceptual design developed between 2/3/2023 - 5/5/2023, and high-level desk data obtained 2/3/2023 - 2/9/2023.

- Settlement Ponds could also be considered wetlands and will need further field investigations to make a determination.

- Alt 10 (Roundabout_v2) was appended to this matrix on 3/2/2023 to provide a roundabout configuration that realigns SH-412B west of the main settlement ponds.

- Alternatives 1, 2, and 4 - 9 were removed and Alternatives 11 - 13 were added to this matrix to provide a final comparison summary between the preferred Alternatives as of 6/2/2023.

- To provide a balanced comparison between alternatives, the impacts listed in this matrix are based on full build improvements which include access to both Old Hwy-33 and the south recreation area, even if not shown in the conceptual sketch.

- Performance (% of Full MAIP Build-Out Failure) added 9/7/2023 to establish an anticipated capacity breakdown for each alternative configuration using 2043 design volumes with 70/30 directional distribution for US-412.

- Utility Impacts revised 9/7/2023. Score based predominantly on schedule implications, using 0 (negligible) - 5 (significant).

## Attachment B (Page 1 of 1) JP35050(04) Mayes 412-412B Interchange GRDA Alternative Layout Review Meeting Minutes

