Erosion and Sediment Control Fundamentals

Erosion and Sediment Control

- Manage the following
 - Communication
 - Work
 - Water
 - Erosion
 - Sediment

.....in that order!

"Five Pillars" - Barry Fagan, PE; Alabama DOT

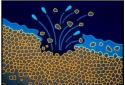
Communication

- "The Best Management Practice"
 - External Communication
 - Internal Communication
 - Contractor Communication

Λ	/lodulo	1 ⋅ 🗀	222	Fund	lamental	0
11	//()()		· ^ . ~		iameniai	•

Work

- "Inspect what you expect."
 - Contractor still works for client.
 - Does contract adherence = compliance?
 - All responsibilities should be on the table.


Water

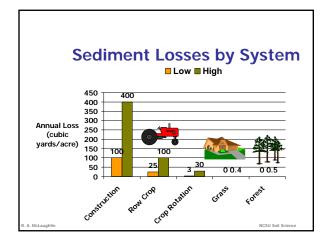
- "clean water in, clean water out"
 - Manage
 - Raindrop
 - Runoff
 - Run on
 - Flow through
 - Dewatering

Erosion

 Raindrop impact and shear forces from runoff must be minimized – cover it up and slow it down.

Sediment

 Fast water carries more sediment than slow water. If you can't keep it, slow it down.



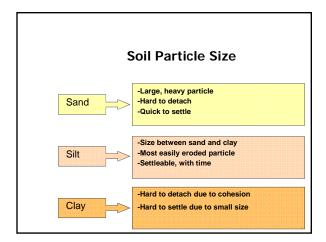
Exercise

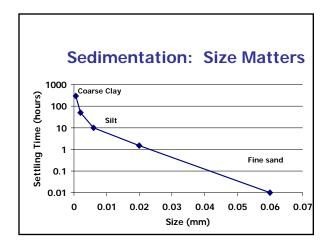
 What are the five pillars of erosion and sediment control management and provide in the correct order of importance?

Operational BMPs

- Follow the SW/E&SC Plan
- · Re-emphasize protection of critical areas
- · Minimize amount and duration of exposure
- Inventory materials
- Implement concurrent with clearing and grubbing
- Implement in phases (clearing/grubbing and mass grading)
- Good housekeeping
- Maintain BMP measures

Erosion and Sedimentation Defined


- **•Erosion** is the wearing away of soil caused by the action of water, wind, ice, gravity or other geological agents.
- •Sedimentation is the deposition of that eroded soil

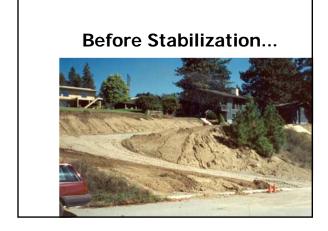

*Source: NCDENR Erosion and Sediment Control Planning and Design Manual

Soil Erosion: Two Phases

- <u>Detachment</u>: individual particles are loosened from the soil mass.
 - Rainsplash > running water > wind
- <u>Transport</u>: water or wind carries the detached particles downslope or downwind.

Turbidity

- Turbidity is the measure of relative water clarity
- Measured in NTU's Nephelometric Turbidity Units


- 50 NTU* for regular streams
 25 NTU for lakes and reservoirs
 10 NTU for trout waters

 1,000 NTU 100 NTU 50 NTU 25 NTU 10 NTU 0 NTU

 *NTU = Nephelometric Turbidity Unit
- Before Stabilization

 After Stabilization

- In general, erosion (increases/decreases) with increasing rainfall and (increases/decreases) with increasing vegetative cover.
- List general soil types (clays, silts, sands, gravel) in order from most erodible to least erodible.

Construction Site Focus Areas

- Gravel Construction Entrance
- Silt Fence on perimeter
- · Managing site runoff
- Protect I/O of pipes/culverts
- · Constructing stable slopes
- · Quick Groundcover
- Higest protection near streams
- Keep mud on your property

Gravel Construction Pads

- What is the primary purpose of a gravel construction entrance?
- Your construction entrance has to be sweetened daily due to unstable base material. A cost effective solution is...?

Summary

- Install at beginning of job
- Maintain for effectiveness

Perimeter Protection

- Good erosion control results in good sediment control. T/F and why?
- Good sediment control results in good erosion control. T/F and why?
- Silt fences are very effective sediment control practice when used in concentrated flows such as ditch lines or culvert inlet? T/F and why?

Summary

- Perimeter protection
- Avoid concentrated flow
- Maintain after rainfall

Managing Runoff

- Bale barriers are an effective method for sediment control? Why?
- Implementing erosion control methods while road construction activities are occurring is not cost effective. T/F and why?

Summary

- Plan for sediment control at discharges
- Use velocity control
- Stabilize quickly w/correct erosion control materials

Protecting Pipe Culverts and Swales

- What are some other stabilization materials that can substitute just as effectively and could be more economical in drainage swales/ditches instead of rip rap?
- My ditch is just a little too steep to be stabilized with seeding and mulching alone; what my next best selection?

Summary

- Stabilize pipe inlets and outlets
- Perform as soon as pipe is installed
- Hard armor for swales w/steep gradients

Constructing Stable Slopes

- What two topographic factors have the greatest impact on the magnitude of erosion?
- What are some of the factors that contribute to roadway fill sloughing?

Summary

- Compaction in lifts
- Construct at angle that can be stabilized w/matting and vegetation
- Stabilize in stages

Timely Groundcover

- What BMP can reduce erosion up to 90-95% on disturbed sites?
- I have a one-half mile haul road through rolling topography; what is a simple construction method to minimize sediment loss?

- What BMP can reduce erosion up to 90-95% on disturbed sites?
 - Groundcover
- I have a one-half mile haul road through rolling topography; what is a simple construction method to minimize sediment loss?
 - Construct and stabilize in phases

Module 1	: F8	RSC	Funda	mentals
IVIOGGIC I	\	200	i unuu	montais

Summary

- As soon as grading completed or after any phase of idle activity
- Good site prep and seed bed prep
- Attention to detail on seeding/hydroseeding

Stream Buffers

Summary

- Observe buffers and setbacks
- Provide highest level of protection
- Monitor these high risk areas for needed maintenance

Access Roads

- Most construction site erosion will result from r______?
- Erosion is the displacement of soil particles by the actions of w_____ and w____?

- What BMP can reduce erosion up to 90-95% on construction projects?
- I have a one-half mile haul road through rolling topography; what is a simple construction method to minimize sediment loss?

Summary

- Get to know the property
- Planning critical
- Follow design guidelines
- Construct and stabilize

Finished Product

Module 1	1: E&S	SC Fui	ndamen	tals

- This addition to sediment impoundment measures greatly improves trapping efficiency?
- My project is being built near and drains to several high quality streams. What BMP or treatment can I use to minimize water quality impacts from my stormwater runoff?

Erosion and Sediment Control BMP Summary Questions

- · BMPs for controlling surface water runoff
- BMPs for outlet/discharge points
- · BMPs for controlling velocity in ditch lines
- · BMPs for use at stream crossings
- · BMPs for tie ins at public roads

Erosion and Sediment Control BMP Summary Questions

- BMPs for controlling surface water runoff
 berms, diversions, slope drains, level spreaders
- BMPs for outlet/discharge points
- Pits, basins, wattles, rock dams
- BMPs for controlling velocity in ditch lines
 Wattles, rock check dams, ditch blocks
- BMPs for use at stream crossings
 - Silt fence, rip rap aprons
- BMPs for tie ins at public roads
 - Construction entrance pads

Summary

- Follow the plans and permits
- · Ask questions if needed
- · Be proactive!

•		
•		
,		

Questions?		