Summit Utilities - Oklahoma Demand Programs Annual Report 2022 Program Year

May 1, 2023

Table of Contents

Executive Summary	2
§ 165:45-23-7(c)(1): Demand Programs by Customer Category	7
§ 165:45-23-7(c)(2): Programs and Date Started	8
§ 165:45-23-7(c)(3): Customer Participation	9
165:45-23-7(c)(4-6): Projected & Actual Energy Savings	. 10
§ 165:45-23-7(c)(7): Education Programs	. 12
§ 165:45-23-7(c)(8): Levelized Cost	. 12
§ 165:45-23-7(c)(9): Reduced Emissions and Water Consumption	. 14
§ 165:45-23-7(c)(10): Portfolio Budget & Total Annual Gas Revenue	. 15
§ 165:45-23-7(c)(11): Portfolio Energy Savings & Annual Gas Usage	. 16
§ 165:45-23-7(c)(12): Projected Program Costs	. 16
§ 165:45-23-7(c)(13): Actual Program Costs	. 17
§ 165:45-23-7(c)(14-15): Incentives	. 18
§ 165:45-23-7(c)(16): Utility growth or reduction	. 20
§ 165:45-23-7(c)(17): Market Conditions	. 20
§ 165:45-23-7(c)(18): Summary of Spending by Demand Program	. 21
§ 165:45-23-7(c)(19): Funds Planned versus Funds Expended	. 22
§ 165:45-23-7(c)(20): Description of Each Demand Program	. 24
§ 165:45-23-7(b)(21): Research and Development Activities	. 32
§ 165:45-23-7(c)(22): Program Implementers	. 32
Conclusion	. 34
Appendix A – EM&V Report	1
Appendix B – Marketing Samples	2

Executive Summary

On October 7, 2010, CenterPoint Energy Resources Corp. d/b/a CenterPoint Energy Oklahoma Gas ("CenterPoint Oklahoma" or the "Company") proposed a comprehensive portfolio of Conservation Improvement Programs ("CIP," and as a whole, the "CIP Portfolio") in response to the Oklahoma Corporation Commission's ("OCC" or the "Commission") Rules for Demand Programs, OAC § 165:45-23-1 et seq. On March 25, 2011, the Commission approved the program portfolio in Order No. 583869 in Cause No. PUD 201000148, and CenterPoint Oklahoma began to implement the program portfolio thereafter in 2011. On February 1, 2012, the Commission approved modifications and additions to the Company's previously approved CIP portfolio in Order No. 593649 in Cause No. PUD 201100149. On August 13, 2013, the Commission approved an updated CIP portfolio for program years ("PY") 2014 - 2016 in Order No. 616573 in Cause No. PUD 201300085. On October 26, 2016, the Commission approved an updated CIP portfolio for PY 2017 - 2019, in Order No. 657250 in Cause No. PUD 201600263. On August 8, 2019, the Company requested approval of an updated comprehensive CIP Portfolio for PY 2020 - 2022. The OCC approved this request on December 10, and CenterPoint Oklahoma began delivery of this CIP Portfolio on January 1, 2020, in Order No. 706092 in Cause No. PUD 201900060. As of January 10, 2022, CenterPoint Energy Oklahoma was acquired by Summit Utilities (Summit) and is now operating as Summit Utilities Oklahoma.

This report is filed in response to the Commission's reporting requirements specified in OAC § 165:45-23-7, which requires the Company to report the performance of its energy efficiency programs for the preceding program year. Consistent with the requirements, this report will outline the activities and results of the Company's CIP Portfolio performance for PY 2022.

Summit Oklahoma implemented and administered the following CIP programs in PY 2022:

- Summit Utilities Education Program (SUEP) Educates residential and commercial customers about their energy usage and provides low-cost to no-cost tips on how to conserve energy.
- **Residential Home Energy Reports Program** An educational and behavioral change program which provides individualized information and recommendations regarding energy usage through Home Energy Reports, sent to approximately 65,000 Summit Utilities customers. The direct mail Home Energy Reports utilize energy usage data with customer demographic, housing, and GIS data to develop specific, targeted recommendations that educate and motivate customers to reduce their energy consumption.
- Natural Gas Equipment Program Promotes the installation and use of high-efficiency natural gas appliances that include water heaters, space heaters, clothes dryers, and gas

ranges, as well as self-install smart thermostats for residential customers. Commercial customers are encouraged to install high-efficiency natural gas water and space heating. Inducements are offered to customers with an active account with Summit Oklahoma and includes the following components:

- Water Heater Summit Utilities provides a \$500 inducement to customers who upgrade their water heater to a tankless system and provides a \$900 inducement to customers who switch from electric resistance water heating to natural gas tankless water heating system. Plumbers that install gas tankless systems for a natural gas water heater upgrade or an electric to natural gas conversion are eligible for a \$50 trade ally incentive for every qualifying inducement.
- Natural Gas Furnace Furnace inducements range from \$300 to \$500 to residential and commercial customers that purchase and install high-efficiency natural gas furnaces. Customers that switch from electric resistance heating and heat pumps to a more efficient natural gas furnace as their primary heating source receive a \$2,000 inducement. Customers who receive a rebate for a qualifying furnace are also eligible for an additional \$60 incentive when a qualified Smart Thermostat is installed.
- Clothes Dryer Provides up to a \$450 inducement to qualified residential customers for the purchase and installation of natural gas dryers. A \$50 trade ally incentive is also available for each qualifying inducement.
- Cooking Range Provides up to a \$300 inducement to residential customers who replace electric cooking ranges with more efficient natural gas ranges. In addition, a \$50 trade ally incentive is offered to encourage trade allies to stock and sell natural gas cooking ranges.
- Multi-Unit Market Transformation Promotes efficient water heating and space heating solutions to multi-unit developers through inducements ranging from \$900 to \$2,000. Trade ally rebates are also available at \$50 for qualified equipment installations.
- **High Efficiency Homes Program** Provides a \$1,000 inducement to customers or builders who construct new homes equipped with efficient natural gas appliances.

- Low-Flow Showerhead and Faucet Aerator Program Provides residential customers with free low-flow showerhead and faucet aerator kits that, when installed, will conserve water, reduce energy usage, and save customers money.
- Low-Income Saving Homes Program Provides weatherization retrofits that will improve the efficiency and comfort of Summit Utilities Oklahoma's low-income and hard to reach residential customers.
- Natural Gas Commercial & Industrial ("C&I") Solutions Program Administered by CLEAResult, the Natural Gas C&I Solutions Program provides financial incentives and technical consulting assistance designed to help commercial and industrial customers identify, develop and implement cost effective energy efficiency solutions at their facilities. The Natural Gas C&I Solutions Program also provides prescriptive rebates for qualified boiler and foodservice equipment purchases. The program contains the following components:
 - Direct-Install Measures target small to mid-size commercial customers. It is a turnkey equipment replacement program designed to reduce customer energy usage costs through the installation of low-flow pre-rinse spray valves, faucet aerators, showerheads, weather-stripping, and steam traps.
 - No-Cost Facility Audit Program representatives will perform a valuable no-cost facility audit, to determine if any natural gas is being used inefficiently and help identify cost-effective solutions to reduce energy waste and save money.
 - Custom Project Measures target commercial and industrial customers. Projects identified will be eligible for custom incentives based on final program design, after applying documented and defensible calculated energy savings.

Prescriptive Programs Include:

• Commercial Food Service Program – For the PY 2020 - 2022, the Commercial Food Service Program is now under the C&I Solutions umbrella and administered by CLEAResult. This Program promotes the reduction of natural gas energy usage for commercial food service customers via inducements ranging from \$300 to \$2,400 for the purchase and installation of qualified new energy efficient food service equipment. Trade ally incentives ranging from \$45 to \$225 are also available for qualifying equipment.

- Commercial Boiler Program For PY 2020 2022, the Commercial Boiler Program is now under the C&I Solutions umbrella and administered by CLEAResult. This Program encourages commercial customers to install efficient natural gas comfort heating boilers via inducements ranging from \$1,400 to \$2,000 per MMBTU of input for the purchase of qualified new energy efficient boilers. Additionally, inducements are available for the purchase and installation of boiler burner replacements.
- In PY 2022, the CIP Portfolio produced net energy savings of 110,763 Mcf and remains cost-effective despite some programs achieving lower energy savings than in previous years. The programs generated a net economic benefit of \$1,768,412 and helped participants save money through a combination of prescriptive and custom rebates, direct-install measures, energy usage reports, and facility audits. Key insights from PY 2022 program delivery include:

In PY 2022, the CIP Portfolio produced net energy savings of 110,763 Mcf. The programs generated a net economic benefit of \$1,768,412 and helped participants save money through a combination of prescriptive and custom rebates, direct-install measures, energy usage reports, and facility audits. Key insights from PY 2022 program delivery include:

- Natural Gas Equipment and High Efficiency Homes Program experienced a decrease in participation – Two factors lead to lower participation and savings in the Natural Gas Equipment Program and High Efficiency Homes Program: higher costs and rising interest rates. Supply chain issues and labor shortages caused higher prices for equipment and labor. Rising interest rates also made financing equipment replacement and purchasing a home more difficult.
- Natural Gas Commercial Solutions Program PY 2022 was another year of strong growth for the Company's Natural Gas Commercial Solutions Program. The direct-installation measures continued to be an effective inducement to drive commercial energy savings at no cost to participants. The custom portion of the program provided participants with technical assistance, recommendations, and financial inducements to implement energy saving measures such as insulation upgrades and equipment controls. The custom program continues to grow as more industrial customers recognize the value of DSM programs. The C&I program delivered the highest amount of energy savings, at 47,552 Mcf, since the inception of DSM programs in Oklahoma. The savings achieved in PY 2022 was 1% higher than the previous year.
- Home Energy Reports produced higher savings in 2022 Program savings increased in PY2022 as more participants were added to the program. This program continues to be an

effective channel to educate customers, modify behavior, and drive energy savings through the use of reports and the cross-promoting of other program offerings in the Company's DSM Portfolio. In PY 2022, the program delivered net energy savings of 47,691 Mcf.

Figure 1: Energy Savings by Program Year

Figure 2: Net Benefits by Program Year

The remainder of this report is organized according to the OCC's reporting requirements specified in OAC § 165:45-23-7(c).

§ 165:45-23-7(c)(1): Demand Programs by Customer Category

OAC § 165:45-23-7(c)(1): The name of Demand Program listed by Category

Table 1 lists the customer categories (by class) served by each Conservation Improvement Program delivered by Summit Utilities Oklahoma in PY 2022.

_	Customer Category Served			
Program	Residential	Commercial CS-1	Commercial CS-2	Commercial LCS
Natural Gas Equipment Program	\checkmark	\checkmark	\checkmark	\checkmark
Low Flow Showerhead/Aerator	\checkmark			
Home Energy Report	\checkmark			
High Efficiency Home	\checkmark			
Low Income Saving Homes	\checkmark			
Natural Gas Commercial Solutions Program		\checkmark	\checkmark	\checkmark
CenterPoint Energy Education Program	\checkmark	\checkmark	\checkmark	\checkmark

Table 1: Programs & Customer Categories

§ 165:45-23-7(c)(2): Programs and Date Started

OAC § 165:45-23-7(c)(2): a list of all programs and the date each program started.

Upon OCC approval of the first CIP Portfolio on March 25, 2011, Summit Utilities Oklahoma began the delivery of the following energy efficiency programs:

- CenterPoint Energy Education Program (CEEP)
- Residential Home Energy Reports
- Water Heating
- Space Heating Systems
- Low-Flow Showerhead and Faucet Aerator
- Commercial Boiler
- Commercial Food Service

The OCC approved a modified CIP Portfolio on February 1, 2012, and CenterPoint Energy began the delivery of the following programs for 2012:

- Multi-Unit Market Transformation
- Clothes Dryer

On August 13, 2013, the OCC approved a new CIP Portfolio triennial plan for PY 2014 - 2016. In January of 2014, CenterPoint Oklahoma began implementing this triennial plan, which included the previously approved programs along with the following additional programs and program updates:

- Electronic Ignition Hearth
- Cooking Range
- New Home Construction
- Residential Energy Audit
- Furnace Tune Ups (addition to Space Heating Program)

On October 26, 2016, the OCC approved a new CIP Portfolio triennial plan for PY 2017 - 2019. In January of 2017, CenterPoint Oklahoma began implementing this new triennial plan, which includes modifications to previously approved programs and discontinues implementation of the Electronic Ignition Hearth and Residential Energy Audit Programs delivered in 2014-2016.

On December 10, 2019, the OCC approved a new CIP Portfolio triennial plan for PY 2020 - 2022. On January 1st of 2020, CenterPoint Oklahoma began implementation of the new triennial plan, which included the consolidation of the natural gas clothes dryer, natural gas cooking range, and multifamily program into the Natural Gas Equipment program as measures. A residential low-

income program was also added to the portfolio. Finally, the boiler and foodservice programs were consolidated into the Commercial and Industrial Program as measures.

On January 10th, 2022, Summit Utilities acquired CenterPoint Energy's Oklahoma assets and is now recognized as Summit Utilities Oklahoma.

§ 165:45-23-7(c)(3): Customer Participation

OAC § 165:45-23-7(c)(3): The number of Participating Customers per Demand Program.

Listed on Table 2 are Summit Utilities PY 2022 CIP Portfolio participation results which had a total of 72,869 participants and measures installed.

Program	Participants
Natural Gas Equipment Program	475
Low Flow Showerhead/Aerator	594
Home Energy Report	65,026
High Efficiency Home	45
Low Income Saving Homes	228
Natural Gas Commercial Solutions Program	6,501
CenterPoint Energy Education Program	NA
Total	72,869

Table 2: Participation by Program

Listed on Table 3 is Summit Utilities PY 2022 CIP Portfolio with total number of eligible customers and distinct customer totals by program and with percentage analysis of district customers who participated and did not participate in the programs.

Program	Total Customers	Direct Participants	% Participants	% Nonparticipants
Natural Gas Equipment Program ¹	98,697	475	0.48%	99.52%
Low Flow Showerhead/Aerator ²	89,211	594	0.67%	99.33%
Home Energy Report ²	89,211	65,026	72.89%	27.11%
High Efficiency Home ²	89,211	45	0.05%	99.95%
Low Income Saving Homes ²	89,211	228	0.26%	99.74%
Natural Gas Commercial Solutions Program ³	10,717	24	0.22%	99.78%
Summit Utilities Education Program ⁴	99,928	99,928	100%	0%

Table 3: Participation vs. Nonparticipation

165:45-23-7(c)(4-6): Projected & Actual Energy Savings

OAC § 165:45-23-7(c)(4): By Demand Program, approved projected energy savings (in decatherms) as approved;

OAC § 165:45-23-7(c)(5): The gross energy savings (in decatherms) and performance of each Demand program; and

OAC § 165:45-23-7(c)(6): The verified energy savings (in decatherms) by Demand Program and methods used to verify.

Table 4 compares the projected savings to the gross and net savings achieved in 2022 for each program.

¹Customer class includes RES and GS-1 (Dec. 2021)

²Customer class includes residential only (Dec. 2021)

³Custom class include GS-1, CS-1, TSO (Dec. 2021)

⁴All rate classes (Dec. 2021)

Program	2022 Projected Annual Savings (MCF)	2022 Annual Gross Savings Achieved (MCF)	2022 Annual Net Savings Achieved (MCF)
Gas Equipment Program	20,428	9,131	7,484
Low Flow Showerhead/Aerator	3,979	589	550
Home Energy Report	48,920	47,691	47,691
High Efficiency Home	2,340	589	544
Low Income Saving Homes	7,500	6,942	6,942
Natural Gas Commercial Solutions Program	36,181	47,552	47,552
CenterPoint Energy Education Program	NA	0	NA
Total	119,347	112,494	110,763

Table 4: Projected, Gross, and Net Energy Savings by Program

Energy Savings and Methodology

The energy savings methodologies and inputs outlined in the Arkansas Technical Reference Manual (TRM) were used to calculate energy savings for all programs resulting in energy savings. The TRM can be found on the Arkansas Public Service Commission's website.² All the weather zones in Summit Utilities Oklahoma's service territory are included in the TRM, so any climate differences between the two states have been appropriately considered.

Summit Utilities also modified the data and methodologies provided in the Arkansas TRM to calculate energy savings from fuel switching activities. The energy savings utilized in electric to gas applications consider the full fuel cycle of energy and account for the source of the fuel in addition to the site emissions. The Arkansas TRM was used to calculate site and baseline emissions. For heating systems, the electric baseline was an air source heat pump (HSPF 8.2) with back-up electric resistance heating used for 11% of the heating load. For water heating systems, the standard electric water heater efficiencies were utilized.

In PY 2022, ADM Associates (ADM) conducted the Evaluation, Measurement, and Verification (EM&V) of Summit Utilities CIP Portfolio. ADM's review included a process evaluation and an impact evaluation to determine the verified and net savings attributable to the Company's PY 2022

² http://www.apscservices.info/EFilings/Docket_Search_Documents.asp?Docket=10-100-R&DocNumVal=199

program activities. The 2022 EM&V Report completed by ADM can be found in Appendix A of this report.

§ 165:45-23-7(c)(7): Education Programs

OAC § 165:45-23-7(c)(7): For Education Programs measurements of outreach efforts, including pre-program and post-program results and copies of evaluations, surveys, focus group results, and other measurement techniques used to gauge the effectiveness of education efforts.

As part of their PY 2022 EM&V effort, ADM conducted participant surveys to determine how customers became aware of the Company's programs. These survey results are provided in ADM's EM&V Report, and they provide insights on which outreach efforts were the most effective at creating program awareness.

§ 165:45-23-7(c)(8): Levelized Cost

OAC § 165:45-23-7(c)(8): The levelized cost per decatherm for the Demand Portfolio, Demand Programs, and by customer sector, including all assumptions used to make the calculation.

The levelized cost for the Company's PY 2022 CIP Portfolio was \$2.90 per Mcf. This is a decrease of \$1.54 from PY 2021. Summit Utilities Oklahoma used the following methodology to calculate the levelized cost:

Levelized TRC Cost =

<u>Capital Recovery Factor *(Total Program Administrator Costs + Total Participant Costs (net of incentives)</u> Annual Energy Savings (MCF)

Where:

Capital Recovery Factor = $[A * (1 + A)^{(B)}]/[(1 + A)^{(B)} - 1]$

A = Discount Rate (Societal Rate)

B = Weighted Average Life of Savings

Tables 5 and 6 provide details on the levelized cost at the program, customer sector, and portfolio levels.

Total Resource Cost Test and TRC Levelized Cost By Program		Net Energy Savings	Total Resource Cost Test (TRC)		
		Annual Net Energy Savings	Total Net Benefits	TRC	TRC Levelized Cost
Program	Savings Type	MCF	\$	Ratio	(\$/MCF)
Natural Gas Equipment - Residential	Natural Gas	4,694	(\$4,564)	0.92	\$6.57
Natural Gas Equipment - Residential	Electric to Gas Fuel Switch	1,283	\$35,010	1.58	\$3.58
Natural Gas Equipment - GS-1	Natural Gas	1,279	(\$30,523)	0.80	\$7.63
Natural Gas Equipment - GS-1	Electric to Gas Fuel Switch	228	\$418	1.02	\$5.97
Natural Gas Equipment - CS-1	Natural Gas	0	\$0	0	NA
Natural Gas Equipment - CS-1	Electric to Gas Fuel Switch	0	\$0	0	NA
Natural Gas Equipment - Total		7,484	\$342	1.00	\$6.28
Natural Gas Commercial Solutions - GS-1	Natural Gas	14,627	\$1,135,177	14.20	\$0.41
Natural Gas Commercial Solutions - CS-1	Natural Gas	32,925	\$906,086	1.53	\$3.76
Natural Gas Commercial Solutions - LCS-1	Natural Gas	0	\$0	NA	NA
Natural Gas Commercial Solutions - Total		47,552	\$2,041,263	2.14	\$2.70
Low Flow Showerhead/Aerator	Natural Gas	550	(\$10,315)	0.70	\$7.09
Residential Home Energy Reports	Natural Gas	47,691	(\$12,756)	0.94	\$4.36
High Efficiency Homes	Natural Gas	544	(\$38,901)	0.57	\$10.70
Low Income Savings Homes	Natural Gas	6,942	\$410,989	10.17	\$0.54
CenterPoint Energy Education Program - Res	Educational Program	0	(\$75)	0	NA
CenterPoint Energy Education Program - GS-1	Educational Program	0	(\$23)	0	NA
CenterPoint Energy Education Program - CS-1	Educational Program	0	(\$36)	0	NA
CenterPoint Energy Education Program - LCS	Educational Program	0	\$0	NA	NA
CenterPoint Energy Education Program Total	Educational Program	0	(\$134)	0	NA
Total Portfolio		110,763	\$2,390,488	1.83	\$2.90

Table 5: Levelized Cost by Program

Total Resource Cost Test and TRC Levelized Cost	Net Energy Savings	Total Resource Cost Test (TRC)			
By Customer Sector	Energy Savings	Total Net Benefits	TRC	Levelized Cost	
Customer Sector	MCF	\$	Ratio	(\$/MCF)	
Residential	61,703	\$379,389	1.42	\$3.48	
Commercial GS-1	16,135	\$1,105,049	5.27	\$1.11	
Commercial CS-1	32,925	\$906,050	1.53	\$3.76	
Commercial LCS	0	\$0	NA	NA	
Total Portfolio	110,763	\$2,390,488	1.83	\$2.90	

Table 6: Levelized Cost by Customer Sector

§ 165:45-23-7(c)(9): Reduced Emissions and Water Consumption

OAC § 165:45-23-7(c)(9): The amount of reduced emissions and water consumption experienced by the utility, including all assumptions and calculation details, during the Demand Program period for the current program year.

Reduced Emissions

Summit Utilities used the United States Environmental Protection Agency's Greenhouse Gas Equivalencies Calculator³ to estimate the impact of reduced emissions attributable to the 110,763 in Mcf savings delivered through the PY 2022 CIP Portfolio. Overall, the Company's programs reduced carbon dioxide (CO_2) emissions by 6,089 metric tons. This is equivalent to:

Greenhouse gas emissions from:

- 1,355 passenger vehicles driven for one year; or
- 15,610,093 miles driven by an average passenger vehicle.

Carbon dioxide emissions from:

• Annual energy use of 767 homes;

³ epa.gov/energy/greenhouse-gas-equivalencies-calculator?unit=MCF&amount=102,507

- 6,820,896 pounds of coal burned; or
- 685,186 gallons of gasoline consumed.

Reduced Water Consumption

Table 7 Summit Utilities Oklahoma calculated the reduction in water consumption delivered through the Low-Flow Showerhead and Faucet Aerator Program. Based on the count, by weather zone, of each low-flow equipment type, an estimated annual reduction in gallons of water use was calculated.

Table 7: Reduced Water Consumption

Annual Water Savings						
Low Flow Showerhead And Faucet Aerator Program						
Maasura	Equipment Count	Gross Water Savings	Net Water Savings			
Wieasuie		(Gallons)	(Gallons)			
Bathroom Aerator	164	83,992	80,884			
Kitchen Aerator	99	28,433	27,381			
Showerhead	288	751,771	723,955			
Total	551	864,195	832,220			

§ 165:45-23-7(c)(10): Portfolio Budget & Total Annual Gas Revenue

OAC § 165:45-23-7(c)(10): The Demand Portfolio funding as a percent of total annual gas revenue

Table 8 displays the PY 2022 CIP Portfolio budget as a percentage of Summit Utilities 2022 revenue.

Table 8: Demand Portfolio Funding as a Percent of Total Annual Gas Revenue

2022 Portfolio Budget	2022 Revenue	Demand Portfolio Funding % Total Revenue
\$2,504,347.32	\$101,303,494.88	2.47%

§ 165:45-23-7(c)(11): Portfolio Energy Savings & Annual Gas Usage

OAC § 165:45-23-7(c)(11): The Demand Portfolio Net source energy savings as a percent of total gas annual usage

Table 9 displays the PY 2022 CIP Portfolio net energy savings as a percentage of Summit Utilities 2022 natural gas throughput.

Table 9: Demand Portfolio Savings as a Percent of Total Natural Gas Usage

2021 Net Energy Savings	2021 Natural Gas Usage	Energy Savings %Annual	
(MCF)	(MCF)	Gas Usage	
110,763	10,119,485	1.09%	

§ 165:45-23-7(c)(12): Projected Program Costs

OAC § 165:45-23-7(c)(12): The projected program costs;

These costs should be separated into the following categories to allow review of spending:

- (i) Administrative costs;
- (ii) Inducements: direct payments and other inducements
- (iii) Educations and marketing costs;
- (iv) Program delivery costs; and
- (v) EM&V costs

Table 10 provides the PY 2022 budgets for each program by cost category.

Program	Admin	Inducements	Education/ Advertising	Delivery	Evaluation	Total Program
Gas Equipment Program	\$21,218	\$922,150	\$63,654	\$137,917	\$35,000	\$1,179,939
Low Flow Showerhead and Faucet Aerator	\$6,365	\$20,713	\$26,523	\$58,087	\$4,065	\$115,752
Residential Home Energy Reports	\$4,244	\$0	\$0	\$192,989	\$1,273	\$198,506
High Efficiency Homes Program	\$6,365	\$105,000	\$5,305	\$19,618	\$2,500	\$138,787
Low Income Savings Homes	\$10,609	\$150,000	\$15,914	\$42,436	\$10,609	\$229,568
Natural Gas Commercial Solutions	\$15,914	\$318,976	\$42,436	\$159,135	\$25,767	\$562,228
CenterPoint Energy Education Program	\$0	\$0	\$79,568	\$0	\$0	\$79,568
Total Program Costs	\$64,715	\$1,516,839	\$233,398	\$610,181	\$79,214	\$2,504,347

Table 10: Program Budgets by Category

§ 165:45-23-7(c)(13): Actual Program Costs

OAC § 165:45-23-7(c)(13): The projected program costs;

These costs should be separated into the following categories to allow review of spending:

- (i) Administrative costs;
- (ii) Inducements: direct payments and other inducements
- (iii) Educations and marketing costs;
- (iv) Program delivery costs; and
- (v) EM&V costs

Table 11 provides the actual PY 2022 expenditures for each program by cost category.

Program	Admin.	Inducements	Education/ Advertising	Delivery	Evaluation	Total Program
Gas Equipment Program	\$15,431	\$296,980	\$0	\$100,302	\$39,825	\$452,539
Low Flow Showerhead and Faucet Aerator	\$4,629	\$4,597	\$0	\$21,273	\$8,145	\$38,643
Residential Home Energy Reports	\$3,087	\$0	\$0	\$188,882	\$10,809	\$202,778
High Efficiency Homes Program	\$4,629	\$45,000	\$0	\$14,267	\$6,647	\$70,543
Low Income Savings Homes	\$7,716	\$258,883	\$0	\$30,862	\$6,229	\$303,689
Natural Gas Commercial Solutions	\$11,574	\$353,989	-\$875	\$267,508	\$36,991	\$669,187
CenterPoint Energy Education Program	\$0	\$0	\$134	\$0	\$0	\$134
Total Program Costs	\$47,065	\$959,449	-\$741	\$623,095	\$108,645	\$1,737,513

Table 11: Program Spending by Category

§ 165:45-23-7(c)(14-15): Incentives

OAC § 165:45-23-7(c)(14): Projected incentives – including projected cost effectiveness tests;

OAC § 165:45-23-7(c)(15): Actual calculated incentives – including workpapers and working spreadsheets (formulas, calculations, linkages, and assumptions) or for updated cost effectiveness tests, in sufficient detail to allow review of cost effectiveness calculations.

Summit Utilities calculated incentive is \$246,183 based on the results of its PY 2022 CIP Portfolio. Pursuant to OAC § 165:45-23-8, eligibility to receive an incentive requires that the Company's Demand Portfolio reach a goal ratio (Verified savings divided by Projected Savings) of at least 80% and achieve a total resource cost test benefit/cost ratio of greater than one. For PY 2022, the Company is eligible for an incentive because Summit Utilities CIP portfolio goal ratio was 93% and it achieved a cost/benefit ratio of 1.83.

Table 12 provides the calculation for the requested 2022 CIP Portfolio incentive.

Table 12: Incentive Calculation									
Line No.	Incentive Calculation Input								
1	Projected Energy Savings (MCF)	119,347.28							
2	Actual Portfolio Energy Savings (MCF)	110,763.07							
3	Program Expenditure	\$1,737,513							
4	TRC Ratio	1.83							
5	Portfolio Net Benefits	\$1,768,412							
6	Maximum Incentive, Percentage Net Benefits	15%							
7	Goal Ratio (Line 2/Line 1)	92.81%							
8	Maximum Eligible Incentive \$ (Line 5 X Line 6 X Line 7)	\$246,183							
9	Incentive Cap Percentage Portfolio Expenditure	8%							
10	Incentive Cap (Line 3 X Line 9)	\$260,627							
11	2021 Incentive	\$246,183							

Table 12: Incentive Calculation

§ 165:45-23-7(c)(16): Utility growth or reduction

OAC § 165:45-23-7(c)(16): The utility's annual growth or reduction in metered natural gas for the previous three years, with a calculation of the average growth or reduction rate over that entire period.

Summit Utilities metered sales volumes are provided by customer class in Table 13.

Customer Class	2017	2018	2019	2020	2021	2022	Average Rate of Change Per Year
Residential	41,224,824	53,639,082	54,106,960	47,029,340	48,894,439	48,469,243	1.52%
Commercial GS-1	12,892,967	13,715,340	11,860,902	9,443,865	10,992,565	10,796,796	6.92%
Commercial CS-1	19,799,411	17,254,304	19,685,831	21,830,008	17,016,011	18,152,499	-8.81%
TSO	19,799,411	50,120,091	51,583,016	47,980,262	51,502,349	52,806,312	4.91%

 Table 13: Metered Sales Volumes (CCF) per Customer Class

§ 165:45-23-7(c)(17): Market Conditions

§ 165:45-23-7(c)(17): The most current information available comparing the base line and milestones to be achieved under market transformation programs with actual conditions in the market.

PY 2022 marked the final year of Summit Utilities updated CIP Portfolio for PY 2020-2022. It remains important for the Company to evaluate market conditions to improve program performance in PY 2021 - 2022, as well as plan for the PY 2023 - 2025 CIP Portfolio.

The Natural Gas Equipment Program faced significant headwinds in PY2022 primarily due to higher equipment and labor costs resulting from supply chain issues and a tight labor market. Rising interest rates also made financing equipment replacement projects more costly causing customers to repair their equipment rather than replace their equipment.

The Low-Flow Program continued to see declines in participation due to the maturity of the program. The primary factor in savings reduction was due to lower installation rates. To improve participation, self-install thermostats were added as a means to offer a new measure that could drive traffic to the website. The addition proved to be beneficial and produced a good amount of savings. Additional measures will be introduced to refresh program offerings for PY2023 as marketing efforts alone to drive traffic to the website produced mixed results. Additional efforts will also be made to ensure installation rates improve.

The Low-Income Saving Homes Program ("LISHP") is a program implemented by a third-party vendor in partnership with Public Service Company of Oklahoma ("PSO"). The LISHP is well received by Summit Utilities customers, and the Company will be looking to build on its success. As such we increase the budget for the program to serve more eligible natural gas customers.

The Home Energy Reports Program was able to increase participation, which resulted in increased savings this year. The program helps customers create habits that reduce energy consumption. Cross-platform marketing also helps promote energy savings in other programs. The promotion of other programs typically comes in the form of direct mail and digital interactions.

The Natural Gas Commercial Solutions Program again proved to be a high-performing program delivering 43% of the CIP Portfolio's energy savings. Projects by C&I Program participants yielded 47,552 Mcf in energy savings for PY 2022.

§ 165:45-23-7(c)(18): Summary of Spending by Demand Program

OAC § 165:45-23-7(c)(18): By Demand Program, provide a summary of spending, including the following:

- (A) Administrative Costs;
- (B) Inducements, including direct payments and other inducements;
- (C) Education and marketing costs;
- (D) Program Delivery Costs; and
- (E) EM&V Costs.

Table 14 provides the actual 2022 program expenditures by Demand Program and cost category.

Program	Admin.	Inducements	Education/ Advertising	Delivery	Evaluation	Total Program
Gas Equipment Program	\$15,431	\$296,980	\$0	\$100,302	\$39,825	\$452,539
Low Flow Showerhead and Faucet Aerator	\$4,629	\$4,597	\$0	\$21,273	\$8,145	\$38,643
Residential Home Energy Reports	\$3,087	\$0	\$0	\$188,882	\$10,809	\$202,778
High Efficiency Homes Program	\$4,629	\$45,000	\$0	\$14,267	\$6,647	\$70,543
Low Income Savings Homes	\$7,716	\$258,883	\$0	\$30,862	\$6,229	\$303,689
Natural Gas Commercial Solutions	\$11,574	\$353,989	-\$875	\$267,508	\$36,991	\$669,187
CenterPoint Energy Education Program	\$0	\$0	\$134	\$0	\$0	\$134
Total Program Costs	\$47,065	\$959,449	-\$741	\$623,095	\$108,645	\$1,737,513

 Table 14: 2022 Program Spending by Category

§ 165:45-23-7(c)(19): Funds Planned versus Funds Expended

§ 165:45-23-7(c)(19): A statement of any funds that were committed but not spent during the year, by program, with an explanation for non-spending.

Summit Utilities PY 2022 CIP Portfolio expenses were \$1,737,513, which is 69% of the approved budget of \$2,504,347.

Program	Comment
Natural Gas	The program reached 38% of the planned budget with final expenses
Equipment Program	reaching \$452,539, which is a slight decrease over last year's program
	spend. Program overhead and management costs from CenterPoint
	Energy was suspended and Summit's overhead and management cost had
	not resumed in 2022.
Low Flow Shower	The program expenses reached 33% of the planned budget. The program
Aerator Program	was heavily marketed, however, the program continues to see declining
	participation mainly due to market saturation. The program will get an
	update with new measures being introduced to improve participation.
Summit Utilities	Program spend by CenterPoint Energy was not allocated to the SUEP for
Education Program	2022.

Table 15: Budgeted Funding and Actual Expenditures by Program

Program	Program Funds Budgeted	Program Funds Expended	% Budget Spent
Gas Equipment Program	\$1,179,939.00	\$452,538.77	38%
Low Flow Showerhead and Faucet Aerator	\$115,752.42	\$38,643.25	33%
Residential Home Energy Reports	\$198,505.83	\$202,777.83	102%
High Efficiency Homes Program	\$138,787.07	\$70,542.78	51%
Low Income Savings Homes	\$229,567.50	\$303,689.41	132%
Natural Gas Commercial Solutions	\$562,228.00	\$669,187.20	119%
CenterPoint Energy Education Program	\$79,567.50	\$133.88	0%
Total Program Costs	\$2,504,347	\$1,737,513	69%

§ 165:45-23-7(c)(20): Description of Each Demand Program

§ 165:45-23-7(c)(20): A detailed description of each Demand Program reflecting the scale of the program as part of the Demand Portfolio that includes the following:

- (A) Number of customers served by each Demand Program or program category;
- (B) Program or program category expenditures;
- (C) Verified energy and peak demand savings achieved by the Demand Program or program category, when available; and
- (D) A description of proposed changes in the Demand Program plans.

Detailed information related to 2022 expenditures, participation, energy savings, overall program scale, as well as recent or proposed changes is provided below for each program:

The Natural Gas Equipment program is designed to promote efficient water heating and space heating solutions to residential and commercial consumers. Rebates are offered to consumers for high-efficiency furnaces, water heaters, clothes dryers, cooking ranges, and smart thermostats.

Summit Utilities does not propose any major changes to the program currently.

Participation & Energy Savings

Customer Class	Participation	Gross Energy Savings (MCF)	% Portfolio Gross Savings	Net Energy Savings (MCF)	% Portfolio Net Savings
Residential	378	7042	6.26%	5,977	5.40%
GS-1	97	2,089	1.86%	1,508	1.36%
CS-1	0	0	0.00%	0	0.00%
Total	475	9,131	8.12%	7,484	6.76%

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
Residential	\$11,717	\$225,503	\$0	\$76,162	\$30,240	\$343,622	19.78%
GS-1	\$3,714	\$71,477	\$0	\$24,141	\$9,585	\$108,917	6.27%
CS-1	\$0	\$0	\$0	\$0	\$0	\$0	0.0%
Total	\$15,431	\$296,980	\$0	\$100,302	\$39,825	\$452,539	26.05%

Low-Flow Program

The Low-Flow Showerhead and Faucet Aerator Program provides customers with no-cost showerheads and faucet aerators that conserve water and reduce energy usage. Customers can order equipment through an online shopping cart, and the requested number of low-flow units are mailed, along with comprehensive installation directions.

Summit Utilities does not propose any major changes to the program at this time.

Participation & Energy Savings

Customer Class	Participation	Gross Energy Savings (MCF)	% Portfolio Gross Savings	Net Energy Savings (MCF)	% Portfolio Net Savings
Residential	594	589	0.52%	550	0.50%

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
Residential	\$4,629	\$4,597	\$0	\$21,273	\$8,145	\$38,643	2.22%

Home Energy Report

The Home Energy Reporting Program is a behavioral program that combines energy usage data with customer demographic, housing and GIS data to develop specific, targeted recommendations that educate and motivate consumers to reduce their energy consumption. Program participants receive this information through direct-mail and email reports.

Summit Utilities continues to implement the Residential Home Energy Reports Program in its 2022 CIP Portfolio, and no major changes to the program are proposed at this time.

Participation & Energy Savings

Customer Class	Participation	Gross Energy Savings (MCF)	% Portfolio Gross Savings	Net Energy Savings (MCF)	% Portfolio Net Savings
Residential	65,026	47,691	42.39%	47,691	43.06%

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
Residential	\$3,087	\$0	\$0	\$188,882	\$10,809	\$202,778	11.67%

High Efficiency Homes Program

The High Efficiency Home Program provides inducements to encourage builders to construct new homes that are equipped with efficient natural gas appliances. Builders or homeowners are eligible to receive a \$1,000 rebate for new homes equipped with a primary heat source of 95% AFUE natural gas furnace, natural gas water heating, and at least one additional natural gas appliance.

The Company does not propose any program changes at this time.

Participation & Energy Savings

Customer Class	Participation	Gross Energy Savings (MCF)	% Portfolio Gross Savings	Net Energy Savings (MCF)	% Portfolio Net Savings
Residential	45	589	0.52%	544	0.49%

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
Residential	\$4,629	\$45,000	\$0	\$14,267	\$6,647	\$70,543	4.06%

Low-Income Saving Homes Program

Provides weatherization retrofits that will improve the efficiency and comfort of Summit Utilities lowincome and hard to reach residential customers.

The Company does not propose any major changes to the program at this time.

Participation & Energy Savings

Customer Class	Participation	Gross Energy Savings (MCF)	% Portfolio Gross Savings	Net Energy Savings (MCF)	% Portfolio Net Savings
Residential	228	6,942	61.71%	6,942	6.27%

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
Residential	\$7,716	\$258,883	\$0	\$30,862	\$6,229	\$303,689	17.48%

Natural Gas Commercial Solutions Program

The Natural Gas Commercial Solutions Program encourages Commercial and Industrial (C&I) customers to use natural gas efficiently by installing cost-effective energy efficient equipment, adopting energy-efficient designs, and using energy-efficient operations at their facilities. The program provides financial incentives to C&I customers installing or implementing cost-effective energy efficiency measures through the Direct-Install, Custom, or Prescriptive measure components of the program.

The Company does not propose any major changes to the program at this time.

Customer Class	Participation	Gross Energy Savings (MCF)	% Portfolio Gross Savings	Net Energy Savings (MCF)	% Portfolio Net Savings
GS-1	3,309	14,627	13.00%	14,627	13.21%
CS-1	3,192	32,925	29.27%	32,925	29.73%
LCS - TSO	0	0	0.00%	0	0.00%
Total	6,501	47,552	42.27%	47,552	42.93%

Participation & Energy Savings

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
GS-1	\$3,157	\$96,564	(\$239)	\$72,973	\$10,091	\$182,546	10.51%
CS-1	\$8,417	\$257,425	(\$636)	\$194,535	\$26,900	\$486,641	28.01%
LCS - TSO	\$0	\$0	\$0	\$0	\$0	\$0	0.00%
Total	\$11,574	\$353,989	(\$875)	\$267,508	\$36,991	\$669,187	38.51%

Summit Utilities Education Program (SUEP)

CEEP is an education and awareness program that has no directly attributable energy savings associated with program implementation.

Summit Utilities continues to implement the SUEP in its 2022 CIP Portfolio and does not propose any major changes to the program at this time.

Customer Class	Admin	Inducement	Marketing	Delivery	EM&V	Total Program	% Total Portfolio
Residential	\$0	\$0	\$75	\$0	\$0	\$75	0.00%
GS-1	\$0	\$0	\$23	\$0	\$0	\$23	0.00%
CS-1	\$0	\$0	\$36	\$0	\$0	\$36	0.00%
LCS	\$0	\$0	\$0	\$0	\$0	\$0	0.00%
Total	\$0	\$0	\$134	\$0	\$0	\$134	0.01%

§ 165:45-23-7(b)(21): Research and Development Activities

§ 165:45-23-7(c)(21): A list of research and development activities included in the demand portfolio, their status, and a report on the connection between each activity and effective energy efficiency programs.

Summit Utilities did not conduct any research and development activities during PY 2022.

§ 165:45-23-7(c)(22): Program Implementers

§165:45-23-7(c)(22): Identification of program implementers, including names, job titles, business postal addresses, business electronic mail addresses, and business telephone numbers.

Summit Utilities implements the following programs in-house: CEEP, Low-Flow Showerhead Program, and Natural Gas Equipment Program. The remainder of the programs are vendor implemented.

The contact information is:

Name of Program Implementer: Jose Laboy

Job Title: CIP Implementation Manager

Business Postal Address: 101 Bringer Drive, Maumelle, AR 72113

Business Email Address: jlaboy@summitutilities.com

Business Telephone Number: 501-377-4837

The Home Energy Reports program is implemented by Oracle Utilities (formerly Opower Inc.) with oversight and management by Summit Utilities Oklahoma. The Summit Utilities Oklahoma contact is as above and the Oracle contact is:

Name of Program Implementer: Stef Tollefson

Job Title: Service Delivery Manager

Business Postal Address: 2311 Wilson Blvd., 8th Floor, Arlington, VA 22201

Business Email Address: stef.tollefsen@oracle.com

Business Telephone Number: 847-471-9182

Summit Utilities manages the Low Flow Showerhead and Faucet Aerator program, but it utilizes the fulfillment services of Energy Federation, Inc. (EFI). The Summit Utilities contact is as above and the EFI contact is:

Name of Program Implementer: Joel Orlando

Job Title: Strategic Account Manager

Business Postal Address: 2031 Progress Way, Kaukauna, WI 54130

Business Email Address: tbartlett-browne@efi.org

Business Telephone Number: 508-870-2277

The Low-Income Saving Homes Program is delivered by our vendor Titan ES, in partnership with Public Service Company of Oklahoma ("PSO"). The Titan ES contact is:

Name of Program Implementer: Brad Cockings

Job Title: Program Manager

Business Postal Address: 9700 S. Pole Rd. Oklahoma City, OK 73160

Business Email Address: bcockings@titanes.us

Business Telephone Number: 405-632-1700

The Natural Gas Commercial Solutions Program is delivered by our vendor, CLEAResult. The CLEAResult contact is:

Name of Program Implementer: Shelly Baron

Job Title: Program Manager

Business Postal Address: One Allied Dr., Suite 1600, Little Rock, AR 72202

Business Email Address: shelly.baron@clearesult.com

Business Telephone Number: 501-221-4063

Conclusion

PY 2022 was the final year of the current three-year portfolio plan cycle spanning PY 2020 – 2022. Changes to the portfolio included the consolidation of some underperforming programs and the addition of a low-income weatherization program. These changes have proven to be effective as the savings for PY 2021 and PY 2022 have increased by an average of 16% when compared to the final year (PY 2019) of the previous three-year portfolio plan. Furthermore, due to several changes in the portfolio structure, PY 2022 saw a 5% year-over-year increase in savings. Challenging economic conditions in 2022 continued to put pressure on the labor market and the supply chain, which adversely affected the natural gas equipment programs. Our continued partnership with trade allies and supply houses helped strengthen our relationship resulting in the mitigation of some of the impacts to program participation. Savings from the Low-Flow Program were particularly low due to program maturity, however, the addition of the smart thermostat has helped increase traffic to the marketplace site. Summit Utilities are working with the portfolio evaluator and program implementer to identify additional measures that will increase traffic to the existing marketplace by inducing the customer with new energy savings measures like weatherstripping, door sweeps, and filter changeout alarm. Those new measures are scheduled to be implemented in PY 2023 when the new program year cycle starts.

Despite economic headwinds, participation in the Home Energy Reports, Low-Income Saving Homes Program, and Natural Gas Commercial Solutions Program helped drive savings and net benefits for Summit customers. Overall, the Demand Portfolio achieved strong savings for Oklahoma customers achieving 110,763 MCF in natural gas savings. The low avoided costs filed in the Demand Portfolio for PY 2020 - 2022 continues to suppress the Program Administrator Cost Test ("PACT") net benefits as compared to the previous three-year plan cycle, however, the net benefits have improved every year of the PY 2020-2022 plan. Despite this fact, the portfolio remains cost effective resulting in a TRC ratio of 1.83 and producing \$1.77 million in net benefits to Oklahoma customers. As Summit Utilities Oklahoma strives to grow its programs, insights from PY 2022 will help the Company better understand both the strengths of its CIP Portfolio, and the aspects that need improvement. The Company remains committed to building on its successes, addressing its challenges, improving its programs, and delivering a high-performing and comprehensive CIP Portfolio.

Appendix A – EM&V Report
Evaluation of Summit Oklahoma Program Year 2022 Demand Side Management Portfolio

Submitted to:

Summit Oklahoma

April 2023

ADM Associates, Inc.

Prepared by:

Adam Thomas Joe Marquez Abigail Braun

Corporate Headquarters: 3239 Ramos Circle Sacramento, CA 95827 Tel: (916) 363-8383

ADM Associates Inc. Energy Research & Evaluation

Acknowledgements:

We would like to thank the staff at Summit Oklahoma for their time and effort in contributing to the EM&V of the 2022 programs. This evaluation was conducted with regular coordination with staff at Summit, who provided quick feedback and turnaround to the requests of the evaluation team as well as open and forthright insights into the operations of their programs.

Further, we would like to acknowledge our gratitude towards Summit customers, implementation contractor staff and trade allies. As with the staff at Summit, their active participation allowed for the evaluation team to collect all needed data for this effort.

Corporate Headquarters: 3239 Ramos Circle Sacramento, CA 95827 Tel: (916) 363-8383

ADM Associates Inc. Energy Research & Evaluation

TABLE OF CONTENTS

1.	Executive Summary	
2.	General Methodology	
3.	Natural Gas Equipment Rebates Program	
4.	High Efficiency Homes Program	
5.	Commercial Solutions Program	5-1
6.	Home Energy Reports	
7.	Low-Income Saving Homes Program	
8.	Low Flow Showerhead & Faucet Aerator Program	
9.	Appendix A: Site Reports	

LIST OF TABLES

Table 1-1 Gross Impact Summary	1-1
Table 1-2 Net Impact Summary	1-2
Table 3-1 Residential Water Heating Baseline Uniform Energy Factors	3-7
Table 3-2 Hot Water Requirements by Facility Size	3-10
Table 3-3 Hot Water Requirements by Unit or Person	3-11
Table 3-4 Verified Gross Therm Savings	3-12
Table 3-5 Verified Net Therm Savings	3-12
Table 4-1 Gross Therm Savings	4-2
Table 4-2 Net Therm Savings	4-2
Table 5-2 DI Weather Stripping Savings Calculation Parameters	5-4
Table 5-3 EFLH _H By Weather Zone	5-4
Table 5-4 Deemed Annual Therms Savings per Linear Foot	5-4
Table 5-9 Commercial Solutions Verified Therm Savings	5-5
Table 5-10 Commercial Solutions Net Savings Summary	5-5
Table 6-1 Home Energy Reports Number of Accounts	6-1
Table 6-2 Pre-period Interval	6-3
Table 6-3 Regression Coefficients & Model Details – Wave 1	6-3
Table 6-4 Regression Coefficients & Model Details – Wave 2	6-5
Table 6-5 Regression Coefficients & Model Details – Wave 3	6-7
Table 6-6 Regression Coefficients & Model Details – Wave 4	6-9
Table 6-7 Regression Coefficients & Model Details – Wave 5	6-11
Table 6-7 Pre-Period Usage per Recipient and Percent of Annual	6-17
Table 6-8 PY2022 Program Savings Before and After Double Counting	6-17

Table 6-9 HER Program Savings	6-18
Table 6-10 HER Program Savings at 95% Confidence	6-18
Table 6-11 Therms Savings Summary by Wave	6-18
Table 7-1 QA Violation Definitions by Measure	7-3
Table 7-2 LISHP Ex Ante Summary	7-4
Table 7-4 LISHP Verified Savings Summary	7-5
Table 7-5 LISHP Net Savings Summary	7-5
Table 8-1 Low Flow Kit Composition	8-1
Table 8-2 Faucet Aerator Volume of Use	8-3
Table 8-3 Showerhead Volume of Use	8-4
Table 8-4 Low Flow Showerhead & Faucet Aerator Program Verified Gross Savings	8-5
Table 8-5 Low Flow Showerhead & Faucet Aerator Program Verified Net Savings	8-5
Table 8-6 Low Flow Showerhead & Faucet Aerator Program Net Non-Energy Benefits Sum	mary 8-5

LIST OF FIGURES

Figure 1-1 Contribution to Portfolio Net Savings by Program	1-2
Figure 1-2 Residential Savings by Measure	1-3
Figure 1-3 Non-residential Savings by Measure	1-3
Figure 1-4 C&I Portfolio Savings Share by Measure	1-4
Figure 3-1 Heating System Rebates Commercial Participation by Facility Type	3-3
Figure 5-1 Commercial Solutions Direct Install Participant Summary by Facility Type	5-2
Figure 5-2 Commercial Solutions Direct Install Participant Summary by Measure Type	5-2
Figure 6-1 Daily Consumption between Recipient & Control Group – Wave 1	6-13
Figure 6-2 Daily Consumption between Recipient & Control Group – Wave 2	6-14
Figure 6-3 Daily Consumption between Recipient & Control Group – Wave 3	6-14
Figure 6-4 Daily Consumption between Recipient & Control Group – Wave 4	6-15
Figure 6-5 Daily Consumption between Recipient & Control Group – Wave 5	6-15
Figure 6-6 Savings per Recipient	6-16
Figure 7-1 Program Summary by Savings Share and Participation	7-2
Figure 7-2 LISHP Cumulative Savings and Participants by Month	7-2

1. Executive Summary

This report is to provide a summary of the evaluation effort of the 2022 Demand Side Management (DSM) portfolio by Summit Oklahoma (Summit). ADM Associates (the Evaluator) conducted this evaluation. This report provides verified gross and net savings estimates for evaluated programs.

1.1 Summary of Summit Demand Side Management Programs

In 2022, the Summit DSM portfolio contained the following programs:

- Natural Gas Equipment Rebates Program,
- High Efficiency Homes Program,
- Commercial and Industrial Solutions Program,
- Home Energy Reports Program,
- Low Income Savings Home Program, and
- Low Flow Showerhead & Faucet Aerator Program.

1.2 Evaluation Objectives

The goals of the 2022 EM&V effort are as follows:

- For prescriptive measures, verify that savings are being calculated according to appropriate deemed savings protocols.
- For custom measures, this effort comprises the calculation of savings according to accepted protocols (such as IPMVP). This is to ensure that custom measures are costeffective and provide reliable savings.

1.3 Summary of Findings

1.3.1 Impact Findings

Table 1-1 and Table 1-2 present the gross and net impact by program.

Program	Annual Energy Savings (Therms)		Lifetime Energy Savings (Therms)		Gross Realization
	Ex Ante	Ex Post	Ex Ante	Ex Post	Rate
Natural Gas Equipment Rebates	91,314	91,314	1,448,103	1,448,103	100.0%
High Efficiency Homes	5,888	5,888	117,770	117,770	100.0%
Commercial Solutions	475,522	475,522	6,442,755	6,442,755	100.0%
Home Energy Reports	476,910	476,910	476,910	476,910	100.0%
Low Income Savings Homes	69,420	69,420	1,170,310	1,170,310	100.0%
Low Flow Showerhead & Faucet Aerator	5,889	5,889	61,189	61,189	100.0%
Total	1,124,944	1,124,944	9,717,037	9,717,037	100.0%

Table 1-1 Gross Impact Summary

Program	Annual Energy Savings (Therms)		Lifetime End (The	ergy Savings rms)	NTGR	Net Realization
	Ex Ante	Ex Post	Ex Ante	Ex Post		Rate
Natural Gas Equipment Rebates	74,842	74,842	1,174,528	1,174,528	82.0%	100.0%
High Efficiency Homes	5,435	5,435	108,702	108,702	92.3%	100.0%
Commercial Solutions	475,522	475,522	6,442,755	6,442,755	100.0%	100.0%
Home Energy Reports	476,910	476,910	476,910	476,910	100.0%	100.0%
Low Income Savings Home Program	69,420	69,420	1,170,310	1,170,310	100.0%	100.0%
Low Flow Showerhead & Faucet Aerator	5,501 5,501		57,158 57,158		93.4%	100.00%
Total	1,107,631	1,107,631	9,430,363	9,430,363	98.5%	100.0%

Table 1-2 Net Impact Summary

The contribution to portfolio savings by program is summarized in Figure 1-1.

Figure 1-1 Contribution to Portfolio Net Savings by Program

Figure 1-2 Residential Savings by Measure

Figure 1-2 and Figure 1-3 summarize the share of savings by measure category for residential and non-residential segments, respectively.

Figure 1-3 Non-residential Savings by Measure

Figure 1-4 C&I Portfolio Savings Share by Measure

1.4 Summary of EM&V Effort

The evaluation effort consisted of:

- Review of deemed savings calculations. For all programs that apply deemed savings, the Evaluator conducted a detailed review on a census of projects to ensure that savings are up to date with the most recently available deemed savings and applicable code inputs from the Arkansas Technical Reference Manual v9.0 (AR TRM 9.0).
- Analysis of custom projects. Custom projects within the C&I Solutions Program accounted for 19% of portfolio-level savings. All custom projects received site-level analyses based on International Measurement & Verification Protocols (IPMVP).¹
- Analysis of bill impacts from Home Energy Reports. The Home Energy Reports program accounted for 43% of total portfolio savings. The Evaluator conducted an analysis of impacts on customer bills applying methods vetted through the National Renewable Energy Laboratory Uniform Methods Project Chapter 17: Residential Behavioral Protocol.²

¹ <u>https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp</u>

² <u>https://www.energy.gov/sites/prod/files/2015/02/f19/UMPChapter17-residential-behavior.pdf</u>

1.5 Report Organization

This report is organized with one chapter providing the full impact and process summary of a specified program. The report is organized as follows:

- Chapter 2 provides general methodology;
- Chapter 3 provides results for the Natural Gas Equipment Rebates Program;
- Chapter 4 provides results for the High Efficiency Homes Program;
- Chapter 5 provides results for the Commercial Solutions Program;
- Chapter 6 provides results for the Home Energy Reports Program;
- Chapter 7 provides results for the Low-Income Savings Home Program;
- Chapter 8 provides results for the Low Flow Showerhead & Faucet Aerator Program;
- Appendix A provides the site-level custom reports for the Commercial Solutions Program.

2. General Methodology

This section details general impact evaluation methodologies by program-type as well as data collection methods applied. This section will present full descriptions of:

- Gross Savings Estimation;
- Sampling Methodologies;
- Free ridership determination;
- Process Evaluation Methodologies; and
- Data Collection Procedures.

2.1 Glossary of Terminology

As a first step to detailing the evaluation methodologies, the Evaluator provides a glossary of terms to follow:

- Ex Ante Savings estimates provided by program administrators prior to review from a third party-evaluator (from the Latin for "beforehand")
- Ex Post Savings estimates reported by an evaluator after the energy impact evaluation has been completed (from the Latin for "from something done afterward")
- Deemed savings An estimate of an energy savings or demand savings outcome (gross savings) for a single unit of an installed energy efficiency measure. This estimate (a) has been developed from data sources and analytical methods that are widely accepted for the measure and purpose and (b) are applicable to the situation being evaluated. (e.g., assuming 17.36 therms savings for a low-flow showerhead)
- Gross savings The change in energy consumption and/or demand that results directly from program-related actions taken by participants in an efficiency program, regardless of why they participated
- Gross realization rate Ratio of Ex Post savings / Ex Ante savings (e.g., If the Evaluator verifies 15 therms per showerhead, gross realization rate = 15/17.36 = 86%)
- Free rider A program participant who would have implemented the program measure or practice in the absence of the program. Free riders can be total, partial, or deferred
- Spillover Reductions in energy consumption and/or demand caused by the presence of the energy efficiency program that exceed the program-related gross savings of the participants. There can be participant and/or non-participant spillover rates depending on the rate at which participants (and non-participants) adopt energy efficiency measures

or take other types of efficiency actions on their own (i.e., without an incentive being offered)

- Net savings The total change in load that is attributable to an energy efficiency program. This change in load may include, implicitly or explicitly, the effects of free drivers, free riders, energy efficiency standards, changes in the level of energy service, and other causes of changes in energy consumption or demand. (e.g., if Free ridership for low-flow showerheads = 50%, net savings = 15 therms x (100% - 50%) = 7.5 therms)
- Net-to-gross-ratio (NTGR) = (1 Free ridership % + Spillover %), also defined as net savings
- Ex Ante net savings = Ex Ante gross savings x Ex Ante free ridership rate
- Ex Post net savings = Ex Post gross savings x Ex Post free ridership rate
- Net realization rate = Ex Post net savings / Ex Ante net savings
- Effective useful life (EUL) An estimate of the median number of years that the efficiency measures installed under a program are still in place and operable
- Gross lifetime therms = Ex Post gross savings x EUL

2.2 Overview of Methodology

The proposed methodology for the evaluation of the 2022 Summit DSM Portfolio is intended to provide:

- Net impact results at the 90% confidence and +/-10% precision level, and
- Program feedback and recommendations via process evaluation.

In doing so, this evaluation will provide the verified net savings results, provide recommendations for program improvement, and ensure cost-effective use of ratepayer funds. By leveraging experience and lessons learned from prior evaluations, the 2022 evaluation is streamlined to focus on areas in need of research and improvement.

2.3 Sampling

Sampling is necessary to evaluate savings for the Summit DSM portfolio insomuch as verification of a census of program participants is typically cost-prohibitive. Samples are drawn in order to ensure 90% confidence at the +/- 10% precision level. Programs are evaluated on one of three bases:

- Census of all participants
- Simple random sample
- Stratified random sample

2.4 Census of Participants

A census of participant data was used for programs where such review is feasible. For example, the Home Energy Reports program's savings estimates are based on a regression model that incorporates billing data for a census of program recipients. Programs that received analysis of a census of participants include:

- Home Energy Reports
- Commercial & Industrial Solutions Custom Component

2.5 Simple Random Sampling

For programs with relatively homogenous measures (largely in the residential portfolio), the Evaluator conducted a simple random sample of participants. The sample size for verification surveys is calculated to meet 90% confidence and 10% precision (90/10). The sample size to meet 90/10 requirements is calculated based on the coefficient of variation of savings for program participants. Coefficient of variation (CV) is defined as:

$$CV(x) = \frac{Standard Deviation(x)}{Mean(x)}$$

Where x is the average therms savings per participant. Without data to use as a basis for a higher value, it is typical to apply a CV of .5 in residential program evaluations. The resulting sample size is estimated at:

$$n_0 = \left(\frac{1.645 * CV}{RP}\right)^2$$

Where,

1.645 = Z score for 90% confidence interval in a normal distribution

CV = Coefficient of variation

RP = Required precision, 10% in this evaluation

With 10% required precision (RP), this calls for a sample of 68 for programs with a sufficiently large population. However, in some instances, programs did not have sufficient participation to make a sample of this size cost-effective. In instances of low participation, the Evaluator then applied a finite population correction factor, defined as:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

Where,

 n_0 = Sample required for large population

- N = Size of population
- n = Corrected sample

For example, if a program were to have 100 participants, the finite population correction would result in a final required sample size of 41. The Evaluator applied finite population correction factors in instances of low participation in determining samples required for surveying or onsite verification. Programs subject to *simple random sampling* include:

- Heating System Rebates Residential,
- Water Heating Rebates Residential, and
- Low Flow Showerhead & Faucet Aerator Program.

2.6 Free Ridership

In determining Ex Post net savings for the Summit DSM portfolio, the Evaluator provides estimates of free ridership for individual programs. Free riders are program participants that would have implemented the same energy efficiency measures at nearly the same time absent from the program. As per TRM guidelines, free riders are defined as:

"...program participants who received an incentive but would have installed the same efficiency measure on their own had the program not been offered. This includes partial free riders, defined as customers who, at some point, would have installed the measure anyway, but the program persuaded them to install it *sooner* or customers who would have installed the measure anyway, but the program persuaded them to install more efficient equipment and/or more equipment. For the purposes of EM&V activities, participants who would have installed the equipment within one year will be considered full free riders; whereas participants who would have installed the equipment later than one year will not be considered to be free riders (thus no partial free riders will be allowed)."

Given this definition, participants are defined as free riders through a binary scoring mechanism, in being either 0% or 100% free riders.

2.6.1 Prescriptive Free Ridership

The general methodology for evaluating free ridership among prescriptive program participants involved examination of four factors:

- (1) Demonstrated financial ability to purchase high efficiency equipment absent the rebate.
- (2) Importance of the rebate in the decision-making process.
- (3) Prior planning to purchase high efficiency equipment.
- (4) Importance of the contractor in influencing the decision-making process.

In this methodology, Part (1) is essentially a gateway value, in that if a participant does not have the financial ability to purchase energy efficient equipment absent a rebate, the other components of free ridership become moot. As such, if they could not have afforded the high efficiency equipment absent the rebate, free ridership is scored at 0%. If they did have the financial capability, the Evaluator then examined the other three components. The respondent is determined to be a free rider based upon a preponderance of evidence of these three factors; that is, if the respondent's answers indicate free ridership in two or more of these three components, they are considered free riders. Specific questions and modifications to this general methodology are presented in the appropriate program chapters.

For residential programs, free ridership is calculated as the average score determined for the sample of participants surveyed. This value is then applied to the program-level savings to discount savings attributable to free ridership.

2.6.2 Custom Free Ridership

For custom projects from the Commercial Solutions program, free ridership is assessed on a casestudy basis, through which the Evaluator conduct an in-depth interview that includes a battery of questions addressing:

- The timing of learning of the program relative to the timing of the planning of the retrofit,
- The impact the program incentive has on measure payback relative to the stated payback requirements by the respondent,
- Whether the respondent learned of the energy efficiency measure from a programfunded audit, and
- Whether any influence the program had in modifying the project affected savings by greater than 50%.

3. Natural Gas Equipment Rebates Program

The Natural Gas Equipment Rebates Program provides incentives to customers for high efficiency space and water heating equipment. Eligible measures for this program include:

Residential:

- \$300 for Gas furnaces with 90%-94.9% AFUE
- \$500 for Gas furnaces with 95% or higher AFUE
- \$2,000 for placement of electric heating to gas furnaces with 90%-94.9% AFUE
- \$2,000 for placement electric heating to gas furnaces with 95% or higher AFUE
- \$60 for ENERGY STAR qualified smart thermostats
- \$60 for ENERGY STAR qualified smart thermostats intended to be self-installed
- \$200 per 100,000 input BTU for larger storage tank water heaters with 88% or greater thermal efficiency
- \$500 for tankless water heaters with an EF of 0.80 or greater
- \$900 for replacement of electric water heater with natural gas tankless water heaters with an EF of 0.80 or greater
- Up to \$300 for replacement of electric to gas cooking ranges
- Up to \$450 for replacement of electric to gas clothes dryers

Non-residential:

- \$300 for Gas furnaces with 90%-94.9% AFUE
- \$500 for Gas furnaces with 95% or higher AFUE
- \$2,000 for replacement of electric heating to gas furnaces with 90%-94.9% AFUE
- \$2,000 for replacement electric heating to gas furnaces with 95% or higher FUE
- \$200 per 100,000 input BTU for larger storage tank water heaters with 88% or greater thermal efficiency
- \$500 for tankless water heaters with an EF of 0.80 or greater
- \$900 for replacement of electric water heater with natural gas tankless water heaters with an EF of 0.80 or greater

The program is targeted at the residential and commercial market sectors and offers incentives for both retrofit and new construction applications. The marketing efforts for the space and water heating equipment were largely directed at plumbing and HVAC contractors; their involvement is seen as crucial, as they are generally a primary source of information for end-use customers when deciding upon a replacement system.

3.1 Program Overview

The Natural Gas Equipment Rebates Program is part of a reorganization of the Summit portfolio to consolidate smaller programs. This program combines the following former programs:

- Space Heating
- Water Heating
- Clothes Dryers
- Cooking Ranges
- Multi-unit Market Transformation

3.1.1 Participation Summary

3.1.1.1 Residential Space Heating Participant Summary

The 2022 Natural Gas Equipment Rebates Program had a total of 258 processed rebates for residential space heating. The rebates comprised of:

- 220 single family replacement rebates;
- 23 furnace fuel switch rebates;
- 15 new construction furnace rebates;
 - o 4 furnaces installed in small office building, metered as residential; and
- 19 smart thermostats rebates.

Of the 258 furnace replacements included:

- 252 furnaces exceeding 95% AFUE, and
- 6 furnaces between 90-94.99% AFUE.

3.1.1.2 Residential Self-Installed Smart Thermostat Participant Summary

As an additional aspect of the Natural Gas Equipment Rebate Program for 2022, there were a total of 27 stand-alone smart thermostats that were rebated to participants. All the smart thermostat rebates that the program processed were for single-family projects that received \$60 as an incentive for self-installation.

3.1.1.3 Residential Water Heating Participant Summary

The 2022 Natural Gas Equipment Rebates Program had a total of 61 processed rebates for residential water heating. The rebates are comprised of:

- 54 single family water heater replacement rebates, and
- 7 water heater fuel switch rebates.

All of the 61 residential water heater replacements were tankless water heaters.

There were 7 residential water heater fuel switch rebates and 54 single family (residential) water heater retrofit rebates that were awarded through the Water Heater Fuel Switch and Water Heater Rebate project types, respectively.

3.1.1.4 Appliance Participant Summary

Appliance participation comprised:

- 10 cooking ranges, and
- 1 clothes dryer.

3.1.1.5 Commercial Participation Summary

There were 91 commercial furnaces rebate in 2022. All 91 commercial furnaces had rated efficiencies of 95% or greater AFUE.

97.8% of commercial rebates were for retrofit projects. 2.2% were for new construction projects. Figure 3-1 summarizes the participation levels by facility type.

Figure 3-1 Heating System Rebates Commercial Participation by Facility Type

The bulk of participation and savings was driven by schools or churches, health clinics, and small business facilities.

There were six commercial water heaters rebated in 2022 that consisted of:

- (5) conventional retrofits; and
- (1) fuel switch rebate.

3.2 Impact Evaluation

3.2.1 Space Heating Energy Savings Calculations

Savings for residential furnaces are calculated as follows:

 $therm_{ex \ post \ savings} = therm_{basline \ heating \ system} - therm_{new \ heating \ system}$

First the energy use of the new heating system was found.

$$therm_{new \ heating \ system} = Heat \ load \times \left(\frac{1}{AFUEnew \ heating \ system}\right)$$
$$Heat \ load = \left(\frac{therms}{site \ area}}{yr}\right) \times site \ area \ = \left(\frac{therms}{site \ area}}{yr}\right) \times \left(\frac{CAP_H}{30}\right) \times 1.05$$

Where:

Site area = square footage of the project site

 $CAP_{H} = \left(\frac{Btu}{hr}\right)$ = Verified heating capacity verified by the Evaluator with AHRI number $AFUE_{new \ heating \ system}$ = Verified by the Evaluator with AHRI number

Source to site ratio, electric to gas = 3.14

Next the energy use of the removed water heater was found.

$$therm_{new \ heating \ system} = Heat \ load \times \left(\frac{1}{AFUE_{old \ heating \ system}}\right)$$
$$Heat \ load = \left(\frac{therms}{site \ area}}{yr}\right) \times site \ area \ = \left(\frac{therms}{site \ area}}{yr}\right) \times \left(\frac{CAP_{H}}{30}\right) \times 1.05$$

Where:

$$\left(\frac{\frac{therms}{site area}}{yr}\right) = 0.233 \text{ (Evaluator's estimation, assuming unknown build age)}$$

 $CAP_{H} = \left(\frac{Btu}{hr}\right)$ = rated heating capacity = new furnace heating capacity, see above $AFUE_{base}$ = 80%

Source to site ratio, electric to gas = 1.05

3.2.1.1 Impact of Early Replacement

The method for calculating the impact of early replacement for residential furnaces applies a degradation factor to the performance of a 78 AFUE unit. This is calculated as:

$$AFUE_{base_{early}} = (Base \ AFUE) \times (1 - M)^{age}$$

Where:

Base AFUE = efficiency of the existing equipment when new, 78% AFUE M = maintenance factor, 0.01 age = the age of the existing equipment, in years

Based on the degradation equation and the average age of replaced functional systems of 15.43 years this leads to an early retirement AFUE of:

$$AFUE_{base_{early}} = 0.78 \times (1 - 0.01)^{15.43} = 0.6680$$

The Evaluator applied this baseline to residential retrofits as well as to master-metered multifamily units.

3.2.1.2 Net-to-Gross Ratio

The NTGR for the heating equipment rebates residential component are as follows:

- Residential retrofit: 84.95%
- Residential retrofit multifamily: 84.95%
- Residential new construction (builder production homes): 92.3%
- Residential new construction (custom homes): 48.7%
- Residential fuel switch: 84.95%
- Smart thermostats: 88.90%

Multifamily NTGR is based on the NTGR for the commercial component.

3.2.2 Smart Thermostat Energy Savings Calculations

Energy savings values for smart thermostats are calculated as follows:

 $therms_{ex \ post \ savings} = gas \ heating_{default} \times home \ square \ footage$

Where:

gas $heating_{default} = 0.033$ therms per square feet

home square footage = verified home square footage, or default square footage of 1,484 SF

3.2.3 Water Heating Energy Savings Calculations

Energy savings values for storage tank water heaters were developed using installed *energy factor* ratings as determined by the Gas Appliance Manufacturers Association Directory of Certified Water Heating Products. Tank sizing must follow AHRI standards.

 $therm_{ex \ post \ savings} = therm_{basline \ water \ heater} - therm_{new \ water \ heater}$

First the energy use of the new water heater was found.

 $therm_{new water heater} =$

$$\rho \times Cp \times V \times (T_{SetPoint} - T_{Supply}) \times \frac{1}{EF_{Post}} \times (\frac{1}{100,000}) \times 1.05$$

Where:

 ρ = Water density = 8.33 lb./gal

Cp = Specific heat of water = 1 BTU/lb.·°F

V = Calculated estimated annual hot water use (gal) = 21,521 (gal)

 $T_{SetPoint}$ = Water heater set point (124°F for residential, 120°F for commercial)

 T_{Supply} = Calculated average supply water temperature = 63.2°F

*EF*_{Post} = Verified *energy factor* of new water heater

BTU to therms conversion factor = $100,000 \frac{BTU}{therm}$

Source to site ratio, gas to gas = 1.05

Energy use of the baseline water heater is calculated with the equation below.

 $therm_{baseline water heater} =$

$$\rho \times Cp \times V \times (TSetPoint - TSupply) \times \frac{1}{EFpre\ electric} \times \left(\frac{1}{100,000}\right) \times 3.14$$

Where:

 ρ = Water density = 8.33 lb./gal

 C_p = Specific heat of water = 1 BTU/lb.·°F

V = Calculated estimated annual hot water use (gal) = 21,521 (gal)

 $T_{SetPoint}$ = Water heater set point (120°F for residential, 120°F for commercial)

 T_{Supply} = Calculated average supply water temperature = 63.2°F

*EF*_{post} = Verified energy factor of baseline water heater

Volume of water heater = verified water heater's volume, for tankless water heaters the assumed baseline volume is 50 gal

Source to site ratio, gas to gas = 1.05

Source to site ratio, electricity to gas = 3.14

Baseline energy factors are summarized in Table 3-1.

Table 3-1 Residential Water Heating Baseline Uniform Energy Factors

Draw Pattern	Equivalent Gallons	Baseline UEF
Very Small	20	0.3056
Low	30	0.5412
Medium	40	0.5803
High	50	0.6270

3.2.3.1 Net-to-Gross Ratio

The Evaluator used 2022 survey results in developing the NTGR for water heaters.

- Residential retrofit: 84.95%
- Residential new construction (builder production homes): 91.70%
- Residential new construction (custom homes): 64.40%
- Residential fuel switch: 84.95%
- Multifamily: 84.95%

Multifamily NTGR is based on the NTGR for the commercial component.

3.2.4 Cooking Range Energy Savings Calculations

The energy savings of a gas range are found by subtracting the energy use of the new range from the energy use from the old range.

 $therm_{ex \ post \ savings} = therm_{basline \ range} - therm_{new \ range}$

First the energy use of the baseline range was found.

$$therm_{baseline\ electric\ range} = 716\ \left(\frac{kWh}{yr}\right) \times 3,413\ \left(\frac{Btu}{kWh}\right) \times \left(\frac{1}{100,000\frac{Btu}{therm}}\right) \times 3.14$$
$$therm_{baseline\ gas\ range} = 3,986,950\ BTU \times \left(\frac{1}{100,000\frac{BTU}{therm}}\right) \times 1.05$$

Next the energy use of the newly installed range was found. It is assumed that the installed range uses the same amount of energy as the baseline gas range.

 $therm_{ex post gas range} = therm_{baseline gas range}$

Where:

Annual kWh usage of electric range = 716 kWh/yr

Annual BTU usage of gas range = 3,986,950 BTU

kWh to BTU conversion factor = $3413 \frac{BTU}{kWh}$

BTU to therms conversion factor = $100,000 \frac{BTU}{therms}$

Site-to-source ratio, electricity to gas = 3.14

Site-to-source ratio, gas to gas = 1.05

3.2.4.1 Net-to-Gross Ratio

Due to the low participation in the program, the Evaluator used the NTGR from the Oklahoma Natural Gas PY2018 evaluation (80%).

3.2.5 Clothes Dryers Energy Savings Calculations

The energy savings of a gas clothes dryer is found by subtraction the energy use of the new dryer from the energy use from the old dryer.

 $therm_{ex \ post \ savings} = therm_{basline \ dryer} - therm_{new \ dryer}$

First the energy use of the baseline dryer was found.

$$therm_{baseline\ electric\ range} = 942\ \left(\frac{kWh}{yr}\right) \times 3,413\ \left(\frac{Btu}{kWh}\right) \times \left(\frac{1}{100,000\frac{Btu}{therm}}\right) \times 3.14$$
$$therm_{baseline\ gas\ range} = 3,216,455\ BTU \times \left(\frac{1}{100,000\frac{Btu}{therm}}\right) \times 1.05$$

Next the energy use of the newly installed dryer was found. It is assumed that the installed dryer uses the same amount of energy as the baseline gas dryer.

 $therm_{ex \ post \ gas \ range} = therm_{baseline \ gas \ range}$

Where:

Annual kWh usage of electric dryer = 942 kWh/yr

Annual BTU usage of gas dryer = 3,216,455 BTU

kWh to BTU conversion factor = 3413 $\frac{BTU}{kWh}$

BTU to therms conversion factor = 100,000 BTU/therm

Site-to-source ratio, electricity to gas = 3.14

Site-to-source ratio, gas to gas = 1.05

3.2.5.1 Net-to-Gross Ratio

Due to the low participation in the program, the Evaluator used the net-to-gross ratio from the Oklahoma Natural Gas PY2018 evaluation (80%).

3.2.6 Space Heating Energy Savings Calculations

The Evaluator applied AR TRM 9.0 deemed savings parameters in assessing savings of the commercial component.

Savings for commercial furnaces are calculated as follows:

$$therm_{ex \ post \ savings} = therm_{basline \ heating \ system} - therm_{new \ heating \ system}$$

First the energy use of the new heating system was found.

therm_{new heating system} = Heat load ×
$$\left(\frac{1}{AFUEnew heating system}\right)$$

Heat load = $\left(\frac{\frac{therms}{site area}}{yr}\right)$ × site area = $\left(\frac{\frac{therms}{site area}}{yr}\right)$ × $\left(\frac{CAP_H}{30}\right)$ × 1.05

Where:

Site area = square footage of the project site

 $CAP_{H} = \left(\frac{BTU}{hr}\right)$ = Verified heating capacity verified by the Evaluator with AHRI number

 $AFUE_{new heating system}$ = verified by the Evaluator with AHRI number

Source to site ratio, electric to gas = 3.14

Next the energy use of the removed water heater was found.

$$therm_{new \ heating \ system} = Heat \ load \times \left(\frac{1}{AFUEold \ heating \ system}\right)$$
$$Heat \ load = \left(\frac{therms}{site \ area}}{yr}\right) \times site \ area \ = \left(\frac{therms}{site \ area}}{yr}\right) \times \left(\frac{CAP_{H}}{30}\right) \times 1.05$$

Where:

$$\left(\frac{\frac{therms}{site\,area}}{yr}\right)$$
 = 0.233 (Evaluator's estimation, assuming unknown build age)

$$CAP_{H} = \left(\frac{BTU}{hr}\right)$$
 = rated heating capacity = new furnace heating capacity, see above

 $AFUE_{base} = 80\%$

Source to site ratio, electric to gas = 1.05

3.2.6.1 Impact of Early Replacement

The early retirement procedure described in Section 3.2.1.1 was applied to commercial projects in master-metered multifamily housing.

3.2.6.2 Net-to-Gross Ratio

The Evaluator applied the Oklahoma Natural Gas space heating free ridership estimate of 16.4% to the commercial segment. The resulting aggregate NTGR for this group was 83.6%.

3.2.7 Water Heating Energy Savings Calculations

Commercial water heater savings calculations incorporate more facility-specific information than the residential methodology. Therm savings for commercial water heaters are calculated as:

$$Therm \, Savings = \frac{\rho * C_P * V * \left(T_{SetPoint} - T_{Supply}\right) * \left(\frac{1}{EF_{pre}} - \frac{1}{EF_{post}}\right) * \frac{Days}{Year}}{100,000 \frac{BTU}{Therm}}$$

Where:

 ρ = Water density = 8.33 lb./gal

 C_p = Specific heat of water = 1 BTU/lb. °F

V = Calculated estimated annual hot water use

*T*_{SetPoint} = Water heater set point

 T_{Supply} = Calculated average supply water temperature

EF = Verified energy factor of baseline water heater

Days/Year = Days per year of operation

The required facility-specific inputs are volume and days/year. Volume can be calculated based on square footage of the facility or from units served.

Table 3-2 presents the volume and days of usage values for a facility by square footage. Table 3-3 presents the volume and days of usage values by unit produced or person served.

Table 3-2 Hot Water Requirements by Facility Size

Building Type	Daily Demand (Gallons / Unit / Day)	Unit	Units / 1,000 Sq. Feet	Applicable Days / Year	Gallons / 1,000 Sq. Feet / Day
Small Office	1	Person	2.3	250	2.3
Large Office	1	Person	2.3	250	2.3
Fast Food Rest.	0.7	Meal/Day	784.6	365	549.2
Sit-down Rest.	2.4	Meal/Day	340	365	816
Retail	2	Employee	1	365	2.0
Grocery	2	Employee	1.1	365	2.2
Warehouse	2	Employee	0.5	250	1.0
Elementary School	0.6	Person	9.5	200	5.7
Jr. High/High School	1.8	Person	9.5	200	17.1
Health	90	Patient	3.8	365	342
Motel	20	Unit (Room)	5	365	100.0
Hotel	14	Unit (Room)	2.2	365	30.8
Other	1	Employee	0.7	250	0.7

Table 3-3 Hot Water Requirements by Unit or Person

Building Type	Size Factor	Average Daily Demand		
Dermiteries	Men	13.1 Gal. per Man		
Dormitories	Women	12.3 Gal. per Woman		
Hospitals	Per Bed	90.0 Gal. per Patient		
Lietala	Single Room with Bath	50.0 Gal. per Unit		
HOLEIS	Double Room with Bath	80.0 Gal. per Unit		
	# Units:			
Matala	Up to 20	20.0 Gal. per Unit		
woters	21 to 100	14.0 Gal. per Unit		
	101 and Up	10.0 Gal. per Unit		
Desteursete	Full Meal Type	2.4 Gal. per Meal		
Restaurants	Dive-in Snack Type	0.7 Gal. per Meal		
Schools	Elementary	0.6 Gal. Per Student		
SCHOOIS	Secondary and High School	1.8 Gal. Per Student		

3.2.7.1 Net-to-Gross Ratio

The Evaluator applied the Oklahoma Natural Gas Water Heating free ridership estimate of 16% to the commercial segment. The resulting aggregate NTGR for this group was 84%.

3.2.8 Verified Savings

Gross savings are summarized in Table 3-4.

Measure Group	Measure Category	Expected Therm Savings	Verified Therm Savings	Realization Rate	EUL	Lifetime Therm Savings
	Single-Family Retrofit	50,149	50,149	100.0%	14.5	726,916
	NC - Builder	345	345	100.0%	20.0	6,909
6	NC – Owner/Custom	555	555	100.0%	20.0	11,095
Space	Multifamily	0	0	N/A	N/A	0
neating	Fuel Switch	10,974	10,974	100.0%	14.4	157,658
	Smart Thermostats	1,795	1,795	100.0%	11.0	19,747
	Self-Install Smart Thermostat	2,241	2,241	100.0%	11.0	24,647
	Single-Family Retrofit	1,284	1,284	100.0%	20.0	25,690
Water	NC - Builder	882	882	100.0%	20.0	17,641
Heating	NC – Owner/Custom	183	183	100.0%	20.0	3,663
	Fuel Switch	1,374	1,374	100.0%	20.0	27,474
Annliancos	Cooking Range	349	349	100.0%	15.0	5,230
Appliances	Clothes Dryer	82	82	14.3%	16.0	1,319
Commercial	Furnace	18,156	18,156	100.0%	20.0	363,126
	Smart Thermostats	210	210	100.0%	11.0	2,311
	Water Heater	2,734	2,734	100.0%	20.0	54,676
	Overall:	91,314	91,314	100.0%	15.9	1,448,103

Table 3-4 Verified Gross Therm Savings

Net savings are summarized in Table 3-5.

Measure		NTGR		Net Annual Savinas		Net	Net Lifetime
Group	Measure Category	Ex Ante	Ex Post	Ex Ante	Ex Post	Realization Rate	Therm Savings
	Single-Family Retrofit	84.9%	84.9%	42,602	42,602	100.0%	617,516
	NC - Builder	88.9%	88.9%	307	307	100.0%	6,140
	NC - Owner	48.7%	48.7%	270	270	100.0%	5,403
Space	Multifamily Retrofit	N/A	N/A	0	0	N/A	0
Heating	Fuel Switch	85.0%	85.0%	9,323	9,323	100.0%	133,930
	Smart Thermostats	88.9%	88.9%	1,596	1,596	100.0%	17,555
	Self-Install Smart Thermostat	88.9%	88.9%	1,992	1,992	100.0%	21,911
	Single-Family Retrofit	85.0%	85.0%	1,091	1,091	100.0%	21,823
Water	NC - Owner	91.7%	91.7%	809	809	100.0%	16,177
Heating	NC - Builder	64.4%	64.4%	118	118	100.0%	2,359
	Fuel Switch	85.0%	85.0%	1,167	1,167	100.0%	23,339
Appliances	Cooking Range	80.0%	80.0%	279	279	100.0%	4,184
Appliances	Clothes Dryer	80.0%	80.0%	66	66	100.0%	1,055
	Furnace	70.3%	70.3%	12,769	12,769	100.0%	255,387
Commercial	Smart Thermostats	70.3%	70.3%	148	148	100.0%	1,625
	Water Heater	84.4%	84.4%	2,306	2,306	100.0%	46,123
	Overall:	82.0%	82.0%	74,842	74,842	100.0%	1,174,528

4. High Efficiency Homes Program

The High Efficiency Homes Program provides incentives to new construction home builders. Eligible measures for this program include:

- \$1,000 for gas furnaces (primary source) with 95% or higher AFUE,
- Natural gas water heating, and
- At least one additional natural gas burner tip.

4.1 Program Overview

The High Efficiency Homes Program is designed to encourage new home builders to choose energy efficient natural gas water heating and space heating equipment. The program is marketed to consumers, builders, and developers through local publication, bill inserts, various media avenues, and direct contact.

4.2 Participation Summary

In 2022, program participation consisted of 45 total furnaces – all furnaces were rated at 95% AFUE or greater.

There were no rebates for furnaces with a 90 – 94.9% AFUE, water heaters, smart thermostats, or natural gas burner tips.

4.3 Impact Evaluation

4.3.1 Space Heating Energy Savings Calculations

Savings for residential furnaces are calculated as follows:

$$therm_{ex \ post \ savings} = therm_{basline \ heating \ system} - therm_{new \ heating \ system}$$

First the energy use of the new heating system was found.

$$therm_{new heating system} = Heat load \times \left(\frac{1}{AFUEnew heating system}\right)$$
$$Heat load = \left(\frac{therms}{site area}}{yr}\right) \times site area = \left(\frac{therms}{site area}}{yr}\right) \times \left(\frac{CAP_H}{30}\right) \times 1.05$$

Where:

Site area = square footage of the project site

$$CAP_{H} = \left(\frac{BTU}{hr}\right)$$
 = verified heating capacity verified by the Evaluator with AHRI number
 $AFUE_{new \ heating \ system}$ = verified by the Evaluator with AHRI number

Source to site ratio, electric to gas = 3.14

Next the energy use of the removed heater was found.

$$therm_{new \ heating \ system} = Heat \ load \times \left(\frac{1}{AFUE_{old \ heating \ system}}\right)$$
$$Heat \ load = \left(\frac{therms}{site \ area}}{yr}\right) \times site \ area \ = \left(\frac{therms}{site \ area}}{yr}\right) \times \left(\frac{CAP_{H}}{30}\right) \times 1.05$$

Where,

$$\left(\frac{\frac{therms}{site area}}{yr}\right)$$
 = 0.233 (Evaluator's estimation, assuming unknown build age)
 $CAP_{H} = \left(\frac{BTU}{hr}\right)$ = rated heating capacity = new furnace heating capacity, see above
AFUE_{base} = 80%

Source to site ratio, electric to gas = 1.05

4.3.2 Net-to-Gross Ratio

The net-to-gross rates for the High Efficiency Homes Program was 92.3%.

4.4 Verified Savings

Gross therms are summarized in Table 4-1.

Table 4-1 Gross Therm Savings

Measure	Expected Therm Savings	Verified Therm Savings	Gross Realizations Rate	Lifetime Therm Savings	
Total Gross Savings	5,888	5,888	100.0%	117,770	

Net savings are summarized in Table 4-2.

Table 4-2 Net Therm Savings

Measure	NTGR		Net Annual Savings		Net	Net Lifetime
	Ex Ante	Ex Post	Ex Ante	Ex Post	Realization Rate	Therm Savings
Total Net Savings	92.3%	92.3%	5,435	5,435	100.0%	108,702

5. Commercial Solutions Program

The Commercial Solutions Program is directed at developing and incenting custom energy efficiency projects for which deemed values are not applicable or feasible. It is implemented by CLEAResult Consulting on behalf of Summit. CLEAResult handles program administration, marketing and outreach, direct installation of water conservation and air infiltration measures, and technical review of custom efficiency projects. Program participants are provided:

- (1) No-cost direct installation of low-flow faucet aerators, showerheads, door air infiltration and pre-rinse spray valves (PRSVs), if they have gas water heating or comfort heating;
- (2) Prescriptive incentives for boiler and food service measures; and
- (3) \$0.95 per therm for custom projects.

5.1 Commercial Solutions Program Overview

The Commercial Solutions Program is designed to provide no-cost direct installation of water saving and comfort heating measures, energy audits, and incentives for custom projects. The Commercial Solutions Program participants fall into one of four categories:

- Direct install,
- Prescriptive,
- Custom audit recipients, and
- Closed custom projects.

In 2022, custom projects accounted for 43.9% of program savings and direct install accounted for 56.1%. These participants are detailed in the subsections to follow.

5.1.1 Direct Install Participation Summary

In 2022, 16 distinct premises participated in the direct install component of Commercial Solutions Program. Automotive facilities accounted for the majority (59.9%) of the program component savings while the other two facility types, manufacturing and industrial equipment supply, accounted for 20.6% and 19.5% of program component savings, respectively. Figure 5-1 summarizes the participation by facility type, quantified in percent of participation as well as percent of total savings by facility type.

Figure 5-1 Commercial Solutions Direct Install Participant Summary by Facility Type

The number of measures is consistent with the number of rebates issued through the program. In 2022, there were 20 rebates issued through the Direct Install category. Overhead door weather stripping (OHD WS) accounted for the majority (98.5%) of the program savings while the remainder of the savings (1.5%) were from weather stripping (WS).

Figure 5-2 summarizes the participation by measure type, quantified in percent of measure type as well as percent of total savings.

Figure 5-2 Commercial Solutions Direct Install Participant Summary by Measure Type

Additionally, compared to PY2022, the types of business that participated in the direct install program were less diverse and almost completely automotive (92.2%). The only other type of business was manufacturing (7.8%).

5.1.2 Prescriptive Participation Summary

5.1.2.1 Boilers

In 2022, the Commercial Boiler Program did not have any program participation.

5.1.2.2 Food Service

In 2022, the Food Service Program did not have any program participation.

5.2 Commercial Solutions Custom Impact Evaluation

The impact evaluation of the Commercial Solutions Program included the following:

 Custom Project M&V. The Evaluator conducted project-specific M&V on a census of the seven projects completed through the Commercial Solutions Program (accounting for 100% of program custom savings). Each project included an M&V plan and projectspecific report. The reports are provided in Appendix A.

5.3 Commercial Solutions Direct Install Impact Evaluation

5.3.1 Energy Savings Calculations

The AR TRM 9.0 includes commercial faucet aerators, pre-rinse spray valves, low-flow showerheads, and weather stripping. The evaluation of the Commercial Solutions program incorporated these deemed values. They are detailed in the subsections to follow. Direct Install projects completed in PY2022 included the installation of weather stripping only.

5.3.1.1 Weather Stripping

Deemed savings calculations for weather stripping were based upon:

- Air infiltration,
- Cooling and heating equivalent full-load hours, and
- Change in temperature between interior and exterior spaces.

Savings are calculated as follows:

Annual therms =

$$\frac{\left(CFM_{pre,day} * Hours_{day} + CFM_{pre,night} * Hours_{night}\right)\left(CFM_{reduction} * 1.08 * \Delta T * \frac{1.0kW}{ton}\right)}{80\% AFUE * \frac{100,000Btu}{therm}}$$

$$Peak therms = Annual \frac{therms}{ELFH_H}$$

The inputs for this equation are defined in Table 5-2.

Table 5-1 DI Weather Stripping Savings Calculation Parameters

Parameter	Description	Value
CFMpre	Calculated pre-retrofit air infiltration rate (ft ³ /min)	
CFMreduction	Average infiltration reduction	79%
ΔΤ	Change in temperature across gap barrier	
Hoursday	12 hour cycles per day, per menth	4,380
		hours
Hoursnight	12 hour syster par day, par month	4,380
		hours
EFLHH	Average heating equivalent full-load hours	Table 5-3

Building Type	Zone 6	Zone 7	Zone 8	Zone 9
Assembly	575	798	855	824
College/University	630	874	936	902
Fast Food Restaurant	288	440	474	455
Full Menu Restaurant	181	328	370	336
Grocery Store	688	935	995	965
Health Clinic	646	885	922	895
Lodging	389	587	635	605
Large Office (>30k Sq. Ft.)	811	1,014	1,054	1,036
Small Office (≤30k Sq. Ft.)	353	538	568	538
Religious Worship	537	745	798	769
Retail	780	1,041	1,131	1,099
School	774	1,026	1,089	1,064

These values translate into per linear foot savings values by weather zone, detailed in Table 5-4.

Weather Zone	Gap Width (inches)					
weather zone	1/8	1/4	1/2	3/4		
Zone 9	5.34	10.80	21.43	32.16		
Zone 8	4.64	9.38	18.62	27.96		
Zone 7	3.91	7.92	15.71	23.58		
Zone 6	2.89	5.86	11.62	17.44		

Table 5-3 Deemed Annual Therms Savings per Linear Foot

5.4 Net-to-Gross Ratios

The Evaluator applied the Oklahoma Natural Gas NTGR of 97.9% for Direct Install projects.

The Evaluator applied NTGR of 100% for custom and prescriptive projects.

5.5 Verified Savings

Table 5-9 presents the gross savings results of the evaluation of the 2022 Commercial Solutions Program. Total gross savings summarizes the savings calculations performed by AR TRM 9.0 protocols and custom analyses.

Component	Measure	Expected Therm Savings	Verified Therm Savings	EUL	Lifetime Therm Savings
Direct Install	Weather Stripping	266,956	266,956	11	2,936,521
Custom	Various	208,566	208,566	16.8	3,506,234
Total Gross Savings		475,522	475,522	13.5	6,442,755

Table 5-4 Commercial Solutions Verified Therm Savings

Net savings for the Commercial Solutions program were calculated using free ridership rates based on participant surveys for the direct install and custom components. The resulting net savings are presented in Table 5-10.

Table 5-5 Commercial Solutions Net Savings Summary

6	NTGR		Net Annual Savings		Net	Net Lifetime
Component	Ex Ante	Ex Post	Ex Ante	Ex Post	Realization Rate	Therms Savings
Direct Install	100.00%	100.00%	266,956	266,956	100.00%	2,936,521
Custom	100.00%	100.00%	208,566	208,566	100.00%	3,506,234
Overall:	100.00%	100.00%	475,522	475,522	100.00%	6,442,755
6. Home Energy Reports Program

The Home Energy Reports Program is an educational program run by Oracle, a third-party implementer for Summit. The program provides educational materials to a sample of Summit's residential customers, in which their usage is compared against similar households. The program is designed to encourage behavioral change and program participation on the part of the recipients of the Home Energy Report.

6.1 Participation Summary

The Home Energy Reports Program began in October 2011. The program is designed to generate quantifiable behavioral savings that cannot be feasibly attained through standard DSM efforts. The program differs from standard energy conservation marketing efforts in that it provides unique reports to each customer, comparing their gas bills against those of similar-sized homes in their neighborhood. The comparison against their neighbors is intended to have a jarring effect; when informed that their usage is above average, the program theory would assert that they are then driven to engage in conservation behaviors.

Over time, the population of recipients faces attrition. This occurs mostly due to members of the recipient group moving to a new residence. Table 6-1 summarizes the participation counts present for the 2022 program year.

Program Year	Wave 1	Wave 2	Wave 3	Wave 4	Wave 5	Total
2022	17,483	10,694	10,351	13,705	12,793	65,026

6.1.1 Savings Calculation Methodologies

The post-program regression (PPR) model combines both cross-sectional and time series data in a panel dataset. This model uses only the post-program data, with lagged energy use for the same calendar month of the pre-program period acting as a control for any small systematic differences between the participant and control customers. In particular, energy use in calendar month *t* of the post-program period is framed as a function of both the participant variable and energy use in the same calendar month of the pre-program period. The underlying logic is that systematic differences between participants and controls will be reflected in differences in their past energy use, which is highly correlated with their current energy use. The version we estimate includes monthly fixed effects and interacts these monthly fixed effects with the preprogram energy use variable. These interaction terms allow pre-program usage to have a different effect on post-program usage in each calendar month.

The model specification is as follows:

 $\begin{aligned} Usage_{it} &= \alpha_{0} + \beta * treatment_{i} \\ &+ \alpha_{1} * PreUsage_{i} \\ &+ \alpha_{2} * PreUsageSummer_{i} \\ &+ \alpha_{3} * PreUsageWinter_{i} \\ &+ \gamma * mm_{t} \\ &+ \delta_{1} * mm_{t} * PreUsage_{i} \\ &+ \delta_{2} * mm_{t} * PreUsageSummer_{i} \\ &+ \delta_{3} * mm_{t} * PreUsageWinter_{i} \\ &+ \varepsilon_{it} \end{aligned}$

Where:

- *i* denotes the *i*th customer
- *t* denotes the first, second, third, etc. month of the post-treatment period
- Usage_{it} is the average daily use for reading t for household i during the post-treatment period
- PreUsage_i is the average daily usage across household i's available pre-treatment billing reads
- *mm_t* is a vector of month-year dummies

And parameter definitions are:

- α_0 is an intercept term
- $\alpha_1, \alpha_2, \alpha_3$ are effects of control variables *PreUsage_i*, *PreUsageSummer_i*, and *PreUsageWinter_i* on *Usage_{it}* in the reference month
- $\delta_1, \delta_2, \delta_3$ are the effect of the control variables *PreUsage_i*, *PreUsageSummer_i*, and *PreUsageWinter_i* in each month-year (*mm_t*) of the post period
- ε_{it} is an error term

In this specification, savings are calculated by:

Savings = ∑ (Treatment Coeff * Number of recipients in month *i* * Number of days in month *i*)

Where:

- Treatment Coeff = Coefficient for treatment parameter (daily use is the dependent variable, a negative value for treatment reflects the difference in therms/day used by the recipient group after report delivery)
- Number of recipients in month *i* = Total recipients in the Wave, after accounting for attrition, for each month
- Number of days in month *i* = For month *i*, the number of days in the month

6.1.2 Home Energy Report Net Savings

The HER program uses a randomized control trial, comparing recipients to non-recipients. As a result, the savings estimates from the model are net savings estimates, and no further deduction of free ridership is taken.

6.2 Model Output Results

Table 6-2 shows the pre-period interval for each wave, based on one year of billing data before the program start date. For each wave, the same interval was found for both recipient and controls groups, which allows for a proper comparison of pre-usage.

Wave	Start Year/Month	End Year/Month
1	2010-07	2011-09
2	2013-06	2014-08
3	2015-11	2017-01
4	2018-07	2019-09
5	2022-03	2023-02

Tahle	6-2	Pre-neriod	Interval
<i>i</i> ubic	0 2	i i c periou	meervar

6.2.1 Wave 1

Table 6-3 provides the model coefficients for the regression of customer billing data in the analysis of Wave 1.

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Intercept	0.76	0.03	28.53	<0.00001
Treatment	-0.03	0.01	-5.03	<0.00001
February	0.14	0.01	9.92	<0.00001
March	0.03	0.02	1.17	0.24
April	0.62	0.02	35.90	<0.00001
May	0.03	0.04	0.90	0.37
June	-0.28	0.04	-7.28	<0.00001

Table 6-3 Regression Coefficients & Model Details – Wave 1

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
July	-0.62	0.04	-16.08	<0.00001
August	-0.64	0.04	-16.56	<0.00001
September	-0.66	0.04	-16.89	<0.00001
October	-0.61	0.04	-15.75	<0.00001
November	-0.64	0.04	-16.41	<0.00001
December	-0.69	0.04	-17.76	<0.00001
Pre-usage	-0.70	0.04	-17.79	<0.00001
Pre-summer	-0.39	0.04	-9.96	<0.00001
Pre-winter	-0.09	0.04	-2.28	0.02
Pre-usage: February	-0.15	0.02	-7.81	<0.00001
Pre-usage: March	-0.07	0.02	-3.72	0.00
Pre-usage: April	0.14	0.02	6.03	<0.00001
Pre-usage: May	0.04	0.02	1.52	0.13
Pre-usage: June	0.31	0.04	7.00	<0.00001
Pre-usage: July	-0.48	0.07	-7.22	<0.00001
Pre-usage: August	-0.39	0.06	-7.04	<0.00001
Pre-usage: September	-0.02	0.04	-0.46	0.65
Pre-usage: October	0.10	0.02	4.42	<0.00001
Pre-usage: November	-0.02	0.02	-1.08	0.28
Pre-usage: December	-0.20	0.02	-9.46	<0.00001
Pre-summer: February	0.04	0.03	1.07	0.28
Pre-summer: March	0.19	0.03	5.54	<0.00001
Pre-summer: April	0.18	0.03	5.27	<0.00001
Pre-summer: May	0.28	0.04	7.41	<0.00001
Pre-summer: June	0.00	0.05	-0.09	0.93
Pre-summer: July	0.66	0.07	9.06	<0.00001
Pre-summer: August	0.61	0.06	9.49	<0.00001
Pre-summer: September	0.32	0.05	6.96	<0.00001
Pre-summer: October	0.19	0.03	5.55	<0.00001
Pre-summer: November	0.07	0.03	2.00	0.05
Pre-summer: December	0.02	0.03	0.55	0.58
Pre-winter: February	0.15	0.02	7.08	<0.00001
Pre-winter: March	-0.16	0.02	-8.41	<0.00001
Pre-winter: April	-0.49	0.02	-26.60	<0.00001
Pre-winter: May	-0.58	0.02	-32.04	<0.00001

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T	
Pre-winter: June	-0.61	0.02	-33.44	<0.00001	
Pre-winter: July	-0.62	0.02	-34.00	<0.00001	
Pre-winter: August	-0.61	0.02	-33.91	<0.00001	
Pre-winter: September	-0.60	0.02	-32.95	<0.00001	
Pre-winter: October	-0.51	0.02	-27.89	<0.00001	
Pre-winter: November	-0.20	0.02	-10.55	<0.00001	
Pre-winter: December	0.15	0.02	6.18	<0.00001	
Adjusted R-Square: 0.766					

- Annual Savings =
 - \sum (0.02873 * Number of customers in month i * Number of days in month i) =

177,303 Therms

95% Confidence Interval: +/- 58,011 (32.7%)

6.2.2 Wave 2

Table 6-4 provides the model coefficients for the regression of customer billing data in the analysis of Wave 2.

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Intercept	0.48	0.02	19.86	<0.00001
Treatment	-0.03	0.00	-6.82	<0.00001
February	-0.30	0.03	-9.81	<0.00001
March	0.00	0.02	-0.13	0.90
April	1.04	0.03	32.26	<0.00001
May	0.08	0.03	2.31	0.02
June	-0.13	0.03	-3.78	0.00
July	-0.36	0.03	-10.62	<0.00001
August	-0.39	0.03	-11.44	<0.00001
September	-0.38	0.03	-11.14	<0.00001
October	-0.35	0.03	-10.24	<0.00001
November	-0.36	0.03	-10.66	<0.00001
December	-0.38	0.03	-11.17	<0.00001

 Table 6-4 Regression Coefficients & Model Details – Wave 2

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Pre-usage	-0.38	0.03	-11.03	<0.00001
Pre-summer	-0.20	0.03	-5.94	<0.00001
Pre-winter	0.02	0.03	0.59	0.55
Pre-usage: February	0.36	0.04	9.16	<0.00001
Pre-usage: March	0.50	0.04	13.89	<0.00001
Pre-usage: April	0.62	0.04	17.58	<0.00001
Pre-usage: May	0.50	0.04	12.47	<0.00001
Pre-usage: June	0.17	0.09	1.90	0.06
Pre-usage: July	0.40	0.19	2.12	0.03
Pre-usage: August	0.54	0.10	5.24	<0.00001
Pre-usage: September	0.38	0.04	9.58	<0.00001
Pre-usage: October	0.51	0.04	14.14	<0.00001
Pre-usage: November	0.41	0.03	11.87	<0.00001
Pre-usage: December	0.42	0.04	10.82	<0.00001
Pre-summer: February	-0.08	0.03	-2.30	0.02
Pre-summer: March	0.20	0.03	5.88	<0.00001
Pre-summer: April	0.35	0.04	10.01	<0.00001
Pre-summer: May	0.36	0.04	7.95	<0.00001
Pre-summer: June	0.61	0.10	6.29	<0.00001
Pre-summer: July	0.26	0.19	1.40	0.16
Pre-summer: August	0.16	0.09	1.70	0.09
Pre-summer: September	0.35	0.04	9.54	<0.00001
Pre-summer: October	0.21	0.03	5.96	<0.00001
Pre-summer: November	0.08	0.03	2.52	0.01
Pre-summer: December	-0.05	0.03	-1.49	0.14
Pre-winter: February	-0.39	0.04	-9.55	<0.00001
Pre-winter: March	-0.71	0.03	-20.78	<0.00001
Pre-winter: April	-0.95	0.03	-29.10	<0.00001
Pre-winter: May	-1.00	0.03	-30.67	<0.00001
Pre-winter: June	-1.02	0.03	-31.15	<0.00001
Pre-winter: July	-1.03	0.03	-31.45	<0.00001
Pre-winter: August	-1.02	0.03	-31.41	<0.00001
Pre-winter: September	-1.02	0.03	-31.13	<0.00001
Pre-winter: October	-0.95	0.03	-29.00	<0.00001
Pre-winter: November	-0.67	0.03	-19.94	<0.00001

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T	
Pre-winter: December	-0.52	0.04	-12.72	<0.00001	
Adjusted R-Square: 0.784					

- Annual Savings =
 - \sum (0.03375 * Number of customers in month i * Number of days in month i) =

126,711 Therms

95% Confidence Interval: +/- 30,552 (24.1%)

6.2.3 Wave 3

Table 6-5 provides the model coefficients for the regression of customer billing data in the analysis of Wave 3.

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Intercept	0.61	0.02	34.92	<0.00001
Treatment	-0.02	0.00	-3.95	0.00
February	-0.41	0.02	-24.72	<0.00001
March	-0.17	0.03	-5.95	<0.00001
April	1.45	0.02	72.61	<0.00001
May	0.04	0.02	1.77	0.08
June	-0.19	0.02	-7.68	<0.00001
July	-0.53	0.02	-21.22	<0.00001
August	-0.63	0.02	-25.28	<0.00001
September	-0.60	0.02	-23.96	<0.00001
October	-0.54	0.03	-21.61	<0.00001
November	-0.57	0.02	-23.21	<0.00001
December	-0.60	0.02	-24.03	<0.00001
Pre-usage	-0.49	0.03	-19.62	<0.00001
Pre-summer	-0.28	0.03	-10.98	<0.00001
Pre-winter	-0.06	0.02	-2.28	0.02
Pre-usage: February	0.58	0.02	25.38	<0.00001
Pre-usage: March	0.54	0.02	23.65	<0.00001
Pre-usage: April	0.64	0.02	28.35	<0.00001

Table 6-5 Regression Coefficients & Model Details – Wave 3

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Pre-usage: May	0.69	0.03	25.61	<0.00001
Pre-usage: June	1.08	0.07	14.38	<0.00001
Pre-usage: July	0.36	0.11	3.40	0.00
Pre-usage: August	0.52	0.09	5.95	<0.00001
Pre-usage: September	0.78	0.04	21.09	<0.00001
Pre-usage: October	0.77	0.03	27.59	<0.00001
Pre-usage: November	0.47	0.03	18.72	<0.00001
Pre-usage: December	0.75	0.03	29.07	<0.00001
Pre-summer: February	0.00	0.04	0.10	0.92
Pre-summer: March	0.24	0.04	5.59	<0.00001
Pre-summer: April	0.74	0.05	16.06	<0.00001
Pre-summer: May	0.88	0.05	17.14	<0.00001
Pre-summer: June	0.23	0.09	2.43	0.02
Pre-summer: July	0.78	0.10	7.88	<0.00001
Pre-summer: August	0.70	0.09	7.54	<0.00001
Pre-summer: September	0.56	0.06	9.81	<0.00001
Pre-summer: October	0.39	0.05	7.98	<0.00001
Pre-summer: November	0.25	0.04	5.77	<0.00001
Pre-summer: December	0.18	0.04	4.44	<0.00001
Pre-winter: February	-0.61	0.02	-25.59	<0.00001
Pre-winter: March	-0.89	0.02	-41.40	<0.00001
Pre-winter: April	-1.29	0.02	-61.54	<0.00001
Pre-winter: May	-1.40	0.02	-67.69	<0.00001
Pre-winter: June	-1.42	0.02	-68.57	<0.00001
Pre-winter: July	-1.43	0.02	-69.14	<0.00001
Pre-winter: August	-1.43	0.02	-68.97	<0.00001
Pre-winter: September	-1.42	0.02	-68.55	<0.00001
Pre-winter: October	-1.33	0.02	-63.90	<0.00001
Pre-winter: November	-0.90	0.02	-39.82	<0.00001
Pre-winter: December	-0.94	0.03	-31.97	<0.00001
Adjusted R-Square: 0.798				

- Annual Savings =
 - \sum (0.01798 * Number of customers in month i * Number of days in month i) =

64,820 Therms

95% Confidence Interval: +/- 26,995 (41.6%)

6.2.4 Wave 4

Table 6-6 provides the model coefficients for the regression of customer billing data in the analysis of Wave 4.

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Intercept	0.44	0.02	29.43	<0.00001
Treatment	-0.03	0.00	-7.16	<0.00001
February	-0.30	0.03	-10.29	<0.00001
March	0.12	0.02	5.89	<0.00001
April	1.15	0.03	39.11	<0.00001
May	0.06	0.02	3.08	0.00
June	-0.17	0.02	-7.91	<0.00001
July	-0.36	0.02	-16.91	<0.00001
August	-0.37	0.02	-17.81	<0.00001
September	-0.36	0.02	-17.20	<0.00001
October	-0.35	0.02	-16.73	<0.00001
November	-0.35	0.02	-16.46	<0.00001
December	-0.35	0.02	-16.36	<0.00001
Pre-usage	-0.34	0.02	-15.57	<0.00001
Pre-summer	-0.24	0.02	-11.21	<0.00001
Pre-winter	-0.09	0.02	-4.07	0.00
Pre-usage: February	0.54	0.03	16.25	<0.00001
Pre-usage: March	0.68	0.03	20.98	<0.00001
Pre-usage: April	0.94	0.03	28.29	<0.00001
Pre-usage: May	0.74	0.04	20.73	<0.00001
Pre-usage: June	0.53	0.05	9.68	<0.00001
Pre-usage: July	0.34	0.09	3.72	0.00
Pre-usage: August	0.29	0.07	4.12	0.00
Pre-usage: September	0.47	0.04	11.58	<0.00001
Pre-usage: October	0.60	0.03	18.45	<0.00001
Pre-usage: November	0.45	0.03	14.08	<0.00001
Pre-usage: December	0.10	0.03	3.06	0.00
Pre-summer: February	0.04	0.03	1.26	0.21

Table 6-6 Regression Coefficients & Model Details – Wave 4

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Pre-summer: March	0.18	0.03	6.21	<0.00001
Pre-summer: April	0.11	0.03	3.37	0.00
Pre-summer: May	0.18	0.04	4.87	<0.00001
Pre-summer: June	0.28	0.06	4.86	<0.00001
Pre-summer: July	0.32	0.09	3.65	0.00
Pre-summer: August	0.36	0.07	5.08	<0.00001
Pre-summer: September	0.27	0.04	7.09	<0.00001
Pre-summer: October	0.28	0.03	9.19	<0.00001
Pre-summer: November	0.16	0.03	5.43	<0.00001
Pre-summer: December	0.04	0.03	1.41	0.16
Pre-winter: February	-0.59	0.03	-17.01	<0.00001
Pre-winter: March	-0.89	0.03	-28.53	<0.00001
Pre-winter: April	-1.11	0.03	-37.14	<0.00001
Pre-winter: May	-1.13	0.03	-37.88	<0.00001
Pre-winter: June	-1.13	0.03	-38.10	<0.00001
Pre-winter: July	-1.13	0.03	-38.19	<0.00001
Pre-winter: August	-1.13	0.03	-38.19	<0.00001
Pre-winter: September	-1.13	0.03	-38.05	<0.00001
Pre-winter: October	-1.10	0.03	-36.81	<0.00001
Pre-winter: November	-0.76	0.03	-24.14	<0.00001
Pre-winter: December	-0.21	0.03	-6.06	<0.00001
Adjusted R-Square: 0.823				

- Annual Savings =
 - \sum (0.02673 * Number of customers in month i * Number of days in month i) =

124,163 Therms

95% Confidence Interval: +/- 28,533 (23.0%)

6.2.5 Wave 5

Table 6-7 provides the model coefficients for the regression of customer billing data in the analysis of Wave 5.

Although the treatment coefficient for Wave 5 is not statistically significant, the Evaluator has opted to include the findings for the newly established wave. Like previous waves that were

reported on just after launching (Wave 4 in PY2020), patterns of increased difference in usage between participant and control groups will show over time.

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Intercept	0.41	0.02	26.12	<0.00001
Treatment	0.00	0.00	1.05	<0.00001
February	0.20	0.01	26.10	<0.00001
March	0.14	0.02	8.24	<0.00001
April	0.77	0.01	102.38	<0.00001
Мау	N/A	N/A	N/A	N/A
June	N/A	N/A	N/A	N/A
July	-0.48	0.02	-22.12	<0.00001
August	-0.45	0.02	-21.13	<0.00001
September	-0.35	0.02	-16.28	<0.00001
October	-0.30	0.02	-14.00	<0.00001
November	-0.28	0.02	-13.19	<0.00001
December	-0.30	0.02	-14.01	<0.00001
Pre-usage	-0.26	0.02	-11.81	<0.00001
Pre-summer	0.17	0.02	7.91	<0.00001
Pre-winter	0.68	0.02	30.90	<0.00001
Pre-usage: February	N/A	N/A	N/A	N/A
Pre-usage: March	N/A	N/A	N/A	N/A
Pre-usage: April	-0.01	0.01	-1.07	0.28
Pre-usage: May	0.14	0.02	7.96	<0.00001
Pre-usage: June	0.00	0.04	-0.08	0.93
Pre-usage: July	-0.06	0.08	-0.74	0.46
Pre-usage: August	-0.03	0.04	-0.84	0.40
Pre-usage: September	0.20	0.02	8.32	<0.00001
Pre-usage: October	0.00	0.02	0.16	0.87
Pre-usage: November	-0.39	0.02	-15.63	<0.00001
Pre-usage: December	0.40	0.03	15.60	<0.00001
Pre-summer: February	N/A	N/A	N/A	N/A
Pre-summer: March	N/A	N/A	N/A	N/A
Pre-summer: April	0.47	0.03	18.74	<0.00001
Pre-summer: May	0.33	0.03	11.26	<0.00001
Pre-summer: June	0.30	0.05	6.08	<0.00001

Table 6-7 Regression Coefficients & Model Details – Wave 5

Variable Description	Regression Coefficient	Standard Error	T-Stat	PR > T
Pre-summer: July	0.23	0.08	2.91	0.00
Pre-summer: August	0.19	0.04	4.48	<0.00001
Pre-summer: September	0.07	0.03	2.42	0.02
Pre-summer: October	0.12	0.03	4.59	<0.00001
Pre-summer: November	-0.13	0.02	-5.18	<0.00001
Pre-summer: December	-0.22	0.03	-8.78	<0.00001
Pre-winter: February	N/A	N/A	N/A	N/A
Pre-winter: March	N/A	N/A	N/A	N/A
Pre-winter: April	-0.47	0.01	-46.22	<0.00001
Pre-winter: May	-0.69	0.01	-73.18	<0.00001
Pre-winter: June	-0.73	0.01	-77.93	<0.00001
Pre-winter: July	-0.75	0.01	-80.29	<0.00001
Pre-winter: August	-0.76	0.01	-80.79	<0.00001
Pre-winter: September	-0.75	0.01	-79.21	<0.00001
Pre-winter: October	-0.58	0.01	-54.30	<0.00001
Pre-winter: November	0.21	0.02	9.30	<0.00001
Pre-winter: December	-0.33	0.03	-10.96	<0.00001
Adjusted R-Square: 0.844				

- Annual Savings =
 - \sum (-0.00394 * Number of customers in month i * Number of days in month i) =
 - -16,087 Therms
- 95% Confidence Interval: +/- 25,285 (157.2%)

The negative sign in the annual savings denotes an increase in gas usage.

6.3 Group Comparison

The difference in consumption between the recipient and control groups is observable when presented graphically. Figure 6-1 presents the monthly differences in consumption between the two groups. Reports were first delivered in October of 2011, and at that point, the magnitude of difference in consumption increases. Further, the difference in use between the recipient and control group increases every year thereafter.

Figure 6-1 Daily Consumption between Recipient & Control Group – Wave 1

Similar representations for Wave 2, Wave 3, Wave 4, and Wave 5 are presented in Figure 6-2, Figure 6-3, Figure 6-4, and Figure 6-5 respectively. The impacts of the reports for Wave 3, Wave 4, and Wave 5 are somewhat lower than Wave 1 and 2. Wave 1 and Wave 2 show a pattern of increased difference in usage between participant and control groups over time, where this pattern is slowly starting to become recognizable in Wave 3, Wave 4, and Wave 5.

Figure 6-2 Daily Consumption between Recipient & Control Group – Wave 2

Figure 6-3 Daily Consumption between Recipient & Control Group – Wave 3

Figure 6-4 Daily Consumption between Recipient & Control Group – Wave 4

Figure 6-5 Daily Consumption between Recipient & Control Group – Wave 5

6.4 Per-Customer Performance

The annual savings per recipient for each wave is shown in Figure 6-5. In PY2022, Wave 2 had the highest savings at 12.33 therms per recipient. The savings for Wave 1 were 10.49 therms. The savings for Wave 3 were 6.57 therms. Wave 4 had savings of 9.76 therms per participant. Finally, the Wave 5 savings were -1.21 therms, with the negative sign in the value denoting an actual increase in gas usage. Additionally, Waves 1 - 4 outperformed savings from PY2021.

Of all the PY2022 waves, Wave 3 had the lowest savings.

Figure 6-6 Savings per Recipient

Table 6-7 shows the savings per recipient for each wave at the both the lower and upper boundaries of the 95% confidence interval. Additionally, the annual pre-period usage per recipient and the percent of annual usage is provided below. The savings for each wave were calculated in the 1.41 - 1.74% range, consistent with expected general program performance and program performances in previous years.

Wave	Annual Savings per Recipient	Annual Savings (Lower 95% CI)	Annual Savings (Upper 95% Cl)	Annual Pre- Period Usage per Recipient	Percent Weight of Total Participants	Percent of Annual Therms
1	10.50	6.40	14.59	744.07	36.69%	1.41%
2	12.33	8.78	15.87	728.27	15.68%	1.69%
3	6.57	3.31	9.82	439.61	13.75%	1.49%
4	9.76	7.09	12.44	559.89	17.58%	1.74%
5	-1.21	-3.46	1.05	352.43	16.30%	-0.34%
All	8.21	4.86	11.50	603.49	-	1.36%

Table 6-8 Pre-Period Usage per Recipient and Percent of Annual

6.5 Double Counting Analysis

Protocol J in AR TRM 9.0 specifies double counting as the difference in per-participant otherprogram savings.

Double counted savings is the difference in other-program-savings for the recipient and control groups, and this difference is subtracted from a behavioral program estimate to avoid double counting. If a program has more recipients than non-recipients in the analysis, then taking the straight sum of savings from other-program-savings would dramatically inflate the double counting effect.

However, double counted savings could not be verified for PY2022. The Evaluator noted that the cross-referencing file that is usually provided did not have the needed fields to help map customers across program data and billing data.

Taking the same approach that was taken for PY2021, the Evaluator calculated the average percent difference between the ex post savings before a double count analysis and the ex post savings after a double count analysis. Program Years 2018, 2019, and 2020 had an average percent difference of -1.70%. In all three years, the double counted ex post savings were more than the ex post savings before the double count.

Table 6-8 shows the calculated PY2022 program savings after adjusting for double counting.

Program Year	Ex post Therms Before Double Counting	Percent Difference	Ex post Therms After Double Counting
2022	476,910	+ 1.70%	485,038

Although the double counted savings are provided above, the Evaluator believes that the conservative approach for PY2022 is to report the ex post therms before double counting since the appropriate method of double counting was not possible to perform with the mapping file that was provided this year.

6.6 Verified Savings

The Home Energy Reports Program has 476,910 annual therms savings in 2022, shown in Table 6-9.

Table 6-10 HER Program Savings

Ex-ante Therms	Ex post Therms	Realization Rate	95% Confidence Therms	Precision
476,910	476,910	100.0%	169,377	9.4%

The overall program realization rate for PY2022 is 100.0%.

Additionally, the overall program savings are shown on a per-wave basis in Table 6-10 where the lower and upper bounds at the 95% confidence interval are calculated.

Wave	Weighted Number of Participants	Ex post Therms	Ex post Therms (Lower 95% CI)	Ex post Therms (Upper 95% CI)
1	17,483	177,303	119,292	235,313
2	10,694	126,711	96,159	157,264
3	10,351	64,820	37,825	91,816
4	13,705	124,163	95,630	152,697
5	12,793	-16,087	-41,373	9,198
All	65,026	476,910	307,533	646,287

Table 6-11 HER Program Savings at 95% Confidence

Table 6-11 summarizes the annual gross and net savings by wave.

Table 6-12 Therms Savings Summary by Wave

Wave	Number of Total Participants	Annual Therms Usage	Ex post Savings	Savings as a Percent of Annual
1	17,483	13,008,527	177,303	1.41%
2	10,694	7,788,153	126,711	1.69%
3	10,351	4,550,427	64,820	1.49%
4	13,705	7,673,327	124,163	1.74%
5	12,793	4,508,683	-16,087	-0.34%
All	65,026	33,020,433	476,910	1.49%

When aggregating across all waves, the Evaluator found that the overall 95% confidence interval was ± 9.4% of program savings. In addition, across all waves, the overall program savings were 1.49% of annual usage.

7. Low-Income Saving Homes Program

The Low-Income Saving Homes Program (LISHP) provides weatherization services to hard-toreach customers. The program is administered in partnership with Public Service Company of Oklahoma (PSO).

Direct install measures include:

- Water heater pipe insulation, and
- Water heater jackets.

Weatherization measures include:

- Air infiltration,
- Duct sealing, and
- Ceiling insulation.

The program is implemented by Titan ES in partnership with PSO.

7.1 Program Background

The LISHP is intended to be primarily vendor-driven program, with the marketing targeted at contractors in the Summit Energy service territory.

7.2 Participation Summary

The LISHP had 228 participants in PY2022, and a total of 612 energy efficiency improvements were installed overall.

Figure 7-1 summarizes the share of program savings contributed by each measure. Most of the program savings were generated by duct sealing, ceiling insulation, and air infiltration.

Figure 7-1 Program Summary by Savings Share and Participation

In addition, incentives were provided for 201 Health & Safety assessment measures at 201 homes. These types of Health & Safety measures included carbon monoxide detectors and vent pipe installations to improve home air flow quality.

7.2.1 Participation Timing

Figure 7-2 summarizes the premises by month as determined by the date of rebate delivery as well as the cumulative savings from the program.

Figure 7-2 LISHP Cumulative Savings and Participants by Month

7.2.2 Quality Assurance

Staff at Titan ES conduct post inspections of a minimum of 10% of the projects completed by each trade ally. Post inspections are conducted by a quality assurance specialist. The post-inspection procedure includes designations of major violations and minor violations for each measure.

- Major violations require immediate resolution which may include charging the contractor back for the coupon amount.
- Minor violations may be resolved without coupon chargeback.

The definition of major and minor violations by measure are summarized in Table 7-1.

Measure	Definitions				
	Major violation examples:				
	 Verified devices installed do not match claimed devices installed. 				
	 Device installed on an appliance of non-eligible fuel type 				
Direct install	 Installation of direct install equipment results in damage or 				
	inoperability of existing equipment				
	Minor violation examples:				
	None				
	Major violation examples:				
	 Stated existing R-value: error > 1 step difference in R-value 				
	range chart on the coupon.				
	 Stated finished R-value: error of > 10% in R-value 				
Insulation	 Stated square footage: error of >10% in square feet 				
	Minor violation examples:				
	 Improper installation of new insulation (such as varying depths) 				
	 Bag count card not properly displayed 				
	 Depth markers not properly displayed 				
	Major violation examples:				
	 Starting vs. finished air leakage rate: verification reveals 				
	discrepancy > 20%				
	 Minimum Ventilation Requirement (MVR): failure to identify 				
Duct sealing/air	correct MVR or take proper action in the event of the MVR not				
sealing	being met				
Seams	 Duct sealing or air sealing materials: use of improper materials 				
	 Combustion Safety Test (CST): not performing the CST or failing 				
	to take proper action on the results.				
	Minor violation examples:				
	None				

Table 7-1 QA Violation Definitions by Measure

7.3 LISHP Impact Evaluation

The evaluation effort of the LISHP included a desk review of residential calculations. The Evaluator utilized AR TRM 9.0 values in assessing savings from measures included in the program.

7.3.1 Tracking Data Review

The impact evaluation began with a review of program tracking data. The tracking data included a separate row for each measure installed. Every premise in the program had a unique rebate identifier, and thus one premise would have multiple rows to reflect the different measures completed. Table 7-2 summarizes ex ante savings by measure for the LISHP.

Measure	Ex Ante Therm
Duct Sealing	38,728
Ceiling Insulation	15,062
Air Infiltration	15,481
WH Pipe Insulation	128
Water Heater Jacket	20
Total	69,420

Table 7-2 LISHP Ex Ante Summary

The tracking data provided measured values for duct pressurization testing and blower door tests, allowing for the recreation of ex ante calculations based on leakage reduction. Further, the tracking data was found to include detailed parameters for all measures, such as baseline R-value for ceiling insulation.

7.3.2 Net Savings Estimates

The NTGR for the LISHP is 100% due to the program's emphasis on targeting hard-to-reach customers.

7.3.3 Verified Savings

Table 7-4 presents the gross savings results of the evaluation of the PY2022 Low-Income Saving Homes Program. Total gross savings summarizes the savings calculations performed by AR TRM 9.0 protocols for program measures.

Measure	Ex Ante Therms	Ex Post Therms	Gross Realization	EUL	Lifetime Therms
Duct Sealing	38,728	38,728	100.0%	18	697,111
Ceiling Insulation	15,062	15,062	100.0%	20	301,239
Air Infiltration	15,481	15,481	100.0%	11	170,291
Pipe Insulation	128	128	100.0%	11	1,412
Water Heater Jacket	20	20	100.0%	13	257
Total	69,420	69,420	100.0%	16.9	1,170,310

Table 7-3 LISHP Verified Savings Summary

Table 7-4 LISHP Net Savings Summary

Free-Rider:	ship Rate	Net Annua	l Savings Net			
Ex Ante	Ex Post	Ex Ante	Ex Post	Ex Post Realization Rate		Net Lifetime Therms Savings
0.00%	0.00%	69,420	69,420	100.0%	16.9	1,170,310

8. Low Flow Showerhead & Aerators Program

The Low Flow Showerhead & Faucet Aerator Program provides no-cost mailer kits to Summit residential customers. These kits may contain:

- Up to three 1.5 gallons per minute (GPM) low flow showerheads, available in chrome and ivory finish; and
- Up to three faucet aerators, with options including 1.5 GPM kitchen aerators (with a shutoff valve) and 1.0 GPM bathroom aerators (without a shutoff valve).
- New for PY2022, the option to request up to one self-install smart thermostat was added in for the kits.

8.1 Program Background

The Low Flow Showerhead and Faucet Aerator Program is designed to provide no-cost kits containing low flow showerheads and faucet aerators to Summit residential customers. These kits are then self-installed. The program has been markedly popular among Summit customers.

8.2 Low Flow Showerhead and Faucet Aerator Program Participation Summary

In 2022, Summit distributed 179 kits to their residential customers. Table 8-1 presents a summary of the composition of the kits installed. The table is organized showing first the number of customers by showerhead, then how many aerators were ordered by customers that ordered that specified number of showerheads.

Showerheads		Bathroo	om Aerators	Kitchen Aerators		
Quantity	% Selected	Quantity	% Selected	Quantity	% Selected	
		0	100.0%	0	98.0%	
0	27 40/	1	0.0%	1	2.0%	
0	27.470	2	0.0%	2	0.0%	
		3	0.0%	3	0.0%	
		0	59.0%	0	48.7%	
1	21.8%	1	38.5%	1	51.3%	
1		2	2.6%	2	0.0%	
		3	0.0%	3	0.0%	
		0	31.7%	0	26.8%	
n	22.9%	1	4.9%	1	73.2%	
Z		2	63.4%	2	0.0%	
		3	0.0%	3	0.0%	
2	24.20/	0	10.5%	0	10.5%	
		1	5.3%	1	86.8%	
3	21.270	2	81.6%	2	2.6%	
		3	2.6%	3	0.0%	

Table 8-1 Low Flow Kit Composition

		0	0.0%	0	0.0%
	F 00/	1	0.0%	1	88.9%
4	5.0%	2	88.9%	2	11.1%
		3	11.1%	3	0.0%
		0	0.0%	0	0.0%
	0.6%	1	0.0%	1	100.0%
5	0.0%	2	100.0%	2	0.0%
		3	0.0%	3	0.0%
		0	0.0%	0	0.0%
6	1 10/	1	0.0%	1	100.0%
	1.1%	2	50.0%	2	0.0%
		3	50.0%	3	0.0%

8.3 Low Flow Showerhead & Faucet Aerator Program Impact Evaluation

8.3.1 Energy Savings Calculations

Savings from low flow showerheads are calculated by the following process:

- First, the Evaluator calculated the per-unit savings as determined by AR TRM 9.0 algorithms which incorporate weather-zone specific ground water temperatures, and an assumed mixed water temperature of 104.3 deg. F for the water heater.
- Further, these values are scaled down by the verified In-Service Rate. This is the percentage of distributed equipment installed. This is determined separately for each item in the kit (showerheads, kitchen aerators, and bathroom aerators).
- The Evaluator then parsed out the savings based on the percentage of electric vs. gas water heating as determined through the participant surveys. This serves to provide a weighted average value of energy savings based upon the electric and natural gas savings algorithms for each measure as indicated in AR TRM 9.0.

8.3.2 Unit Energy Savings

8.3.2.1 Faucet Aerators

Savings from faucet aerators are based upon AR TRM 9.0 values. Savings for faucet aerators are calculated as follows:

$$Energy Savings = \frac{\rho \times C_P \times V \times (T_{Mixed} - T_{Supply}) \times (\frac{1}{RE})}{Conversion Factor}$$

Where,

 ρ = Water density, 8.33 lbs./gal.

 $C_P = \text{Specific heat of water, 1 BTU/lb·°F}$

V = DHW gallons saved / yr. / faucet

V = gallons of hot water saved per year per faucet

= $533 \times (2.2 - gpm)$ where GPM is the flow rate of the new aerator.

This formula is a linear extrapolation of values in.

 $T_{SetPoint}$ = Mixed water temperature (default value 102.6°F)

 T_{Supply} = Average supply water temperature

RE = Recovery efficiency of water heater, excluding standby losses (0.98 electric / 0.79 Gas).

Conversion Factor = 3,412 BTU/kWh for electric water heating or 100,000 BTU/Therms for gas water heating.

Parameter	Value
Faucet use gallons/person/day (baseline)	9.7
Faucet use gallons/person/day (1.5 GPM)	8.2
Faucet use gallons/person/day (1.0 GPM)	7.2
Occupants per home	2.53
Faucets per home	3.86
Gal./yr./faucet (Baseline)	2,321
Gal./yr./faucet (1.5 GPM)	1,962
Gal./yr./faucet (1.0 GPM)	1,722
Mixed Water Temperature	105.3°F
DHW gallons saved/yr./faucet for 1.5 GPM (V)	359
DHW gallons saved/yr./faucet for 1.0 GPM (V)	599

Table 8-2 Faucet Aerator Volume of Use

8.3.2.2 Low Flow Showerheads

Savings for low flow showerheads are detailed in Section 2.3.5 of the AR TRM 9.0. They are calculated in the same manner as faucet aerators, differing only in the volume of use estimates.

Parameter	Value
Average Shower Duration (minutes)	8.3
Gallons/shower @ 2.5 GPM (baseline	20.7
Gallons/shower @ 2.0 GPM	16.5
Gallons/shower @ 1.5 GPM	12.4
Showers/person/day (baseline)	0.69
Showers/person/day(post)	0.72
Occupants per home	2.53
Showers/home/day (baseline)	1.62
Showers/home/day(post)	1.93
Showerheads per home	1.62
Showers per showerhead per day (baseline)	1.16
Showers per showerhead per day (post)	1.19
Gal./yr./showerhead @ 2.5 GPM (baseline)	8,142
Gal./yr./showerhead @ 1.5 GPM	5,089
Mixed Water Temperature	107.1 °F
1.5 GPM showerhead DHW gallons saved/yr. (V)	3,053

Tahle	8-3	Showerhead	Volume	of Use
iubic	05	Showenicuu	volunic	0,050

In addition, to account for the customers with electric water heating, the Evaluator incorporated the AR TRM 9.0.

8.3.3 In-Service Rates

The Evaluator applied in-service rates developed by Summit Utilities:

- Showerhead: 85.5%
- Kitchen aerator 80.0%
- Bathroom aerator: 85.5%
- Self-install smart thermostat: 100.0%

8.4 Net-to-Gross

The Evaluator used CenterPoint Arkansas free ridership of 96.3% with spillover of 0.639 therms per kit.

8.5 Verified Savings

Table 8-4 summarizes the total gross savings and Table 8-5 summarizes the total net savings for the Low Flow Showerhead & Faucet Aerator Program.

Annual (Measure Category S		ss Therms ngs	EUL	Lifetime Gr Savi	Gross Realization	
	Ex Ante	Ex Post		Ex Ante	Ex Post	Rate
Aerators	448	448	10	4,483	4,483	100.0%
Showerheads	3,144	3,144	10	31,436	31,436	100.0%
Smart Thermostats	2,297	2,297	11	25,269	25,269	100.0%
Total Gross Savings	5,889	5,889	10.4	61,189	61,189	100.0%

Table 8-4 Low Flow Showerhead & Faucet Aerator Program Verified Gross Savings

Table 8-5 Low Flow Showerhead & Faucet Aerator Program Verified Net Savings

Measure Net-to-Gross Ratio		ross Ratio	Annu Therms	al Net Savings	EUL	Lifetime Net Therms Savings	
Category	Ex Ante	Ex Post	Ex Ante	Ex Post		Ex Ante	Ex Post
Kit Savings	93.4%	93.4%	5,501	5,501	10	57,158	57,158
Total Net Savings		5,501	5,501	10	57,158	57,158	

Table 8-6 summarizes the net non-energy benefits from the 2022 Low Flow Showerhead & Faucet Aerator Program.

Table 8-6 Low Flow Showerhead & Faucet Aerator Program Net Non-Energy BenefitsSummary

Non-Energy Benefit	Annual	EUL	
Water Savings (Gallons)	832,220	10	

9. Appendix A: Site Reports

This appendix contains the individual site reports for the Commercial Solutions Program.

ProgramC&I SolutionsProject IDPRJ-2546763Facility SIC Code3499 - Fabricated Metal Products, Not Elsewhere ClassifiedMeasuresExhaust System VFD

Project Background

The participant is a livestock equipment manufacturing plant that received incentives from Summit Energy for:

ECM #1 – Exhaust System VFD

The participant uses natural gas at their facility to run a powder coat oven for livestock equipment. The negative pressure created by the induced-draft fan in an oven draws cold air through the openings (leaks) and into the oven. The cold air becomes heated to the oven exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the oven.

Reducing the speed on the exhaust fans with a variable frequency drive (VFD) to a more appropriate flow reduced the infiltration, thus reducing waste energy. This measure involved installing (1) VFD on the #2 exhaust fan. It was found that with a VFD installed, only one fan was needed so Exhaust Fan #3 was removed from service. For additional information see table below. Note: #1 exhaust fan was removed from scope after the M&V plan was written.

Exhaust	Stack Temp	Square Feet	FPM Reading	CFM	Measure Effects
#2	351	2.25	3,661	8,237	VFD Installed
#3	154	2.00	3,677	7,354	Removed from Service
Total:				15,591	

Table 1. Stack Temperature and CFM by Exhaust Fan

M&V Methodology

The M&V effort for this project follows the guidelines of the 2022 International Performance Measurement and Verification Protocol (IPMVP) Option A – Key Parameter Measurement. ADM evaluated the savings associated with this site during a desk review. Clear Result provided the following data for the desk review process: stack temperature, stack area, stack air flow rates, exhaust fan amperage (2 weeks), max fan amps, and fan

amps at 40 Hz. After a testing period, the customer set the VFD to 40 Hz and was pleased with the performance.

The following calculations were used to determine the annual therm savings associated with this project.

Equation 1: Annual Energy Savings
Annual Savings
$$\left(\frac{CCF}{yr}\right) = Stack Savings_{Stack 2} \left(\frac{CCF}{yr}\right) + Stack Savings_{Stack 3} \left(\frac{CCF}{yr}\right)$$

Annual Savings $\left(\frac{CCF}{yr}\right) = 7,285 \left(\frac{CCF}{yr}\right) + 7,239 \left(\frac{CCF}{yr}\right) = 14,524 \left(\frac{CCF}{yr}\right)$

Equation 2: Annual Stack Energy Savings

$$Stack Savings\left(\frac{CCF}{yr}\right)$$

$$= \frac{A\left(\frac{BTU\ min}{^{\circ}F\ ft^{3}\ hr}\right) \times (CFM_{Pre} - CFM_{Post}) \times (T_{Stack}(^{\circ}F) - T_{Ambient}(^{\circ}F)) \times AOH\left(\frac{hrs}{yr}\right)}{100,000\left(\frac{BTU}{CCF}\right) \times Efficiency(\%)}$$

Where:

A = Density at Stack Temp (btu/lb/F) × Cp at Stack Temp(lbs/CFM) × 60 (min/hr) CFM_{Pre} = see table 1

$$CFM_{Post} = \frac{CFM_{pre}}{\left(\frac{Amps_{pre}}{Amps_{Post}}\right)^{1/2.8}}$$

 $T_{Stack} = Stack$ temperature

 $T_{Ambient}$ = Average indoor temperature for indoor manufacturing = 75°F AOH = annual operating hours, assumed to be 1,076 hours per year based on logged data in the post-install testing period.

100,000 =Conversion factor from BTU to CCF

Efficiency = Assumed heating efficiency = 80%

The post CFM was calculated using the fan affinity law equation below.

Equation 3: Fan Affinity Law

$$\frac{Power_{Pre}}{Power_{Post}} = \left(\frac{CFM_{Pre}}{CFM_{Post}}\right)^{2.8}$$

Appendix A: Site Reports

Where:

 $\operatorname{Power}_{\operatorname{Pre}}$

= Rated full load power of fan motor. Correlates with peak recorded amps (*Amps*_{pre}).

$$Power_{Post} = power at 40 hz = \left(\frac{Amps_{Post}}{Amps_{Pre}}\right) \times Power_{Pre}$$

 $CFM_{Pre} = listed in table 1$

2.8 = Affinity law exponent assumption, never 3 in practice

Measure Life

Measure	EUL	
VFD	15 years	

Calculated Savings:

Overall, project savings are as follows:

Measure	Expected Annual therms Savings	Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
Exhaust System VFD	12,870	14,519	113%	217,860
TOTAL	12,870	14,519	113%	217,860

Table 3. Overall Project Savings

The ex post savings calculations performed by ADM were quite similar to the ex ante savings calculations with one notable difference. The ex ante used a different value for constant "A" the energy savings calcs for Stack #2. The ex ante used 0.55 but ADM calculated 0.72 which increased the energy savings by 13%. The ex ante calculated 0.55 by using a curve-fit to simulate the Cp and density at a range of stack temperatures. The air density data used in this curve fit only covered temperatures up to 200 F but the air temp for Stack #2 is well above that. This resulted in the density for Stack #2 savings calculations being extrapolated and loosing accuracy because of higher stack temperatures.

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$7,565. Measure payback is summarized in the table below.

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Incremental Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
14,519	\$0.796	\$11,557	\$7,565	\$7,565	\$7,565	0.4	0.7

Table 2. Cost, Incentive, and Payback

ProgramC&I SolutionsProject IDPRJ-2622026Facility SIC Code3479- Coating, Engraving, and Allied ServicesMeasuresTank InsulationAnnual Consumption76,600 Therms

Project Background

The participant is a coatings manufacturer that received incentives from Summit Energy for:

• ECM #1 –Tank Insulation

The tank insulation measure saved energy by reducing the heat loss from the tanks, thus reducing the gas consumption.

M&V Methodology

The M&V effort for this project follows the guidelines of the 2022 International Performance Measurement and Verification Protocol (IPMVP) Option A - Retrofit Isolation: Key Parameter Measurement. ADM evaluated the savings associated with this site during a desk review.

Measurement and verification activities are based on the following assumptions:

- Annual operating hours for the site are 4,160 hours
- Combustion efficiency is assumed 80% (for both pre-retrofit and post-retrofit condition)

Tank Insulation

Through this method, energy savings are calculated using key data and through the North American Insulation Manufacturers Association's 3E Plus software:

(http://www.pipeinsulation.org/).

Measurement and verification activities are based on the following assumptions:

- Insulation thickness: 4 in
- Insulation material type: Delta-4 Mineral Wool Board
- Process temperature is 352.5°F

The average annual ambient air temperature is 75°F

The 3E Plus software was used to calculate heat loss (btu/hr/ft) for bare tank (pre-retrofit) and tank with 4 in insulation (post-retrofit). The software required these inputs: process temperature, ambient temperature, tank size, base metal, insulation, and jacket material. Annual therms savings was calculated using the following equation:

Equation 1. Pipe Insulation Installation Annual Energy Savings

Annual Therms Savings =
$$\frac{Heat \ Loss \ \left(\frac{Btu}{hr}\right) \ x \ Annual \ Operating \ Hours \ \left(\frac{hrs}{yr}\right)}{Boiler \ Efficiency \ x \ 100,000 \ \left(\frac{BTU}{CCF}\right)}$$

Where:

Annual Operating Hours = number of hours facility operates annually Boiler Efficiency 100,000 Btu/CCF = conversion factor (BTU/yr to CCF/yr)

Entry #	Description	Object to Insulate	Quantity	Surface Area (ft^2)
1	Oven Burner Box - West Side	Rectangular Tank	1	16.44
2	Oven Burner Box - North Bottom	Rectangular Tank	1	24.33
3	Oven Burner Box - South Top	Rectangular Tank	1	14.67
4	Oven Burner Box - North Top	Rectangular Tank	1	14.67
5	Oven Burner Box - South Bottom	Rectangular Tank	1	24.33
6	Oven Burner Box - East Side	Rectangular Tank	1	16.44

Table 1.	Tank	Insulation	Parameters
----------	------	------------	------------

Measure Life

Table 2. Estimated Useful Life for Respective Measures

Measure	EUL
Pipe and Tank Insulation	20 years

Calculated Savings:

Tank Insulation

Entry #	Description	Object to Insulate	Temperature (°F)	Pre Heat Loss	Post Heat Loss	Therms Savings
1	Oven Burner Box - West Side	Rectangular Tank	353	786	23	653
2	Oven Burner Box - North Bottom	Rectangular Tank	353	786	23	966
3	Oven Burner Box - South Top	Rectangular Tank	353	786	23	582
4	Oven Burner Box - North Top	Rectangular Tank	353	786	23	582
5	Oven Burner Box - South Bottom	Rectangular Tank	353	786	23	966
6	Oven Burner Box - East Side	Rectangular Tank	353	786	23	653
Total					4,401	

Table 3. Tank Insulation Annual Energy Savings

Overall, project savings are as follows:

Table 3. Overall Project Savings

Measure	Expected Annual therms Savings	Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
Tank Insulation	4,694	4,695	100%	93,892
TOTAL	4,694	4,695	100%	93,892

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$6,814. Measure payback is summarized in the table below.

Table 4	Cost	Incentive	and	Pa	/back
	0031,	moonuvo,	and	I G	DUCIN

Appendix A: Site Reports
4,695	\$0.620	\$2,911	\$6,814	\$4,459	\$3,287	1.1	2.3

ProgramC&I SolutionsProject IDPRJ-2953389Facility SIC Code2047 – Dog and Cat FoodMeasuresInsulationAnnual Consumption329,740Therms

Project Background

The participant is an 80,000 square feet, manufacturing facility that received incentives from Summit Energy for:

- ECM #1 Steam Pipe Insulation
- ECM #2 Condensate Pipe Insulation
- ECM #1 Tank Insulation

A dryer is the primary source of consumption during the production process for this facility, as well as radiant heaters located to the side of the plant.

This ECM saved energy by installing insulation on uninsulated areas of pipe and tanks where hot steam or water flows. The key variables that affected the realization of energy savings were fluid temperatures, insulation R value, and the dimensions of the objects being insulated.

M&V Methodology

The M&V effort for this project follows the guidelines of the 2022 International Performance Measurement and Verification Protocol (IPMVP) Option A – Key Parameter Measurement. ADM evaluated the savings associated with this site during a desk review. Savings were determined using custom calculations that were based off 3EPlus Software.

ADM used 3EPlus to determine the pre and post heat loss through two pipes and one cylindrical tank. Table 1 shows the per-foot pre heat loss, post heat loss, and Btu/h/ft savings for each pipe, valve, and fitting affected by the insulation measure.

Object to Insulate	Measure Description	Temp (F)	Pre Heat Loss (from 3EPlus)	Post Heat Loss (from 3EPlus)	Gas Savings (CCF)
Pipe	2" Steam Pipe	337.9	501.0	47.6	7341
Pipe	1" Condensate Pipe	200	107.2	19.4	1563
Cylindrical Tank	Hx Wall	200	261.2	31.3	231

Table 1. 3EPlus Heat Loss and Gas Savings

The following calculations were used to determine the annual CCF savings associated with this project. In this program, a CCF is equivalent to a therm.

Equation 2: Annual Gas Savings

Annual $CCF_{Savings} = Pipe CCF_{Savings} + Valve and Fitting CCF_{Savings} + Tank CCF_{Savings}$

The pipe and tank savings are shown below:

Equation 2: Pipe Annual Gas Savings

$$Pipe \ CCF_{Savings} = \frac{\sum (Gas \ Savings \ per \ Foot_i \times \ Lenght \ (ft)_i \times AOH_i)}{100,000 \ Btu/CCF \times Eff_{Heating}}$$

Equation 3: Tank Annual Gas Savings

 $Tank \ CCF_{Savings} = \frac{\sum (Gas \ Savings \ per \ Square \ Foot_i \times \ Surface \ Area \ (ft^2)_i \times AOH_i)}{100,000 \ Btu/CCF \times Eff_{Heating}}$

Where:

AOH = 6,800 hours (for all insulated equipment)Btu to Therms Conversion = 100,000 Btu/CCF = 100,000 Btu/therm $Eff_{Heating} = 84\%$

The heating efficiency was determined during a boiler test in the ex ante assessment. Since two boilers are present and share the heating load, the average efficiency of the boilers was used for savings calculations.

Measure Life

	Table 2.	Estimated	Useful	Life for	Respective	Measures
--	----------	-----------	--------	----------	------------	----------

Measure	EUL
Insulation	20 years

Calculated Savings:

Overall, project savings are as follows:

Measure	Expected Annual therms Savings	Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
Insulation Measures	9,135	9,138	100%	182,752
TOTAL	9,135	9,138	100%	182,752

Table 3.	Overall	Project	Savings
----------	---------	---------	---------

Measure Cost, Incentive, & Payback

Measure payback is summarized in the table below.

Table 4. Cost,	Incentive,	and	Payback
----------------	------------	-----	---------

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
9,135	\$0.54	\$4,963	\$17,500	\$8,681	\$8,678	1.3	3.5

ProgramC&I SolutionsProject IDPRJ-2617645Facility SIC Code2952 - Asphalt Felts and CoatingsMeasuresPipe Insulation

Project Background

The participant is an asphalt plant hat received incentives from Summit Energy for:

ECM #1 – Pipe and Tank Insulation

The Pipe insulation measure saved energy by reducing the heat loss from tanks, the piping, and joints/values, thus reducing the gas consumption.

M&V Methodology

The M&V effort for this project follows the guidelines of the 2022 International Performance Measurement and Verification Protocol (IPMVP) Option A - Retrofit Isolation: Key Parameter Measurement. ADM evaluated the savings associated with this site during a desk review.

Measurement and verification activities are based on the following assumptions:

- Annual operating hours for the site are 8,760 hours
- Combustion efficiency is 85% (for both pre-retrofit and post-retrofit condition)

Pipe Insulation

Through this method, energy savings are calculated using key data and through the North American Insulation Manufacturers Association's 3E Plus software:

(http://www.pipeinsulation.org/).

Measurement and verification activities are based on the following assumptions:

- Insulation thickness: 1 in
- Insulation material type: 850F MF Pipe and Tank, Type IIIB, C1393-14
- Process temperature is 360°F and 450°F
- The average annual ambient air temperature is 75°F
- The average wind speed is 12.9 mph

The 3E Plus software was used to calculate heat loss (btu/hr/ft) for bare piping (preretrofit) and piping with 1 in insulation (post-retrofit). The software required these inputs: process temperature, ambient temperature, pipe size, base metal, insulation, and jacket material. Annual therms savings was calculated using the following equation:

Equation 3. Pipe Insulation Installation Annual Energy Savings

$$Annual Therms Savings = \frac{Heat Loss \left(\frac{Btu}{hr}\right) x Annual Operating Hours \left(\frac{hrs}{yr}\right)}{Boiler Efficiency x 100,000 \left(\frac{BTU}{CCF}\right)}$$

Where:

Annual Operating Hours = number of hours facility operates annually Boiler Efficiency

100,000 Btu/CCF = conversion factor (BTU/yr to CCF/yr)

Entry #	Description	Pipe or Valve	Quantity	Diameter (in)
1	Asphalt Silo	Cylindrical Tank	1	10
2	Kiln Barrel Section 1	Cylindrical Tank	1	8
3	Kiln Barrel Section 2	Cylindrical Tank	1	8
4	Kiln Barrel Section 3	Cylindrical Tank	1	8
5	Asphalt Tank 2	Cylindrical Tank	1	10
6	Asphalt piping to silo	Pipe	1	4
7	Asphalt Silo Tank 1 Bottom	Cylindrical Tank	1	
8	Asphalt Silo Tank 1 metal Body	Cylindrical Tank	1	10
9	Asphalt Silo Tank 2 Bottom	Cylindrical Tank	1	
10	Asphalt Silo Tank 2 metal Body	Cylindrical Tank	1	10

Table 1. Pipe/Va	ale/Tank Insulation	Parameters
------------------	---------------------	------------

Measure Life

Table 2. Estimated Useful Life for Respective Measures

Measure	EUL
Pipe and Tank Insulation	20 years

Calculated Savings:

Pipe Insulation

Entry #	Description	Pipe or Valve	Temperature (°F)	Pre Heat Loss	Post Heat Loss	Therms Savings
1	Asphalt Silo	Cylindrical Tank	360	1,056	53.58	2,085.14
2	Kiln Barrel Section 1	Cylindrical Tank	450	1,487	77.28	2,541.38
3	Kiln Barrel Section 2	Cylindrical Tank	450	1,487	77.28	2,541.38
4	Kiln Barrel Section 3	Cylindrical Tank	450	1,487	77.28	2,736.87
5	Asphalt Tank 2	Cylindrical Tank	360	1,056	53.58	59,753.15
6	Asphalt piping to silo	Pipe	430	2,923	119.00	12,303.29
7	Asphalt Silo Tank 1 Bottom	Cylindrical Tank	360	1,056	53.58	55.31
8	Asphalt Silo Tank 1 metal Body	Cylindrical Tank	360	1,056	53.58	7,124.21
9	Asphalt Silo Tank 2 Bottom	Cylindrical Tank	360	1,056	53.58	55.31
10	Asphalt Silo Tank 2 metal Body	Cylindrical Tank	360	1,056	53.58	9,209.35
					Total:	98,405

 Table 3. Pipe Insulation Annual Energy Savings

Overall, project savings are as follows:

Table 5. Overall Project Savings

Measure	Expected Annual therms Savings	Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
Pipe and Tank Insulation	98,393	98,405	100%	1,968,108
TOTAL	98,393	98,405	100%	1,968,108

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$68,761.80. Measure payback is summarized in the table below.

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
98,405	\$0.52	\$51,170	\$68,761	\$68,761	\$68,883	0.6	1.3

ProgramC&I SolutionsProject IDPRJ-2295197Facility SIC Code8062 – General Medical and Surgical HospitalsMeasuresInsulationAnnual Consumption271,541 therms

Project Background

The participant is a hospital that received incentives from Summit Energy for:

ECM #1 – Insulation

The participant is a full-service surgical hospital in Oklahoma. The facility is 230,000 square feet and houses dental, x-ray, CT and MRI scanning, Mammography, ultrasound, pharmacy, primary medical care, surgical, emergent care, physical and respiratory therapy, transportation, women's health, pediatrics, podiatry, telemedicine, and ophthalmology. Most of the natural gas used in the facility is attributed to cleaning, sanitization, direct hot water, HVAC heating, and kitchen appliances. Steam is produced using (2) Cleaver Brooks 250 HP identical boilers. This steam is distributed through the facility at point-of-use or converted to hot water for end uses.

This ECM saved energy by installing insulation on uninsulated areas of pipe, stem valves, traps, fittings, and tanks where hot steam or water flows. The key variables that affected the realization of energy savings were fluid temperatures, insulation R value, and dimensions of pipe.

M&V Methodology

The M&V effort for this project follows the guidelines of the 2012 International

Performance Measurement and Verification Protocol (IPMVP) Option A – Key Parameter Measurement. ADM evaluated the savings associated with this site during a desk review. Savings were determined using custom calculations that were based off 3EPlus Software.

ADM used 3EPlus to determine the pre and post heat loss through the pipes, valves, fittings and one rectangular tank. Table 1 shows the per-foot pre heat loss, post heat loss, and Btu/h/ft savings for each pipe, valve, and fitting affected by the insulation measure.

Object to Insulate	Measure Description	Temp (F)	Pre Heat Loss (from 3EPlus)	Post Heat Loss (from 3EPlus)	Gas Savings (Btu/h/ft)
Pipe	BOILER ROOM (HEAT EXCH) / 14'' / STEAM	331.2	2615.3	185.7	1,534.74
Valve or Fitting	BOILER ROOM / 6'' / STEAM	331.2	1271.7	97.0	459.88
Valve or Fitting	BOILER ROOM / 6'' / STEAM	331.2	1271.7	97.0	459.88
Valve or Fitting	BOILER ROOM / 4'' / STEAM	331.2	879.6	71.8	288.59
Pipe	BOILER ROOM / 6'' / STEAM	331.2	1271.7	97.0	742.02
Pipe	BOILER ROOM / 3'' / STEAM	331.2	693.6	60.2	1,400.50
Valve or Fitting	BOILER ROOM / 3'' / STEAM	331.2	693.6	60.2	1,687.38
Pipe	BOILER ROOM / 1.5 / STEAM	331.2	392.7	37.9	747.07
Valve or Fitting	BOILER ROOM / 1.5 / STEAM	331.2	392.7	37.9	97.37
Pipe	BOILER ROOM / 6'' / STEAM	331.2	1271.7	97.0	371.01
Valve or Fitting	BOILER ROOM / 6'' / STEAM	331.2	1271.7	97.0	459.88
Pipe	IN HOSPITAL HALLWAY / 4'' / STEAM	331.2	879.6	71.8	255.13
Valve or Fitting	AIR UNIT #7 / 4'' / STEAM	331.2	879.6	71.8	288.59
Valve or Fitting	AIR UNIT #7 / 2.5'' / STEAM	331.2	576.8	48.5	157.83
Pipe	BOILER ROOM / 2'' / CODENSATE	179	145.1	15.8	326.81
Valve or Fitting	BOILER ROOM / 2'' / CODENSATE	179	145.1	15.8	77.28
Valve or Fitting	BOILER ROOM / 1'' / CODENSATE	179	84.9	11.2	53.14
Pipe	BOILER ROOM / 2" COOPER / D.H.W	110	127.2	15.8	985.33
Valve or Fitting	BOILER ROOM / 2" COOPER / D.H.W	110	127.2	15.8	299.56
Pipe	BOILER ROOM / 3" COPPER / H.W.	160	181.3	20.5	761.49
Valve or Fitting	BOILER ROOM / 3" COPPER / H.W.	160	181.3	20.5	588.71
Pipe	BOILER ROOM / 1'' / CODENSATE	179	84.9	11.2	116.46
Valve or Fitting	BOILER ROOM / 1'' / CODENSATE	179	84.9	11.2	70.86
Pipe	BOILER ROOM / 2'' / CODENSATE	179	145.1	15.8	204.25
Valve or Fitting	BOILER ROOM / 2'' / CODENSATE	179	145.1	15.8	77.28
Pipe	BOILER ROOM / 6'' / CONDESATE	179	378.8	33.1	218.35
Pipe	BOILER ROOM / 3/4" / MAKEUP TO D.A.	96	10.4	1.9	18.68
Valve or Fitting	BOILER ROOM / 3/4" / MAKEUP TO D.A.	96	10.4	1.9	5.47
Pipe	BOILER ROOM / 3/4" / MAKEUP TO D.A.	96	10.4	1.9	26.68

Table 1. 3EPlus Heat Loss and Gas Savings

Object to Insulate	Measure Description	Temp (F)	Pre Heat Loss (from 3EPlus)	Post Heat Loss (from 3EPlus)	Gas Savings (Btu/h/ft)
Valve or Fitting	BOILER ROOM / 3/4'' / MAKEUP TO D.A.	96	10.4	1.9	18.24
Pipe	BOILER ROOM / 1.5'' / CONDENSATE	179	118.3	13.0	232.70
Valve or Fitting	BOILER ROOM / 1.5'' / CONDENSATE	179	118.3	13.0	115.55
Pipe	BOILER ROOM / 1.5'' / CONDENSATE	178	116.9	12.8	328.83
Valve or Fitting	BOILER ROOM / 1.5'' / CONDENSATE	178	116.9	12.8	171.44
Pipe	IN HOSPITAL HALLWAY / 2.5'' / HOT WATER	160	134.4	13.2	76.51
Pipe	IN HOSPITAL HALLWAY / 3'' / HOT WATER	160	161.3	16.4	91.51
Pipe	IN HOSPITAL HALLWAY / 1-1/4'' / CONDENSATE	179	104.7	13.2	28.88
Rectangular Tank	Condensate Receiver	179	235.7	14.7	604.96

The following calculations were used to determine the annual CCF savings associated with this project. In this program, a CCF is equivalent to a therm.

Equation 4: Annual Gas Savings

Annual $CCF_{Savings} = Pipe CCF_{Savings} + Valve and Fitting CCF_{Savings} + Tank CCF_{Savings}$

The pipe, valve/fitting, and tank savings are shown below:

Equation 2: Pipe Annual Gas Savings $Pipe \ CCF_{Savings} = \frac{\sum (Gas \ Savings \ per \ Foot_i \times \ Lenght \ (ft)_i \times AOH_i)}{100,000 \ Btu/CCF \times Eff_{Heating}}$

Equation 3: Valve and Fitting Annual Gas Savings

 $Valve and Fitting CCF_{Savings} = \frac{\sum (Gas \ Savings \ per \ Square \ Foot_i \times Equivalent \ Length \ (ft)_i \times AOH_i)}{100,000 \ Btu/CCF \times Eff_{Heating}}$

$Tank \ CCF_{Savings} = \frac{\sum (Gas \ Savings \ per \ Square \ Foot_i \times \ Surface \ Area \ (ft^2)_i \times AOH_i)}{100,000 \ Btu/CCF \times Eff_{Heating}}$

Where:

AOH = 8760 hours (for all insulated equipment)Btu to Therms Conversion = 100,000 Btu/CCF = 100,000 Btu/therm Eff_{Heating} = 83.205%

The heating efficiency was determined during a boiler test in the ex ante assessment. Since two boilers are present and share the heating load, the average efficiency of the boilers was used for savings calculations.

The insulation savings for each measure and for the whole project are listed in Table 2 below:

Object to Insulate	Measure Description	Gas Savings (Btu/h/ft)	Pipe Length (feet)	Pipe Size (Diameter)	Valve or Fitting Size	Tank Surface Area
Pipe	BOILER ROOM (HEAT EXCH) / 14" /		_			-
F -	STEAM	1,534.74	6	14	-	
Valve or Fitting	BOILER ROOM / 6'' / STEAM	459.88	-	-	6	-
Valve or Fitting	BOILER ROOM / 6'' / STEAM	459.88	-	-	6	-
Valve or Fitting	BOILER ROOM / 4'' / STEAM	288.59	-	-	4	-
Pipe	BOILER ROOM / 6'' / STEAM	742.02	6	6	-	-
Pipe	BOILER ROOM / 3'' / STEAM	1,400.50	21	3	-	-
Valve or Fitting	BOILER ROOM / 3'' / STEAM	1,687.38	-	-	3	-
Pipe	BOILER ROOM / 1.5 / STEAM	747.07	20	1.5	-	-
Valve or Fitting	BOILER ROOM / 1.5 / STEAM	97.37	-	-	1.5	-
Pipe	BOILER ROOM / 6'' / STEAM	371.01	3	6	-	-
Valve or Fitting	BOILER ROOM / 6'' / STEAM	459.88	-	-	6	-
Pipe	IN HOSPITAL HALLWAY / 4'' / STEAM	255.13	3	4	-	-
Valve or Fitting	AIR UNIT #7 / 4'' / STEAM	288.59	-	-	4	-
Valve or Fitting	AIR UNIT #7 / 2.5'' / STEAM	157.83	-	-	2	-
Pipe	BOILER ROOM / 2'' / CODENSATE	326.81	24	2	-	-
Valve or Fitting	BOILER ROOM / 2'' / CODENSATE	77.28	-	-	2	-
Valve or Fitting	BOILER ROOM / 1'' / CODENSATE	53.14	-	-	1	-
Pipe	BOILER ROOM / 2" COOPER / D.H.W	985.33	84	2	-	-
Valve or Fitting	BOILER ROOM / 2" COOPER / D.H.W	299.56	-	-	2	-
Pipe	BOILER ROOM / 3" COPPER / H.W.	761.49	45	3	-	-
Valve or Fitting	BOILER ROOM / 3" COPPER / H.W.	588.71	-	-	3	-
Pipe	BOILER ROOM / 1" / CODENSATE	116.46	15	1	-	-
Valve or Fitting	BOILER ROOM / 1" / CODENSATE	70.86	-	-	1	-
Pipe	BOILER ROOM / 2" / CODENSATE	204.25	15	2		-

Table 2. Induvial and Combined Gas Savings

Object to Insulate	Measure Description	Gas Savings (Btu/h/ft)	Pipe Length (feet)	Pipe Size (Diameter)	Valve or Fitting Size	Tank Surface Area
Valve or Fitting	BOILER ROOM / 2'' / CODENSATE	77.28	-	-	2	-
Pipe	BOILER ROOM / 6'' / CONDESATE	218.35	6	6	-	-
Pipe	BOILER ROOM / 3/4'' / MAKEUP TO D.A.	18.68	21	0.75	-	-
Valve or Fitting	BOILER ROOM / 3/4'' / MAKEUP TO D.A.	5.47	-	-	0.75	-
Pipe	BOILER ROOM / 3/4'' / MAKEUP TO D.A.	26.68	30	0.75	-	-
Valve or Fitting	BOILER ROOM / 3/4'' / MAKEUP TO D.A.	18.24	-	-	0.75	-
Pipe	BOILER ROOM / 1.5" / CONDENSATE	232.70	21	1.5	-	-
Valve or Fitting	BOILER ROOM / 1.5'' / CONDENSATE	115.55	-	-	1.5	-
Pipe	BOILER ROOM / 1.5'' / CONDENSATE	328.83	30	1.5	-	-
Valve or Fitting	BOILER ROOM / 1.5'' / CONDENSATE	171.44	-	-	1.5	-
Pipe	IN HOSPITAL HALLWAY / 2.5'' / HOT WATER	76.51	6	2.5	-	-
Pipe	IN HOSPITAL HALLWAY / 3'' / HOT WATER	91.51	6	3	-	-
Pipe	IN HOSPITAL HALLWAY / 1-1/4'' / CONDENSATE	28.88	3	1.25	-	-
Rectangular Tank	Condensate Receiver	604.96	-	-	-	26

Measure Life

Table 2. Estimated Useful Life for Respective Measures

Measure	EUL	
Insulation	20 years	

Calculated Savings:

Overall, project savings are as follows:

Table 3. Overall Project Savings

Measure	Expected Annual therms Savings	Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
Insulation Measures	14,599	14,449	99%	288,977
TOTAL	14,599	14,449	99%	288,977

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$34,772. Measure payback is summarized in the table below.

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
14,449	\$1.012	\$14,622	\$34,772	\$13,726	\$10,114	1.4	2.4

Table 4. Cost, Incentive, and Payback

ProgramC&I SolutionsProject IDPRJ-2295197Facility SIC Code8062 – General Medical and Surgical HospitalsMeasuresBoiler Tune-UpAnnual Consumption271,541 therms

Project Background

The participant is a hospital that received incentives from Summit Energy for:

ECM #1 – Boiler Tune-up

The participant uses natural gas at their facility to operate (2) boilers for space heating, facility operations, kitchen equipment and a gas-heated MAU. The customer upgraded the boilers with new, high efficiency 10:1 turndown burner with linkless controls in 2021. Originally the facility planned to install O2 trim, but that was postponed to now. The high turndown burner allowed for more incremental control of the boiler and operates at lower load without cycling off, saving the purge losses and cycle on time. In addition, linkless controls improved the system energy use by using an exhaust gas analyzer to continuously monitor CO and now excess oxygen, and the information is fed back to the linkless combustion control unit which adjusts the air-damper position in small increments.

This ECM saved energy by installing O2 sensors that allowed the boilers to be tuned so that optimal burner combustion could be maintained. The key variables that affected the realization of energy savings were boiler staging, boiler efficiencies, boiler capacities, and heating degree days (HDD).

M&V Methodology

The M&V effort for this project follows the guidelines of the 2012 International Performance Measurement and Verification Protocol (IPMVP) Option A – Key Parameter Measurement. ADM evaluated the savings associated with this site during a desk review. Savings were determined using custom calculations that were based off TRM equations. ADM used equations from the Boiler Tune Up section of the AR TRM v9.0 but instead of using deemed values for % savings and EFLH, they were calculated using site-specific data.

The following calculations were used to determine the annual baseline CCF consumption associated with this project. In this program, a CCF is equivalent to a therm. The latest 12 months of usage data were added up to get the baseline annual usage.

Equation 5: Annual CCFPre

Annual
$$CCF_{Pre} = Annual MBU_{Pre} \times 10 = 271,541 \frac{CCF}{vr}$$

The baseline energy use was broken into baseline consumption and variable (heating) consumption to determine the loads on the gas equipment. The following table shows the monthly break out of base load and heating load:

Month Woor	Base Load	Heating
Monthy real	CCF	Load CCF
July-2018	12,247	0
August-2018	13,529	0
September-2018	14,784	0
October-2018	16,477	3,356
November-2018	16,477	12,043
December-2018	16,477	15,183
January-2019	16,477	15,123
February-2019	16,477	10,647
March-2019	16,477	13,222
April-2019	16,477	4,241
May-2019	16,477	5,703
June-2019	16,477	3,170
TOTAL	188,857	82,684

Table 1. Disaggregated Gas Usage

The gas-consuming equipment was broken into two categories to correlate with base loads and heating loads. The equipment was assigned hours of use based on customer testimony and HDD analysis for the project location. The load factors for kitchen equipment and the makeup air unit were assumed to be 50% and which resulted in 7% of the overall energy consumption. The load factors for each boiler during base loads and variable heating loads were then optimized to match modeled energy use with historical utility data. The equipment load factors are shown in Table 2 below:

Equipment	Base/Variable Loads	МВН	Hours	LF	Total Base CCF	Total Variable CCF
Boiler 1	Base	10,461	4,368	19%	88,932	0
Boiler 2	Base	10,461	4,368	19%	88,932	0
Kitchen	Base	604	3,640	50%	10,993	0
Boiler 1	Variable	10,461	3,684	10%	0	37,658

Table 2. Cost, Incentive, and Payback

Equipment	Base/Variable Loads	МВН	Hours	LF	Total Base CCF	Total Variable CCF
Boiler 2	Variable	10,461	3,684	10%	0	37,658
MAU	Variable	400	3,684	50%	0	7,368
		188,857	82,684			

The ex ante analysis included a pre-install boiler efficiency test and a post-install boiler efficiency test performed by the contractor. The average pre and post install efficiencies were 83.22% and 85.0% respectively.

Once the annual boiler usage is determined from the load analysis, the following equation was used to calculate EFLH:

Equation 2: Equivalent Full Load Hours

$$EFLH = Annual Boiler CCF \times \frac{100,000 \left(\frac{BTU}{CCF}\right)}{Heating Capacity \left(\frac{BTU}{hr}\right)} = 1,210 \text{ hours}$$

The boiler CCF savings were calculated using Equations 3 and 4 as shown below:

Equation 3: Boiler 1 CCF Savings

$$Boiler 1 Savings = \frac{Heating Capacity \left(\frac{BTU}{hr}\right) \times EFLH \times \left(\frac{1}{Eff_{pre}} - \frac{1}{Effpost}\right)}{100,000 BTU/CCf} = 3,203 CCF$$

$$Boiler \ 2 \ Savings = \frac{Heating \ Capacity \ (\frac{BTU}{hr}) \times EFLH \times \left(\frac{1}{Eff_{pre}} - \frac{1}{Effpost}\right)}{100,000 \ BTU/CCf} = 2,966 \ CCF$$

The total savings are the sum of the individual boiler savings.

Equation 5: Total Annual CCF Savings
Annual
$$CCF_{savings} = Boiler \ 1 \ Savings + Boiler \ 2 \ Savings = 6,169 \ CCF$$

Appendix A: Site Reports

Measure Life

Table 3. Estimated Useful Life for Respective Measures

Measure	EUL	
Boiler Tune-Up	2 years	

Calculated Savings:

Overall, project savings are as follows:

Measure	Expected Realized Annual Annual therms therms Savings Savings		Realization Rate	Lifetime therms Savings
Boiler Tune-Ups	6,169	6,169	100%	12,339
TOTAL	6,169	6,169	100%	12,339

Table 4. Overall Project Savings

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$228,470. Measure payback is summarized in the table below.

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
6,169	\$1.012	\$6,243	\$228,470	\$5,861	\$5,861	35.7	36.6

Table 5. Cost, Incentive, and Payback

ProgramC&I SolutionsProject IDPRJ-2546763Facility SIC Code3499 - Fabricated Metal Products, Not Elsewhere ClassifiedMeasuresHVAC Controls – Schedule Optimization

Project Background

The participant is a manufacturing facility that received incentives from Summit Energy for:

ECM #1 – HVAC Controls – Schedule Optimization

The energy conservation measures implemented at this facility is the upgrade to the facilities HVAC units to allow for a set schedule to be used on the facilities 15 heaters. The initial heaters would supply heat to the facility any time the ambient air temperature dropped below 60°F year-round, regardless of if the facility was occupied or not. The newly implemented HVAC controls allowed for the facilities heaters to supply heat to the facility when it was occupied and the ambient air temperature was below 55°F, the heaters would then supply heat to the facility when it was unoccupied whenever the ambient air temperature fell below 45°F.

M&V Methodology

The M&V effort for this project follows the guidelines of the 2022 International Performance Measurement and Verification Protocol (IPMVP) Option A - Retrofit Isolation: Key Parameter Measurement.

Annual therms savings was calculated using the following equations:

Equation 6. Unoccupied Supply Air Temperature

 $T_{SA,H,Unocc}(^{\circ}F) = T_{SA,H}(^{\circ}F) - T_{Setback}(^{\circ}F)$

Equation 2. Mixed Air Temperature

 $mixed air temperature = \begin{cases} when occupied, T_{MA.H,Occ} = \frac{(V_{SA} - V_{OA}) \times T_{RA,H} + V_{OA} \times T_{OA}}{V_{SA}} \\ when unoccupied, T_{MA.H,Unocc} = T_{RA,H} \end{cases}$

Appendix A: Site Reports

Equation 3. Occupied BTUs

$$BTU = 1.08 \left(\frac{Btu \cdot Min}{Ft^3 \cdot {}^\circ F \cdot Hr} \right) \times V_{SA} \times Load_{H,Occ} \times \left(T_{SA,H}({}^\circ F) - T_{MA,H,Occ}({}^\circ F) \right)$$

Equation 4. Unoccupied BTUs

$$BTU = 1.08 \left(\frac{Btu \cdot Min}{Ft^3 \cdot ^\circ F \cdot Hr} \right) \times V_{SA} \times Load_{H,Unocc} \times \left(T_{SA,H,Unocc} (^\circ F) - T_{MA,H,Unocc} (^\circ F) \right)$$

Equation 5. Therms Savings
Natural Gas Savings (Therms) =
$$\frac{BTU_{Existing} - BTU_{Proposed}}{100,000 \left(\frac{BTU}{Therm}\right) \times Efficiency_{Heating}(\%)}$$

Where:

T_{SA,H} = Supply Air Temperature

T_{setback} = Setback temperature

V_{SA} = Supply Air Flow Rate (CFM)

Voa = Outdoor Air Flow Rate

T_{RA,H} = Return Air Temperature

ToA = Outside Air Temperature

 T_{RA} = Return Air Temperature

Load_{H,Occ} = Occupied Heating Load

Load_{H,Unocc} = Unoccupied Heating Load

TMA,H,Occ = Mixed Air Temperature

Measure Life

Table1. Estimated Useful Life

Measure	EUL	
HVAC Controls	11 years	

Overall, project savings are as follows:

Measure Expected Annual therms Savings		Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
HVAC Controls	8,260	17,967	218%	197,640
Total	8,260	17,967	218%	197,640

Table 2. Overall Project Savings

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$14,395. Measure payback is summarized in the table below.

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
17,967	\$.796	\$14,302	14,395	\$14,395	\$14,395	0	0

Table 5. Cost, Incentive, and Payback

 Program
 C&I Solutions

 Project ID
 PRJ-3105993

 Facility SIC Code
 3499 - Fabricated Metal Products, Not Elsewhere Classified

 Measures
 HVAC Controls – Schedule Optimization

 Hight Efficiency Burner

Project Background

The participant is a manufacturing facility that received incentives from Summit Energy for:

- ECM #1 HVAC Controls Schedule Optimization
- ECM #2 Higher Efficiency Burners

The energy conservation measures implemented at this facility is the upgrade to the facilities HVAC units to allow for a set schedule to be used on the facilities 15 heaters. The initial heaters would supply heat to the facility any time the ambient air temperature dropped below 60°F year-round, regardless of if the facility was occupied or not. The newly implemented HVAC controls allowed for the facilities heaters to supply heat to the facility when it was occupied and the ambient air temperature was below 55°F, the heaters would then supply heat to the facility when it was unoccupied whenever the ambient air temperature fell below 45°F.

M&V Methodology

The M&V effort for this project follows the guidelines of the 2022 International Performance Measurement and Verification Protocol (IPMVP) Option A - Retrofit Isolation: Key Parameter Measurement.

HVAC Controls

Annual therms savings for ECM#1 HVAC were calculated using the following equations:

Equation 7. Unoccupied Supply Air Temperature

 $T_{SA,H,Unocc}(^{\circ}F) = T_{SA,H}(^{\circ}F) - T_{Setback}(^{\circ}F)$

Equation 2. Mixed Air Temperature

mixed air temperature =
$$\begin{cases} when occupied, T_{MA.H,Occ} = \frac{(V_{SA} - V_{OA}) \times T_{RA,H} + V_{OA} \times T_{OA}}{V_{SA}} \\ when unoccupied, T_{MA.H,Unocc} = T_{RA,H} \end{cases}$$

Equation 3. Occupied BTUs

$$BTU = 1.08 \left(\frac{Btu \cdot Min}{Ft^3 \cdot {}^{\circ}F \cdot Hr} \right) \times V_{SA} \times Load_{H,Occ} \times \left(T_{SA,H}({}^{\circ}F) - T_{MA,H,Occ}({}^{\circ}F) \right)$$

Equation 4. Unoccupied BTUs

$$BTU = 1.08 \left(\frac{Btu \cdot Min}{Ft^3 \cdot {}^{\circ}F \cdot Hr}\right) \times V_{SA} \times Load_{H,Unocc} \times \left(T_{SA,H,Unocc}({}^{\circ}F) - T_{MA,H,Unocc}({}^{\circ}F)\right)$$

Equation 5. Therms Savings
Natural Gas Savings (Therms) =
$$\frac{BTU_{Existing} - BTU_{Proposed}}{100,000 \left(\frac{BTU}{Therm}\right) \times Efficiency_{Heating}(\%)}$$

Where:

T_{SA,H} = Supply Air Temperature

T_{setback} = Setback temperature

V_{SA} = Supply Air Flow Rate (CFM)

Voa = Outdoor Air Flow Rate

 $T_{RA,H}$ = Return Air Temperature

ToA = Outside Air Temperature

 T_{RA} = Return Air Temperature

Load_{H,Occ} = Occupied Heating Load

Load_{H,Unocc} = Unoccupied Heating Load

TMA,H,Occ = Mixed Air Temperature

High Efficiency Burner

The annual therm savings for ECM#2 High Efficiency Burner were calculated following Arkansas TRMv9.0 Section 3.1.5 Burner Replacement for Commercial Boilers. The following equations were used in the ex post analysis:

$$\% Savings = \frac{Combustion \, Eff \, Post - Combustion \, Eff \, Pre}{Combustion \, Eff \, Pre} \tag{1}$$

Where:

Combustion Eff Post = %, from spec sheet Combustion Eff Pre = 80%, from AR TRM 9.0

$$Annual Energy Savings\left(\frac{CCF}{yr}\right)$$
(2)
=
$$\frac{Output Capacity(BTU) * EFLH\left(\frac{hrs}{yr}\right) * \% Savings}{100,000\left(\frac{BTU}{CCF}\right) \times Combustion Eff Pre(\%)}$$

Where:

Output Capacity =BTU, from spec sheet

EFLH = estimated annual equivalent full load operating hours, assumed to be 1,015 hours per year (for the MAU) and 1,175 for the heaters, based on customer conversation

100,000 = *Conversion factor from BTU to CCF* Combustion Eff Pre = 80%, from AR TRM 9.0

Unit	АОН	Input Capacity (BTU/hr)	Output Capacity (BTU/hr)	EFLH-H	EC-Base	EC- Efficiency	% Savings	Therm Savings
1	2030	4108696	3780000	1015	80.00%	92%	15%	7,194
2	2030	400000	332000	1175	80.00%	83%	4%	183
3	2030	400000	332000	1175	80.00%	83%	4%	183
Total								7,560

Table 1. Burner Upgrade Savings

Measure Life

Table6. Estimated Useful Life for Respective Measures

Measure	EUL
HVAC Controls	11 years
High Efficiency Burner	12 years

Overall, project savings are as follows:

Measure	Expected Annual therms Savings	Realized Annual therms Savings	Realization Rate	Lifetime therms Savings
HVAC Controls	35,659	35,659	100%	392,249
High Efficiency Burner	7,560	7,560	100%	90,720
Total	43,219	43,219	100%	482,969

Measure Cost, Incentive, & Payback

The Evaluator reviewed the invoices associated with this project and verified a cost of \$60,614. Measure payback is summarized in the table below.

Table 5.	Cost,	Incentive,	and	Payback
----------	-------	------------	-----	---------

Annual Therms Savings	Cost per Therm	Annual Energy Cost Savings	Cost	Base Incentive	Adjusted Incentive	Payback w/Incentive	Payback w/o Incentive
43,219	\$0.619	\$26,752	\$60,614	\$41,058	\$41,058	0.9	2.3

PY 2022 DEMAND PROGRAM ANNUAL REPORT SUMMIT UTILITIES - OKLAHOMA

Appendix B – Marketing Samples

Make the switch from electric to natural gas

By switching to safe and reliable natural gas appliances, you'll receive greater energy-efficiency, cost savings, and a more comfortable home with 35% less CO2 emissions.

Equipment	Rebate	
Heating system	\$2,000	
Water heater	\$900	
Clothes dryer	Up to \$450	
Cooking range	Up to \$300	

To learn more, visit SummitUtilities.com/Rebates.

New company, same great savings!

New year, new ways to save energy and money all year long

Energy savings for your home

Heating systems: Receive up to a **\$500 rebate** when you replace your furnace or boiler with a high-efficiency model.

Smart thermostats: Get a **\$60 rebate** when you install a Wi-Fi learning thermostat.

Water heaters: Avoid preventable problems by replacing an aging water heater before it leaks with a safe, reliable natural gas tankless unit and receive a rebate of **up to \$500**.

Electric to gas: You can get rebates of more than \$2,000 when replacing an electric resistance heating system, water heater, cooking range, or clothes dryer with a qualifying natural gas model.

Money-saving showerheads: Choose up to 3 free showerheads and faucet aerators to help you keep your family comfortable while saving you energy and money.

Order today at SummitUtilities.com/Rebates.

Terms and conditions apply. Limit of 3 showerheads and 3 aerators per customer/household. All other products have a limit of 1 per customer/household per lifetime. To qualify for any product, natural gas must be your primary water heating source.

Treat your home and yourself with these limited-time offers!

By upgrading to a smart thermostat, you'll lower your energy bills and be able to set your heating and cooling around your schedule. Enjoy extra savings on a new thermostat this season, in addition to our instant **\$60 rebate**.

Offer valid through 2/20/2022

Summit Utilities 1400 Centerview Drive, Suite 100 Little Rock, AR 72211-4350 summitutilities.com

To order products through this website you must be a Summit Utilities residential natural gas customer. You will need your account number to complete your order.

©2022 Summit Utilities. All rights reserved.

Time to spring forward into savings

Enjoy bonus rebates and incentives for jobs already completed in 2022!

Spring into savings with rebates!

Now that heating season is over, it's a great time to submit your rebate applications for high-efficiency natural gas equipment installations already completed in 2022. Submit them today and you'll get your rebates faster!

Commercial rebates include:

- Boiler systems
- Forced-air furnaces
- Water heaters
- Foodservice equipment

Find complete rebate program details, including fill-andprint applications at **SummitUtilities.com/OKRebates**.

Questions? Contact your energy efficiency consultant ROBIN SLATER: 580-250-5426 • Rslater@SummitUtilities.com

1400 Centerview Dr., Ste. 100 Little Rock, AR 72211 Presort Standard U.S. Postage Paid Twin Cities, MN Permit No. 30111

Spring into savings with customer rebates and trade ally incentives!

Now that heating season is over, it's a great time to submit your customers' <u>rebate applications</u> for high-efficiency natural gas equipment installations already completed in 2022. Submit applications today. Customers will spring into rebates faster and you'll receive incentives!

Commercial rebates include:

- Boiler systems
- Forced-air furnaces*
- Water heaters*
- Foodservice equipment*

*Trade ally incentives are available only on the equipment marked with an asterisk.

Rebate details and applications

Questions? Contact your energy efficiency consultant: <u>Robin Slater</u> 580-250-5426

Summit Utilities 1400 Centerview Drive, Suite 100 Little Rock, AR 72211-4350 summitutilities.com

Your mid-year reminder

Promote heating system upgrades and prevent the rebate rush

Are your customers updating their AC units?

Don't forget to remind them about the benefit of upgrading their heating system at the same time to ensure peak performance. Plus, they can receive a rebate for a forced-air natural gas furnace and an **extra rebate** when you install a smart thermostat.

Save time and submit applications online!

Get your rebates faster when you submit rebates online. As a reminder, **double-check** the invoice you're attaching to confirm it has the following information:

- Customer name
- Installation address
- Equipment brand
- Model number
- Serial number

If your contractors need to mail their rebates in, please mail them to the following address:

Summit Rebate Program 1400 Centerview Dr., Ste. 100 Little Rock, AR 72211

Kirk Pierce, 501-412-9610 Robin Slater, 580-215-8024

For more information or to get started, visit SummitUtilities/Rebates.

We make it easy to improve energy savings

1.5 gpm Multi-Function Chrome Showerhead

FREE

1.5 gpm Multi-Function Ivory Showerhead 1.5 gpm Handheld Chrome Showerhead

Did you know that hot water is the second-largest energy user in your home, accounting for 15% of your total energy use? By using our easy-to-install showerheads and faucet aerators, you can reduce hot water use and extend the life of your water heater without sacrificing comfort.

Order today at **SummitUtilities.com/Rebates**.

Terms and conditions apply. Limit of 3 showerheads and 3 aerators per customer/household. All other products have a limit of 1 per customer/household per lifetime. To qualify for any product, natural gas must be your primary heat source.

Enjoy hot water while saving money!

FREE 1.5 gpm Wide Head Chrome Showerhead

Make the switch

Now is a great time to upgrade or replace your water heating system!

Replacing a water heater?

Do you have an electric water heating system that has become costly for you to run? Convert to a natural gas high-efficiency tankless water heating system and receive a **rebate of up to \$900**.

Already have a natural gas water heater?

Upgrade to a tankless water heater today and receive a **\$500 rebate**.

For more information, visit **SummitUtilities.com/Rebates**.

Do you have DIY products in your home toolkit?

We have easy-to-install no-cost or low-cost products to help you increase your energy and money savings! Check out our products below:

- Water & energy-saving bathroom bundles for 1-3 bathrooms!
- A stylish handheld chrome showerhead for those looking for a multi-functional showerhead
- Weatherization products: rope caulk, weatherstripping and outlet and switch plate gasket covers to prevent air leaks

Order today!

Please have your Summit Utilities account number available before checking out. You can find your account number on your current bill or by logging into <u>your account</u>.

Terms and conditions apply. Limit of 3 showerheads and 3 aerators per customer/household. All other products have a limit of 1 per customer/household per lifetime. To qualify for any product or rebate, you must be a Summit Utilities residential natural gas customer.

Summit Utilities 1400 Centerview Drive, Suite 100 Little Rock, AR 72211-4350 summitutilities.com

©2022 Summit Utilities. All rights reserved.