marginal wells: fuel for economic growth

2010 report

about the interstate oil and gas compact commission

The Interstate Oil and Gas Compact Commission is a multi-state government agency that promotes the conservation and efficient recovery of our nation's oil and natural gas resources while protecting health, safety and the environment. The IOGCC consists of the governors of 38 states (30 members and eight associate states) that produce most of the oil and natural gas in the United States. Chartered by Congress in 1935, the organization is the oldest and largest interstate compact in the nation. The IOGCC assists states in balancing interests through sound regulatory practices. These interests include: maximizing domestic oil and natural gas production, minimizing the waste of irreplaceable natural resources, and protecting human and environmental health. The IOGCC also provides an effective forum for government, industry, environmentalists and others to share information and viewpoints, allowing members to take a proactive approach to emerging technologies and environmental issues. For more information visit www.iogcc.state.ok.us or call 405-525-3556.

marginal wells: fuel for economic growth

2010 report

contents

Introduction

Definitions

Marginal Oil

National Oil Well Survey U.S. Marginal Oil State Rankings Comparative Number of Marginal Oil Wells and M

Marginal Gas Data

National Marginal Gas Well Survey U.S. Marginal Gas State Rankings Comparative Number of Marginal Gas Wells and I

Economic Analysis

Development of the Report Hydrocarbon Production by State Impact of Marginal Oil and Natural Gas Production

Conclusion

Appendices

Bibliography

Abbreviations

	3
	5
	5
	6
Marginal Oil Production	7
	9
	9
	10
Marginal Gas Production	11
	13
	14
	15
on on the U.S. Economy	15
	21
	23
	25
	27

introduction

introduction

For more than 65 years, the Interstate Oil and Gas In addition to supplying much-needed energy, Compact Commission (IOGCC) has championed marginal wells are important to communities across the preservation of this country's low-volume, the country, providing jobs and driving economic marginal wells and documented their production. activity. The IOGCC recognizes that it goes to the heart Today, as the nation ponders the solution to its of conservation values to do all that is possible to energy challenges, the commission continues to tell productively recover the scarce oil and natural gas the story of how tiny producing wells can collecresources marginal wells produce. tively contribute to a sound energy and economic The IOGCC defines a marginal (stripper) well as future.

a well the produces 10 barrels of oil or 60 Mcf of natural gas per day or less. Generally, these wells started their productive life producing much greater volumes using natural pressure. Over time, the pressure decreases and production drops. That is not to say that the reservoirs which feed the wells are necessarily depleted. It has been estimated that in many cases marginal wells may be accessing a reservoir which stills holds two-thirds of its potential value.

However, because these resources are not always easily or economically accessible, many of the marginal wells in the United States are at risk of being prematurely abandoned, leaving large quantities of oil or gas behind.

introduction

definitions

definitions

Marginal Well. A producing well that requires a higher price per MCF or per barrel of oil to be worth producing, due to low production rates and or high production costs from its location (e.g. far offshore; in deep waters; onshore far from good roads for oil pickup and no pipeline) and/or its hig co-production of substances that must be separate out and disposed of (e.g. saline water, non-burnab gasses mixed with the natural gas). A Marginal Well becomes unprofitable to produce whenever of and/or gas prices drop below its crucial profit poin On land, this is often but not always a stripper we

Stripper Well. An oil well whose maximum daily average oil production does not exceed 10 bbls oil per day during any consecutive 12 month period. Often used interchangeably with the term "Marginal Well", although they are not the same.

Temporary Abandonment. "Cessation of work on a well pending determination of whether it should be completed as a producer or permanently abandoned." (Williams & Meyers)

	Idle Well. (1) A well that is not producing or
	injecting, and has received state approval to remain
<u>1</u> /	idle. or (2) a well that is not producing or inject-
r	ing, has not received state approval to remain idle,
	and for which the operator is known or solvent.
igh	(IOGCC)
ed	
ble	
	Plugged and Abandoned. Wells that have had
oil	plugging operations during the calendar year. Does
int.	not include wells that have been plugged back
ell.	up-hole in order to kick the well, etc. This category
	does not necessarily exclude those with site resto-
	ration remaining to be completed.
ily	

3

definitions

marginal oil

marginal oil

National Marginal Oil Well Survey*	
2009 Calendar Year	

State	Number of Marginal Oil Wells	Production from Marginal Oil Wells (Bbls)	Average Daily Production Per Well (bls)	Total 2009 Oil Production (Bbls)
Alabama	693	951,704	3.8	7,190,384
Alaska	0	0	0.0	235,490,938
Arizona	16	19,637	3.4	46,193
Arkansas	4,547	3,005,944	1.8	5,780,663
California	31,984	40,702,381	3.5	229,903,041
Colorado	8,380	9,180,045	3.0	29,141,175
Florida	4	3,852	2.6	696,375
Illinois	26,649	9,500,000	1.0	9,500,000
Indiana	4,526	1,803,982	1.1	1,803,982
Kansas	18,061	15,563,714	2.4	39,465,000
Kentucky	25,259	2,579,940	0.3	2,608,635
Louisiana	19,969	18,554,005	2.5	69,002,744
Maryland	0	0	0.0	0
Michigan	2,290	3,046,215	3.6	5,538,572
Mississippi	954	881,198	2.5	23,324,558
Montana	2,640	2,006,412	2.1	27,836,080
Nebraska	1,463	1,434,068	2.7	105,295,511
Nevada	32	59,409	5.1	454,592
New Mexico	15,570	15,232,596	2.7	61,184,065
New York	3,339	323,536	0.3	323,536
North Dakota	1,532	2,310,151	4.1	1,645,919
Ohio	29,340	4,399,562	0.4	5,008,609
Oklahoma	33,967	21,389,976	1.7	53,411,573
Pennsylvania	19,307	3,600,000	0.5	3,600,000
South Carolina	0	0	0.0	0
Texas	134,602	108,067,592	2.2	349,101,603
Utah	1,775	2,775,796	4.3	23,061,807
Virginia	2	1,095	1.5	11,430
West Virginia	3,647	833,747	0.6	1,038,524
Wyoming	3,468	3,930,281	3.1	51,321,133
Totals/Averages **	394,202	275,409,538	2.6	1,344,483,434

* Numbers are estimates by states, survey respondents are listed in acknowledgement section. ** Total represents only oil production from states with stripper wells.

us state rankings

Number of		Production from		Average Daily		
Marginal Oil Wells	5	Marginal Oil Wel	ls (Bbs)	Production Per Well		
Texas	134,602	Texas	108,067,592	Nevada	5.1	
Oklahoma	33,967	California	40,702,381	Utah	4.3	
California	31,984	Oklahoma	21,389,976	North Dakota	4.1	
Ohio	29,340	Louisiana	18,554,005	Alabama	3.8	
Illinois	26,649	Kansas	15,563,714	Michigan	3.6	
Kentucky	25,259	New Mexico	15,232,596	California	3.5	
Louisiana	19,969	Illinois	9,500,000	Arizona	3.4	
Pennsylvania	19,307	Colorado	9,180,045	Wyoming	3.1	
Kansas	18,061	Ohio	4,399,562	Colorado	3.0	
New Mexico	15,570	Wyoming	3,930,281	Nebraska	2.7	
Colorado	8,380	Pennsylvania	3,600,000	New Mexico	2.7	
Arkansas	4,547	Michigan	3,046,215	Florida	2.6	
Indiana	4,526	Arkansas	3,005,944	Louisiana	2.5	
West Virginia	3,647	Utah	2,775,796	Mississippi	2.5	
Wyoming	3,468	Kentucky	2,579,940	Kansas	2.4	
New York	3,339	North Dakota	2,310,151	Texas	2.2	
Montana	2,640	Montana	2,006,412	Montana	2.1	
Michigan	2,290	Indiana	1,803,982	Arkansas	1.8	
Utah	1,775	Nebraska	1,434,068	Oklahoma	1.7	
North Dakota	1,532	Alabama	951,704	Virginia	1.5	
Nebraska	1,463	Mississippi	881,198	Indiana	1.1	
Mississippi	954	West Virginia	833,747	Illinois	1.0	
Alabama	693	New York	323,536	West Virginia	0.6	
Nevada	32	Nevada	59,409	Pennsylvania	0.5	
Arizona	16	Arizona	19,637	Ohio	0.4	
Florida	4	Florida	3,852	Kentucky	0.3	
Virginia	2	Virginia	1,095	New York	0.3	
Alaska	0	Alaska	0	Alaska	0.0	
Maryland	0	Maryland	0	Maryland	0.0	
South Carolina	0	South Carolina	0	South Carolina	0.0	
South Dakota	0	South Dakota	0	South Dakota	0.0	

production from marginal oil wells (Bbls)

	Production from
State	Marginal Oil Wells (Bbls)
Texas	108,067,592
California	40,702,381
Oklahoma	21,389,976
Louisiana	18,554,005
Kansas	15,563,714
New Mexico	15,232,596

comparative number of marginal oil wells and marginal oil well production 2005-2009

	2005		2006		2007		2008		2009	
	Number of	Production								
	Marginal	from Marginal								
State	Wells	Wells (Bbls)								
Alabama	665	911,785	677	917,537	693	1,009,557	680	1,009774	693	951,704
Arizona	17	31,432	20	30,469	15	17,721	16	22,514	0	0
Arkansas	4,000	3,317,410	4,000	3,162,057	4,102	3,150,508	4,123	3,075,053	16	19,637
California	26,444	35,563,813	28,016	37,503,478	29,460	39,280,587	31,255	40,600,275	4,547	3,005,944
Colorado	5,982	7,001,499	6,480	7,259,935	6,866	7,170,856	4,289	3,734,540	31,984	40,702,381
Florida	NR	NR	NR	NR	2	3,987	12	28,426	8,380	9,180,045
Illinois	16,751	10,040,292	15,700	9,441,470	25,629	10,000,000	25,635	9,000,000	4	3,852
Indiana	5,364	1,594,296	4,943	1,737,763	5,130	1,263,630	4,355	1,672,479	26,649	9,500,000
Kansas	38,692	25,827,950	54,200	27,417,150	17,020	14,542,290	17,791	15,316,817	4,526	1,803,982
Kentucky	19,012	1,958,015	20,000	1,796,536	18,618	1,796,536	18,576	2,178,114	18,061	15,563,714
Louisiana	20,041	14,152,725	19,338	13,453,243	19,547	19,931,314	16,102	11,779,256	25,259	2,579,940
Michigan	2,011	2,657,497	2,145	2,826,374	2,205	3,044,541	2,315	3,089,050	19,969	18,554,005
Mississippi	1,858	895,452	1,858 /	895,452 /	1,302	1,192,175	1,000	1,094,205	0	0
Missouri	495	85,406	323	86,780	326	79,515	,		2.290	3.046.215
Montana	2,424	1,947,855	2,505	2,011,555	2,532	2,017,196	2,645	2,085,300	954	881.198
Nebraska	1,478	1,598,224	1,487	1,579,404	1,473	1,634,975	1,471	1,644,062	2.640	2.006.412
Nevada	NR	NR	NR	NR	33	59,203	37	58,863	1.463	1.434.068
New Mexico	14,069	14,065,576	14,552	14,361,916	14,975	14,832,271	15,385	15.235.619	32	59.409
New York	2,553	211,292	2,793	293,651	3,559	386,887	3,442	397.060	15.570	15.232.596
North Dakota	1,416	2,217,706	1,457	2,309,795	1,471	2,370,729	1,509	2,406,132	3,339	323.536
Ohio	28,828	4,840,874	28,915	4,805,142	29,120	4,522,244	29.255	5.076.571	1.532	2.310.151
Oklahoma	46,798	39,318,486	47,153	30,258,650	45,892	27,911,928	34,985	23,799,316	29.340	4.399.562
Pennsylvania	16,662	3,652,770	17,350	3,626,000	18,200	3,600,000	19.093	3.600.000	33.967	21,389,976
South Dakota	27	54,169	27	54,169	30	63,054	27	47.993	19.307	3.600.000
Tennessee	290	235,127	347	126,956	347	126,956	0	0	0	0
Texas	124,116	139,959,142	130,553	147,506,457	130,106	119,683,522	132,297	107,160,693	134.602	108.067.592
Utah	1,163	1,618,810	1,407	1,817,620	1,412	2,271,425	1,611	2,638,738	1.775	2,775,796
Virginia	3	1,233	3	779	3	1,698	3	1,402	2	1.095
West Virginia	7,900	1,300,000	3,668	970,802	3,897	838,947	3,617	679,134	3.647	833,747
Wyoming	12,357	8,281,804	12,464	8,245,343	12,572	8,263,340	4,063	4,196,568	3,468	3,930,281
	101070	224 764 570	(204 0 (7 502				5,755,252

* Numbers are estimates by states, survey respondents are listed in acknowledgement section

/ no data submitted for 2006, 2005 data used

NR - No response, new to this portion of the survey

marginal oi

marginal gas

marginal gas

National Marginal Natural Gas Well Survey 2009 Calendar Year

	-	Production from	Average Daily	Total 2009
	Number of	Marginal Gas Wells	Production	Gas Production
	Marginal Wells	(Mcf)	Per Well (Mcf)	(Mcf)
Alabama	4,111	44,241,046	29.5	279,450,843
Alaska	0	0	NA	138,390,252
Arizona	2	19,442	26.6	711,787
Arkansas	2,448	23,566,824	26.4	678,558,507
California	730	5,579,765	20.9	301,229,054
Colorado	12,605	122,056,931	26.5	1,544,180,823
Florida	0	0	NA	291,331
Illinois	716	180,000	0.7	0
Indiana	520	4,927,163	26.0	4,927,163
Kansas	16,820	167,761,611	27.3	359,280,000
Kentucky	18,722	290,908,001	42.6	300,214,655
Louisiana	10,531	84,396,916	22.0	1,519,241,260
Maryland	7	43,584	17.1	43,584
Michigan	7,616	88,462,111	31.8	147,397,417
Mississippi	1,587	12,241,310	21.1	95,868,782
Montana	5,440	35,401,640	17.8	105,295,511
Nebraska	334	2,582,986	21.2	2,734,828
Nevada	0	0	NA	4,488
New Mexico	13,247	116,039,736	24.0	1,397,259,641
New York	6,424	14,015,245	6.0	44,848,895
North Dakota	169	1,232,507	20.0	1,751,877
Ohio	34,547	72,498,491	5.7	88,824,419
Oklahoma	28,744	333,199,823	31.8	1,660,340,609
Pennsylvania	56,178	199,052,000	9.7	273,868,000
South Carolina	0	0	NA	0
South Dakota			NA	10,908,621
Texas	49,038	389,000,000	21.7	7,665,909,932
Utah	1,925	19,728,150	28.1	449,472,239
Virginia	1,340	10,754,506	22.0	140,737,866
West Virginia	47,020	219,247,100	12.8	265,474,505
Wyoming	5,929	45,173,845	20.9	2,537,932,976
Totals/Averages	287,229	2,148,624,539	19.8	20,015,149,865

* Numbers are estimates by states, survey respondents are listed in acknowledgement section

us state rankings

Number of		Production from	Average Daily		
Marginal Gas Well	S	Marginal Gas We	Production Per Well		
Pennsylvania 56,178		Texas	389,000,000	Kentucky	42.6
Texas	49,038	Oklahoma	333,199,823	Michigan	31.8
West Virginia	47,020	Kentucky	290,908,001	Oklahoma	31.8
Ohio	34,547	West Virginia	219,247,100	Alabama	29.5
Oklahoma	28,744	Pennsylvania	199,052,000	Utah	28.1
Kentucky	18,722	Kansas	167,761,611	Kansas	27.3
Kansas	16,820	Colorado	122,056,931	Arizona	26.6
New Mexico	13,247	New Mexico	116,039,736	Colorado	26.5
Colorado	12,605	Michigan	88,462,111	Arkansas	26.4
Louisiana	10,531	Louisiana	84,396,916	Indiana	26.0
Michigan	7,616	Ohio	72,498,491	New Mexico	24.0
New York	6,424	Wyoming	45,173,845	Virginia	22.0
Wyoming	5,929	Alabama	44,241,046	Louisiana	22.0
Montana	5,440	Montana	35,401,640	Texas	21.7
Alabama	4,111	Arkansas	23,566,824	Nebraska	21.2
Arkansas	2,448	Utah	19,728,150	Mississippi	21.1
Utah	1,925	New York	14,015,245	California	20.9
Mississippi	1,587	Mississippi	12,241,310	Wyoming	20.9
Virginia	1,340	Virginia	10,754,506	North Dakota	20.0
California	730	California	5,579,765	Montana	17.8
Illinois	716	Indiana	4,927,163	Maryland	17.1
Indiana	520	Nebraska	2,582,986	West Virginia	12.8
Nebraska	334	North Dakota	1,232,507	Pennsylvania	9.7
North Dakota	169	Illinois	180,000	New York	6.0
Maryland	7	Maryland	43,584	Ohio	5.7
Arizona	2	Arizona	19,442	Illinois	0.7
Alaska	0	Alaska	0	Alaska	
Florida	0	Florida	0	Florida	
Nevada	0	Nevada	0	Nevada	
South Carolina	0	South Carolina	0	South Carolina	
South Dakota		South Dakota		South Dakota	

production from marginal gas wells (Mcf)

	Production from
State	Marginal Gas Wells (Mcf)
Texas	389,000,000
Oklahoma	333,199,823
Kentucky	290,908,001
West Virginia	219,247,100
Pennsylvania	199,052,000
Kansas	167,761,611

comparative number of marginal gas wells and marginal gas well production 2005-2009

	2005		2006		2007		2008		2009	
	Number of	Production	Number of	Production	Number of	Production	Number of	Production	Number of	Production
	Marginal	from Marginal	Marginal	from Marginal	Marginal	from Marginal	Marginal	from Marginal	Marginal	from Marginal
State	Wells	Wells (Mcf)	Wells	Wells (Mcf)	Wells	Wells (Mcf)	Wells	Wells (Mcf)	Wells	Wells (Mcf)
Alahama	2 620 **	26 757 739**	3 069 **	30 156 913 **	3 359 **	35 753 795**	3 751	//0 353 899	<u>и 111</u>	44 241 046
Arizona	2,020	17 212	3	43 494	3	28 470	3	10,000	2	19/1/2
Arkansas	2 11/1	18 707 82/	2 188	18 700 000	2 018	23,470	5 2 22/i	22 067 600	2/1/8	23 566 82/
California	527	/1 /128 5/10	566	4 505 285	618	5 087 30/	678	5 / 63 835	730	5 570 765
Colorado	8 861	88 788 233	9500	9/1 /185 9/19	10.7/10	102 321 123	25 826	280 104 854	12 605	122 056 031
Illinois	551	18/1000	551 /	18/1000 /	730	18/1000	720	180,000	716	180,000
Indiana	2 110	3 13/1 583	//79	1/160/191	//50	1 802 991	667	2 350 601	520	4 927 163
Kansas	15 120	283 712 000	13 868	178 670 000	15 110	1/1 869 2/1	16 / 87	155 826 500	16.820	167761 611
Kentucky	16 618	82 323 31/1	17,500	91 500 000	16 618	8/166931/1	17/170	101 362 082	18,020	200 008 001
Louisiana	10,010	/12 130 82/J	99/17	52 15/1 /175	10,010	/// //10 061*	57/2	50/02 837	10,722	8/1 306 016
Maryland	7	36 468	8	20.878	10,220	39.613	5,142	50,402,057	7	/13 58/
Michigan	6 003	77 388 412	6 448	80,800,000	7.080	80,800,000	7567	88 228 80/	7616	88 / 62 111
Mississinni	1 226	9 486 746	1 226 /	9 486 746 /	1 123	9 729 948	1,507	10 600 535	1 587	12 2/1 310
Montana	4 162	27 426 557	4 577	28 935 586	4 926	31 373 986	5,003	3/123 251	5/1/10	35 / 01 6/ 0
Nehraska	108	720 360	109	873 851	190	1 233 935	281	2 522 377	3,440	2 582 986
New Mexico	10.858	97 358 159	11 433	101 488 431	12 267	105 336 679	12 8/1/	111 383 175	13 2/17	116 039 736
New York	5 607	9 896 329	5 516	10 170 315	6.066	11 411 681	6 272	12 0/1 /08	6/12/1	1/10,055,750
North Dakota	68	401 057	88	691 183	135	1 181 897	161	1 23/ 700	169	1 232 507
Ohio	33 355	68 267 000	33 576	71 382 588	33,960	67 630 326	3/1/12	75 01/1 / 85	34 547	72 498 491
Oklahoma	18 706 **	169 439 950**	20 528 **	184 790 656 **	22 038 **	195 509 065**	28.062	329 693 635	28 744	333 109 823
Pennsylvania	46 654	151 651 000	49750	156 705 000	52 700	152 200 000	55 681	165 576 000	56 178	199,052,000
South Dakota	50	399 891	50	399 891	63	399 907	63	363 030	50,170	199,092,000
Tennessee	315	2 200 000	298	1 792 984	298	1 792 984		505,050		
Texas	37 396	302 083 547	40.099	320 508 067	45 119	373 718 449	/16 23/1	372 260 611	49.038	389 000 000
Utah	1.419	14.429.074	1.587	15.962.409	1.797	17.781.462	1 808	17 530 476	1 925	19 728 150
Virginia	285	3.651.691	357	2.404.616	482	3.625.593	372	2 611 817	1 340	10 754 506
West Virginia	40.900	186.000.000	43,336	158.446.233	44.420	165.994.559	41 123	109 832 150	47.020	219,247100
Wyoming	23.221 **	89.043.042**	27.249	99.649.661	29.614 **	103.854.785**	7765	58 696 937	5,929	45.173.845
TOTALS	288.898	1.760.063.552	304.000	1.716.319.702	322.160	1.763.592.746	322.507	2.049.935.800	287.229	2.148.624.539
		_,,,,		_,,,		_,,.,.,.,.	512,501	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

* Estimated ** Includes natural gas from coal seams / no data submitted for 2006, 2005 data used

marginal ga n

economic analysis

economic impact of marginal wells in the United States calendar year 2009

Marginal or stripper wells produce less than 10 bar-The Energy Policy Act of 2005 provided little enrels of oil per day or less than 60,000 cubic feet of couragement for producers of these marginal wells. gas per day. The Interstate Oil and Gas Compact This act allows royalty relief for production from Commission (IOGCC) has monitored production federal lands. But this occurs only if prices fall befrom these wells since the 1940s. While individual low \$15 per barrel or \$2 per mmbtu – prices unlikely to occur even in these difficult economic times. Acwells contribute only a small amount of oil (about 2.4 barrels per day nationally in 2009), there were cording to the Energy Information Administration more than 394,000 of these wells in the United (EIA), average oil prices during 2009 were \$61.65 (a decline of 38 percent from 2008) and \$3.71 per States in 2009. This is about a 5 percent increase mcf (a decline of 54 percent form 2008 averages). from the previous year's number of stripper oil wells. Combined, these marginal wells produced There is no consistent governmental incentive at the more than 275 million barrels of oil in 2009 – about state level for these mainly small producers; primar-20 percent of U.S. production¹. Marginal gas wells ily incentives are in the form of severance tax relief. numbered more than 287,000 in 2009 (a 10 percent Later in this report we show the economic impact decline from the prior year) and produced about 2.1 of these wells on jobs and productivity in states and trillion cubic feet of natural gas (at an average of across the country. 19.8 mcf per day). This total was about the same as the previous year – about 11 percent of total U.S. Some states have enacted individual incentive proproduction². Clearly, production from marginal grams intended to promote production from stripper wells is a significant factor in the overall domestic wells, but there is no broad agreement regarding the necessity of these incentives. In the face of current energy picture. crude oil and natural gas prices, many of these wells may be abandoned, and their contribution to domes-

David L. May, Ph.D. Oklahoma City University

¹ According to IOGCC survey estimates for total oil production. 2 According to IOGCC survey estimates for total gas production.

tic production levels halted. Production from these wells is, by definition, marginal. As the country attempts to expand its level of energy independence and recovery from the economic downturn, small marginal well operators can supply jobs and boost tax revenues that increase many state budgets. The aggregate influence of these marginal wells is significant in terms of revenue, employment, and earnings. If the country wishes to expand its level of energy independence, these small operators can supply thousands of local jobs, and the tax revenues generated by production can assist many state budgets. The following is a summary of these benefits and potential losses.

development of the report

The IOGCC surveys its member states annually to acquire data related to marginal well production. While individual states report the same information, including production figures, number of wells, and types of wells, each state has its own approach for calculating these various measures. These approaches also may vary over time. Thus, while year-to-year comparisons of these reports are useful, the differences in data reporting and collection should be noted. Production figures, numbers of wells producing or abandoned, and other information gathered from this survey are used here. There are many other groups and government agencies that collect data related to the oil and gas industry, particularly pricing information. For that reason, this report uses sound statistical methodology where anomalies in collection practices exist. And for consistency in this report, we use the EIA pricing information³.

Marginal production from either oil or natural gas occurs in 29 states from Alabama to Wyoming. Texas has more than 134,000 marginal oil wells and more than 49,000 marginally producing natural gas wells. Arizona, on the other hand, reported only 16 stripper oil wells and 2 natural gas wells that were producing marginally. Predictably, the state of Alaska reports no marginal wells of either kind.

hydrocarbon production by state

Table 1 contains information reported by each state relative to its total production⁴. According to surveys received by the IOGCC, total production in the U.S. for calendar 2009 was approximately 1.34 billion barrels of crude oil (about the same as last year) and 20 trillion cubic feet of natural gas (slightly higher than last year). Table 2 shows marginal oil and gas production by state for 2009. More than 275 million barrels of crude oil (a 5 percent increase from 2008) and 2.2 trillion cubic feet of natural gas The RIMS II multipliers, which are used to quan-(about the same as 2008) were produced by stripper tify the economic impact of the marginal gas and oil well abandonments, are listed in Table 3. These valwells in the various states. On average, these marues are taken from last year's report. Holding price ginal wells produced 2.6 barrels of oil, with a low of 0.3 BOPD in Kentucky and a high of 8 BOPD from levels constants, these multipliers represent the re-South Dakota wells. Natural gas production of 19.8 gional economic impact that results from a change thousand cubic feet per day from stripper wells had in demand, which, in this case, is the revenue lost an equally diverse range of production -0.7 MCFPD from abandonment. The final demand multipliers in Illinois and 52.9 MCFPD in Mississippi. for output, earnings, and employment that are shown include not only effects for the oil and gas industry, impact of marginal oil and but secondary and supporting industries as well. Exnatural gas production on the amples of these secondary industries may include, but are not limited to, items such as healthcare and U.S. economy retailers. Please refer to the Appendix below for a more thorough discussion of the multiplier concept. Economic impact studies generally examine the di-

rect and indirect effects of new businesses or indus-A simple way of looking at the significance of martries entering local, state, or regional markets. For ginal wells to United States domestic production example, if a new Bass Pro Shop moved into a city, is to examine the impact of stripper wells actually what effect on local demand, salaries, and employabandoned during 2009. Table 4 shows these rement might that occurrence have on the city's econsults. There were more than 5,000 stripper oil wells omy? Obviously the new firm would hire additional abandoned with a market production value of more people, pay new salaries and generate new revenues than \$306 million⁵. Additionally, there were about for the city. But because those new employees would 3,500 marginal gas wells abandoned during the time buy things from other existing businesses in the area having a value of almost \$96 million. The total valand the new company would purchase supplies from ue of all marginal wells abandoned in the U.S. in local businesses, the Bass Pro Shop would have ad-2009, therefore, totals almost half a billion dollars ditional indirect effects on the economy of in that - a significant economic impact, particularly at the area. Economists call these multiplier effects. For state level. The abandonment of stripper wells is repurposes of this report, we measure these multiplier flected in lower state revenues from severance taxes, effects using RIMS (Regional Industrial Multiplier lower profits to firms in the states and higher levels System) II multipliers provided by the Department of Commerce's Bureau of Economic Analysis.

5 This assumes that each abandoned well produced at the state's average marginal well rate for the year.

³ We use the annual average EIA reported WTI spot price FOB Cushing, OK for oil and average wellhead prices for natural gas. For crude oil, that price was \$61.65 during 2009; natural gas was \$3.71 per mcf.

⁴ Note that this report is based on survey-reported numbers by state agencies and may not match other data sources such as the EIA. Also, some states did not report production for 2009

economic impact of stripper production - 2009

OVERALL EFFECT IN FINAL DEMAND - STRIPPER OIL

OIL & GAS INDUSTRY

State	Value of Stripper	Final Demand	Final Demand	Final Demand	Lost	Lost	Lost	Direct Effect	Direct Effect	Lost	Lost
	Oil Production	Multipliers	Multipliers	Multipliers	Output	Earnings	Employment	Multipliers	Multipliers	Earnings	Employment
	Millions \$	Output	Earnings	Employment	Million \$	Million \$		Earnings	Employment	Million \$	
California	2,509	1.99	0.43	9.52	4,991	1,084	23,899	0.18	3.45	450	8,659
Colorado	566	2.06	0.43	8.64	1,167	245	4,888	0.17	1.89	97	1,067
Kansas	944	1.95	0.38	14.11	1,838	358	13,326	0.17	6.96	163	6,574
Louisiana	1,144	1.83	0.36	8.82	2,096	415	10,087	0.16	2.33	180	2,662
Mississippi	54	1.60	0.30	9.32	87	16	506	0.15	3.84	8	208
New Mexico	939	1.66	0.35	10.03	1,555	327	9,422	0.17	3.74	161	3,514
North Dakota	142	1.74	0.35	10.99	248	50	1,565	0.17	4.53	25	645
Oklahoma	1,319	2.04	0.42	11.47	2,690	557	15,123	0.18	3.11	233	4,107
Texas	6,662	2.09	0.43	8.43	13,893	2,887	56,193	0.18	1.57	1,168	10,443
Utah	171	1.89	0.40	11.58	324	69	1,980	0.16	3.70	28	633
Wyoming	259	1.73	0.32	7.91	449	84	2,046	0.17	2.68	44	692
SUBTOTAL	14,710	2.03	0.42	9.30	29,898	6,243	136,803	0.18	2.56	2,587	37,658
ALL OTHERS*	2,269	2.03	0.42	9.30	4,612	963	21,102	0.18	2.56	399	5,809
TOTAL	16,979				34,510	7,206	157,905			2,987	43,466

OVERALL EFFECT IN FINAL DEMAND - STRIPPER GAS

OIL & GAS INDUSTRY

OIL & GAS INDUSTRY

State	Value of Stripper	Final Demand	Final Demand	Final Demand	Lost	Lost	Lost	Direct Effect	Direct Effect	Lost	Lost
	Gas Production	Multipliers	Multipliers	Multipliers	Output	Earnings	Employment	Multipliers	Multipliers	Earnings	Employment
	Millions \$	Output	Earnings	Employment	Million \$	Million \$		Earnings	Employment	Million \$	
California	21	1.99	0.43	9.52	41	9	85	0.18	3.45	4	71
Colorado	453	2.06	0.43	8.64	934	196	19,516	0.17	1.89	77	854
Kansas	578	1.95	0.38	14.11	1,125	219	3,090	0.17	6.96	100	4,025
Louisiana	313	1.83	0.36	8.82	574	114	1,002	0.16	2.33	49	729
Mississippi	114	1.60	0.30	9.32	182	35	321	0.15	3.84	17	436
New Mexico	431	1.66	0.35	10.03	713	150	1,506	0.17	3.74	74	1,611
North Dakota	5	1.74	0.35	10.99	8	2	18	0.17	4.53	1	21
Oklahoma	1,236	2.04	0.42	11.47	2,522	522	5,988	0.18	3.11	219	3,850
Texas	1,443	2.09	0.43	8.43	3,009	625	5,276	0.18	1.57	253	2,262
Utah	73	1.89	0.40	11.58	139	29	340	0.16	3.70	12	271
Wyoming	218	1.73	0.32	7.91	378	71	558	0.17	2.68	37	583
SUBTOTAL	4,884	2.03	0.42	9.30	9,926	2,073	19,276	0.18	2.56	859	12,502
ALL OTHERS*	3,088	2.03	0.42	9.30	6,276	1,310	12,187	0.18	2.56	543	7,904
TOTAL	7,971				25,827	5,355	69,163			2,244	35,119

ECONOMIC IMPACT OF 2008's STRIPPER WELL ABANDONMENT - OIL & GAS COMBINED

NATIONAL IMPACT IN FINAL DEMAND

Oil	16,979	34,510	7,206	157,905	2,987	43,466
Gas	7,971	25,827	5,355	69,163	2,244	35119
TOTAL	24,950	60,337	12,561	227,068	4,389	78,585
TUTAL	24,950	00,337	12,501	227,000	4,309	/

*Weighted averages used for RIMS II Multipliers; excludes Alaska, Federal Offshore production.

of unemployment, particularly in the oil and natural firm's employees. In the oil and natural gas industry gas industry. We examine some of these effects in alone, actual abandonment of stripper wells could the following analysis. result in almost 79,000 job reductions and worker earnings (that could be spent on other goods and ser-

Another way of understanding the importance of vices locally or regionally) of almost \$4.3 billion. stripper wells to the national economy is to examine the hypothetical scenario of abandoning all marginal wells. We show this in Table 4⁶. The losses, both in terms of production volumes and revenue, are staggering and serve to underscore the importance of marginal wells. If all marginal oil wells had been abandoned during 2009, this would have reduced domestic production by more than 275 million barrels of oil and would eliminate almost \$17 billion of revenues. Likewise for natural gas, we see that production would be cut by 2.1 trillion cubic feet of natural gas, which corresponds to a loss of \$8 billion in revenue.

Even more striking than the direct revenue effects of abandonment are those imputed to other industries' output, earnings, and employment levels. Nationally, the effect on secondary suppliers and others if these stripper wells were abandoned would result in total losses in industry income of \$60 billion, lost earnings to employees of these firms of \$12 billion, and potential lost employment of more than 227,000 jobs for those supporting the stripper well producers by acting as suppliers or local retailers selling to the

⁶ In Table 3, we show the largest hydrocarbon producing states, a subtotal from them and then all other states.

conclusion

Conclusion

According to the Energy Information Administratax revenues are enhanced, and the national econotion, the United States consumed 18.7 million barmy is improved. Every barrel of domestically prorels of crude oil per day during 2009. This report duced crude oil is a barrel that does not have to be indicates that only 20 percent of U.S. consumption bought internationally from uncertain suppliers. of oil is supplied by domestically producing wells. While both crude oil and natural gas prices have But of that domestic production, marginal oil wells represent 20 percent of the total – an important been declining recently, most economists see that as component of domestic energy policy. The EIA temporary. As long as supplies of these exhaustible reports that consumption of natural gas in the U.S. resources remain tight relative to demand, inevitaduring 2008 was slightly more than 20.9 trillion cubly prices will rise. And the more importance that bic feet (TCF). About 95 percent of consumption can be given to domestic production of hydrocaris produced domestically, and domestic marginal bons, the less dependent the U.S. will be on foreign gas wells supplied about 11 percent of our country's sources. production of this clean fuel.

Marginal well operations produce an economic ripple effect. Every million dollars directly generated by activity in this type of production results in more than \$2 million of activity elsewhere in the economy as companies not linked directly to the industry benefit from the trickle down. Also notable is that each additional million dollars of production from these wells employs almost 10 workers directly and another 15 indirectly in some states.

Operations related to stripper wells remain an important part of the domestic oil and natural gas industry. Local and regional jobs are provided, state

economic a

nalysis

appendices

appendix – economic impact studies

Economists and planners typically have used eco- is known as the multiplier effect. One of the diffinomic impact studies to examine the effects that a culties in this type of economic analysis is determinnew industry or event may have on local or regional ing the appropriate multiplier. economies. In this context, suppose a new factory or other manufacturing facility is contemplating Multiplier estimations for local economies generally moving into a region. To help determine the tax have been based on three types of models: inputoutput, economic base, and regional income. Each subsidies or other inducements that governmental of these approaches has distinct advantages and authorities may be willing to offer the new business to locate in their area, economic analysis is used to disadvantages. Depending on the situation being evaluated, either of these methods or a combination predict the possible positive effects of job creation, enhanced future tax base, and other improved ecoof them may be appropriate. nomic results of the arriving industry. With the anticipated rise in employment comes an increase in Input-Output models (I-O) appear to be the most respending generally in the local area as workers in liable, and the most comprehensive, tool for local the imported facility purchase goods and services and regional economic analysis. In this model, an with their wages. But this new spending has an ulaccounting framework called an I-O table is contimate effect in the economy larger that its initial structed for many industries showing the distribuimpact. As incumbent merchants sell their products tion of inputs purchased and the output sold. Multito the recently arrived workers, they have additional pliers are then developed for each industry and their income to spend with other local sellers, who then interrelations are shown. The most accurate of these have additional disposable funds, and so on. As models is constructed using survey techniques that each round of spending works its way through the are costly and time consuming. Some efforts have economy, some leakages occur when individuals do been made to create short-cut methods (Drake 1976; not consume all of the new earnings, but ultimately Kuehn et al. 1985), but the reliability of non-survey the impact of the new industry will be greater than I-O models has been questioned (Stevens and Trainthe initial infusion of spending⁷. This phenomenon er, 1976; Park et al., 1981; Kuehn et al., 1985).

In the economic base technique, multipliers are developed as ratios of total regional income or employment to income or employment in basic (or export) sectors (Olfert and Stabler, 1994). This approach

D σ pendices

⁷ A simple multiplier can be calculated as the reciprocal of one minus the sum of a community's marginal propensity to consume (MPC). If a merchant receives an additional \$100 and chooses to save 10% of it, then his MPC is .9. The merchant spends \$90 somewhere in his community. If the person with whom the initial merchant spent his additional funds also saves 10%, then a third merchant has \$81 to purchase additional goods and services. As this additional spending winds its way through the economy, the final effect of the beginning \$100 on the local economy is 1/(1 - .9) = 10, the multiplier. In this example, an initial infusion of \$100 will have a \$1,000 effect on an economy.

is less costly than other methods, but also has been plier effect. Because of the difficulty in determining shown to be less accurate than other procedures. Other criticisms of this approach include questions about its theoretical underpinnings and doubts related to its application (Vias and Mulligan, 1997).

Regional income models can be constructed using published information or from a combination of survey data and published information (Archer, 1976; here for Industry 211000, Oil and Gas Extraction. Thompson, 1983; Glasson et al., 1988; Rioux and Schofield, 1990). Researchers using this method estimate some general relationships from published data and then use survey data to focus on specific relationships. While this method keeps costs low, it still allows for some first-hand information to help estimate critical relationships used to calculate appropriate multipliers.

Almost all of these methods for calculating the multiple impact of a monetary infusion into an economy assume that an industry or event is not a part of the local or regional economy initially or that exports from a region create a flow of income into the region⁸. Whether by the construction of a new power plant, an autonomous increase in government spending, or the importation of a rock concert (Gazel and Schwer, 1997), it is the specific relationships between the new income and the incumbent economic actors that determine the specific multi-

8 Examples of these studies are those examining the economic impact of universities on their communities. Here it is assumed that students from outside the region are imported into a school, bringing with them funds that would otherwise not be in the business community.

an associative relationship, much less a causal one, between the spending patterns of various economic sectors, the validity of specific multipliers is highly speculative under any method. However, a common source for economic multipliers is the Department of Commerce's Bureau of Economic Analysis. As mentioned above, we use their RIMS II multiplier

bibliography

Archer, B. H. (1976), "The Anatomy of a Multiplier", Regional Studies 10:71-77.

- Drake, R.L. (1976), "A Short-Cut to Estimates of Regional Input-Output Multipliers: Methodology and Evaluation", International Science Review 1(2): 1-17.
- on a Local Economy", Journal of Cultural Economics 21(1): 41-55.
- 61.
- and Income Base Models", Land Economics 61(2): 129-35.
- Growth and Change 25(Fall): 467-86.
- Analytic and Simulation Results", Journal of Regional Science 21(3): 321-37.
- al Science 13(1): 47-61.

- Environment and Planning A 29: 955-74.

Gazel, R. C. and K. Schwer (1997), "Beyond Rock and Roll: The Economic Impact of the Grateful Dead

Glasson, J., D. Van De Wea and B. Barrett (1988), "A Local Income and Employment Multiplier Analysis of a Proposed Nuclear Power Station at Hinckley Point in Somerset", Urban Studies 24(3): 248-

Kuehn, J. A., M. H. Procter and C.H. Braschler (1985), "Comparisons of Multipliers from Input-Output

Olfert, M. R. and J. C. Stabler (1994), "Community Level Multipliers for Rural Development Initiatives",

Park, S. H., M. Mohtadi and A. Kubursi (1981), "Errors in Regional Non-Survey Input-Output Models:

Rioux, J. J. M. and J. A. Schofield (1990), "Economic Impact of a Military Base On Its Surrounding Economy: The Case of CFB Esquimalt, Victoria, British Columbia", Canadian Journal of Region-

Stevens, B. H. and G. H. Trainer (1976), "The Generation of Error in Regional Input-Output Impact Models", Regional Science Research Institute Working Paper A 1-76, Amherst, Massachusetts.

U. S. Department of Commerce (1992), Regional Multipliers: A User Handbook for the Regional Input-Output Modeling System (RIMS II), U. S. Government Printing Office, Washington, D. C.

Vias, A. C. and G. F. Mulligan (1997), "Disaggregate Economic Base Multipliers in Small Communities",

abbreviations

frequently used abbreviations

Oil

bbls = barrels

Mbbls = one thousand barrels (1,000 barrels) MMbls = one million barrels (1,000,000 barrels) BOPD = barrels of oil per day BOEPD = barrels of oil equivalent per day MMBOE = million barrels of oil equivalent (1,000,000 barrels of oil equivalent)

Natural Gas

Mcf = one thousand cubic feet (1,000 cubic feet) Bcf = one billion cubic feet (1,000,000,000 cubic feet) MCFD = one thousand cubic feet per day (1,000 cubic feet per day) MMCF = one million cubic feet (1,000,000 cubic feet) MMCFD = one million cubic feet per day (1,000,000 cubic feet per day)

Source: Langenkamp, Robert D., ed. Th e Illustrated Petroleum Reference Dictionary. 4th ed. PennWell Books: Tulsa, 1994.

13,000+ Wells

100 Reporting Companies

Find The Well In Your Backyard

Search for hydraulic fracturing chemicals used for specific wells in your area.

Find objective answers to common hydraulic fracturing questions.

Search state by state hydraulic fracturing regulations.

FracFocus is managed by the Ground Water Protection Council and Interstate Oil and Gas Compact Commission, two organizations whose missions both revolve around conservation and environmental protection.

P.O. Box 53127, Oklahoma City, OK 73152 Phone: 405.525.3556 • Fax: 405.525.3592 www.iogcc.state.ok.us