Low-Cost Short & Long Duration Energy Storage

OIL WELLS THAT END WELL

Mission

Renewing the world's energy infrastructure by converting oil and gas's largest liability into our grid's greatest asset

2.5 million idle and orphan wells in North America

\$394 billion

Problem #1: Billions required to clean up all oil and gas wells in North America.

5

Why now? California Example

California's liability challenge

- 50,000 idle wells / 50,000 active wells
- Highest P&A costs in US
- Estimated clean up cost: \$13B
 - In-state O&G projected profits: \$6B

Source: Enverus DrillingInfo, Carbon Tracker's "There will be blood": Dwayne Purvis 2023, Energy Information Administration, Sacramento Bee

P&A Problem Requires a Market-Based Solution

Repurposement can be better than Removal

- adds new value to the local energy system
- reduces risk of a well becoming orphan protecting taxpayers
- operators and the workforce gain central role in the evolving energy system
- must make financial sense for the operator
- more likely in states with pressure to decommission inactive/idle wells

GLIDES GEOTHERMAL CAES

CCUS THERMAL ENERGY STORAGE **GRAVITY WELLS**

Gravity Well: 2-in-1 Solution

A Gravity Well is a plugged, monitored, and secured idle well ready to serve as a mechanical battery for 30+ years.

This is how the conversion works...

The result is a well that is:

Plugged and Protected

- Lower cost than traditional P&A
- Plug (cement or steel) seals oil/gas reservoir
- Wellhead equipment for spill protection

Monitored 24/7

- Methane gas leak detection
- Mechanical integrity tests
- Hydrocarbon migration alert

\$430 billion

Problem #2: Billions to build the 3,530-gigawatt hours of energy storage – projected deployment by 2050.

WIIIIIII

 $\bullet \bullet \bullet \bullet$

Why is so much Energy Storage being deployed?

Wind and Solar's Supply Curve Don't Match Demand

Wind and Solar Curtailments are Skyrocketing

TIME OF DAY

Gravity Energy Storage: Overview

It's just potential energy

U = mgh

U = gravitational energy

- m = mass
- g = gravitational field

h = height

It's by far the most prevalent energy storage

Source: NREL Energy Futures Report

Gravity Energy Storage: In the News

General Growth

Gravity Energy Storage Systems Market Size More Than Doubles at a Robust CAGR of 13.4% during 2023-2029 |

obeNewswire

Energy Vault to Develop 100 MW Hybrid Gravity Energy Storage System >= EnergyTech

Two massive gravity batteries are nearing completion in the US and China

Can gravity batteries solve our energy storage problems?

BBC

Investment Traction

Gravity energy storage firm Energy Vault raises USD 100m to back deployments

> Australian gravity energy storage startup secures AU\$9 million in Series A funding

Gravitricity Overview

GREEN GRAVITY CLOSES SERIES A CAPITAL RAISE

16 May 2022

Gravity Energy Storage: Why are wells well-suited?

It's just potential energy

U = mgh

g = gravitational field

m = mass

h = height

U = gravitational energy

Avg. well: ~6,000ft

Other gravity storage: 500ft

Additional Benefits

- Existing electrical infrastructure
- Existing interconnection agreements
- Oilfield expertise
 - Well service tools, companies, service methods, and experts
- Often co-located with high-value variable energy generation sites

Wells are expensive to remediate through traditional means

Gravity Energy Storage: Why are wells challenging? Site Selection

Energy Storage Markets

- Mandatory, but nascent and highly variable
- Structures vary from region to region within states
- In states with no wholesale market (Colorado), storage purchases are only performed through RFPs – difficult to foresee price point

Plug and Abandonment / Well Data

P&A Planning

- Which wells will be P&A'd when?

P&A Cost Prediction

- Historical P&A costs are hard to find, especially on a single-well basis
- Some of the highest cost factors cannot be predicted
- Some factors that can be predicted are not tracked in common databases (Enverus)
- Relevant data often exists in messy pdfs

Gravity Energy Storage: Why are wells challenging? Site Selection

DEVIATION SURVEY

Any Drilling Survey

	-																				N	ID	TVD	ANG	GLE D	OGLEG			
										•					06	(t=					1,43	1.4	129.6	1	.25	3.84			
DEPTH	ANG	LE DIRECT	T TRUE ION VENTICA	a NORTI	REGULAR C	EAST	WEST	SECTION	DOG LEG SEVENTY	Scier	ntific	Drilling	Inte	ringional	00	61				_	1,68	32 1,6	580.4	9	.25	3.99			
445'	20	8 5 2	W 444 9:	2 4	29		6 04	-1 55	0 41							S	Survey C	alculation	n Sheet		1,77	6 1,7	72.8	12	.00	3.64			
733*	1.	30° 8 5 1 30° 8 6 6	W 732 7	2 9	77 DIVISION OF ON RECEIT	AND GAS	12 92	-2 <u>93</u> -3 37	0 44	Co	ompany	TEMBLOR	PER	L CO. LLC					_		2,10	0 2,0	285.0	12	25	0.25	1		
853*	1*	30" N 5 5	N 852.7	11	NOV 1 2 36 SANTA MAR	1985	15 63	-2.85	0 48		Well	2-19						Mag. Dec	15.35		2.50	0 2.4	181.0	10	.41				
979*	1*	15* N 7 1	W 978 20	2 12	60		18 56	-5 01	0 33		Field	LOS ALAN	MOS				T	arget TVI	0 10458.00		2,55	50 2,5	531.0	10	.10				
1389*	0*	45' 8 2 1	8 1379 4	<u>u</u>	21		25 64	-11_25	0.43	Scienti	fic D.D.	DAVID LE	MKE		REC	EIV	ED T	arget Az	402 39N		2,60	0 2,5	580.0	9	.84				
1524*	4*	15 8 9	8 1523 5	11 15	20		26 67	-9.02	3 33						1000	0.6 200	4		725.93W		2,70	2,6	578.0	9	.35				
1619*	7*	N 3 4	8 1618 0	24	44		23 26	-0 65	3 91	MWD)	TODD LEE	E		DIVISION	טר טוב, שוט אט	AS ANDTO	gt. Coor. E	B 1357.47N		2,80	0 2,7	777.0	9	.25		1		
1744*	11*	N 4 6	8 1741	15 39	30		10 21	19 01	3 04						GEOTHER	MAL RESU	FORNIA	_	2448.94W		3.25	50 3.2	222.0	8	.50				
1776*	12*	45° N 5 8	E 1075	11 43 17 56	61 99	12 59	5 50	25 <u>39</u> 47 <u>77</u>	3 64	Date	No.	DEPTH	INC.	AZM C.L.	т. V.D.	V.S.	N/S	E/W	DLS B./D.	зна	0,20	0 0,1	LLL.V				D		
2099*	12*	15' 8 5 9	E 2088 3	81	65	52 82		94 09	0 25		1	100		100	100.00								Hallib	urton Dri	lling Syste	ms	Jon Nev	Page 1 743596-X	
2350*	11*	15' 8 6 1	E 2334 1	0 106	9 <u>1</u>	96 35		143 27	0 22	-	2	407	1.00	305.65 307 265.35 293	406.98	2.66	1.56 N	2.18 W	0.33 0.33	- 1				Survey	Report		Dan Tama Welipath I	3/26/97 (1.11 am 2:20/1Hst	
2445*	10*	45' N 6 1	E 2427 3	16 115 19 125	72	112 20 131 53	23	160 20	0 53	-	4	1008	0.75	259.35 308	1007.86	13.30	2.04 N	14.08 W	0.25 -0.24				Calculated	using the Mon	num Carvelare &	lethod	Date Creater Last Revision	3/15/97 3/26/97	
					ric enu	u. <u>ni</u>		urvatu	e/ree	-	5	1336 1611	1.50	228.65 328 291.65 275	1335.79 1610.61	16.40 24.75	1.19 S 0.91 S	19.41 W 28.80 W	0.29 0.23 0.97 0.55	Su Ref	wey Reference letence Work	# WELLHEAD Coordinates' Lat.	Ver 34,8500 N - Lon	g 120 3167 W	ine: 165.34 deg		RIGALING.	NVIS D	
											7	1989	4.75	281.65 378	1987.73	49.50	5.90 N	53.32 W	0.49 0.46	Rel Rel No	lerence GRID lerence GRID rh Aligned To	Oystem LAMBER Coordinates 1304 TRUE NORTH	T Zone: Californ 1990.21 X 49921	6 25 Y			UB APR 23	1998	
M.D.	ANGLE	DIRECTION	AZIMUTH	T.V.D.	NORTH/SC	UTH EAS	ST/WEST	CLOSURE	DOG		8	2084	3.75	261.35 95 291.65 96	2082.48 2178.28	61.31	6.91 N	66.27 W	1.89 -1.05	Clic TV	nox Section sure Referen () Reference	WELLHEAD	ren0				Amerika di di	GAS AND EBOURCES AL OWNA	
473'	0.75°	\$41.00°E	139.00°	472.9	8' 2.	34s	2.03e	3.1	0' 0.	-	10	2274	3.00	265.65 94	2272.12	66.41	7.86 N	71.58 W	1.79 -0.80	Sal We Bel	5a pet. 8.201H 1 Lease								
665'	5.00*	East S86.00°E	90.00° 94.00°	572.9 664.7	5' 2. 7' 3.	83s 11s	3.77e 8.97e	4.7	1' 1. 0' 3.		12	2653	1.50	259.35 189	2650.85	78.22	6.95 N	85.58 W	0.31 -0.26	Cy Sa	Canyon Fiel Ha Barbara C	f Io.Ca	* 100 5	ubusa Vart	cal T.C	TAL	Ciosure	0.5	
758' 850'	8.00° 10.50°	N86.00°E N79.00°E	86.00° 79.00°	757.1	1' 2. 2' 0.	94s 90s	19.47e 34.09e	19.6 34.1	9' 3. 0' 2.	<u> </u>	13	2937	0.50	292.65 284 297.65 263	2934.81 3197.80	82.31	6.74 N	90.38 W	0.39 -0.35	- 7	(t) (7h (deg.) (deg	a) (71)	Depth Sect (IT) (IT	ion Rectangu) (10)	lar Offsets (%)	Dist Dir (It) (deg.) (dg	50011)	
903'	12.25°	N79.00°E	79.00°	899.8	. 1.	10n	44.35e	44 3	6/ 3	4	15	3561	0.25	152.65 361	3558.79	85.52	7.74 N	93.49 W	0.20 -0.07	_	300.00 0 503.00 200 021.00 511	00 0.00 0.1 100 2.00 51 1.00 1.25 14.1	00 300.00 · 00 502.96 · 00 1020.75	522.00 0 319.04 -3 198.75 -35	00 0.00N 36 3.53N 92 18.02N	0.00E 0.31E 2.46E	3 54(2) 5.00 13.16(2) 7.79	0.99 0.15	
1,042'	12.75° 12.75°	N71.00°E N69.00°E	71.00°	1,035.5	8 8.	91n	73.32e	73.8	6' 1.	22-Sep	16	3970	1.85	122.57 409 134.36 286	3967.71 4253.60	78.19	3.39 N 1.57 S	87.52 W 81.12 W	0.40 0.39	1	516.00 490 961.00 440 991.00 30	00 0.50 1201 00 1.50 164 1 00 1.50 167	00 151571 00 1960.64 1 20 1990.63 1	693.71 -20 538.64 -12 558.63 -12	22 22.16N 06 15.61N 27 14.85N	5.54 E 8.93 E 9.12 E	22.66() 14.27 17.66() 29.77 17.45() 31.57	0.30 0.27 0.28	
1,386'	12.50°	N71.00°E	71.00°	1,371.18	34.	74n	144.28e	148.4	0' 0.	23-Sep	18	4541	0.97	97.19 285	4538.54	64.57	4.32 S	76.22 W	0.30 -0.15	2	023.00 3: 053.00 31	2.90 2.90 168.1 2.00 5.00 167	50 2022 60 1 90 2052 53 1	200.60 -11 230.53 -8	04 13.64 N 98 11.62 N	9.38 E 9.80 E	10 55(2: 34.50 15 20(2: 40.15	4.38	
1 7001	12.000	NT1 0000	70.00	1,554.6	48.	180	182.260	188.5	2. 0.	25-Sep	20	4827	0.79	64.40 286 77.50 286	4824.51 5110.48	58,39	3.77 S	72.04 W 68.11 W	0.18 -0.06	2 2	084.00 3 ⁻ 115.00 3	00 7.30 167	40 2083.35 1 80 2114.02 1 80 3143.64 1	201 35 -5 292 02 -1 221 54 4	56 8.58N 13 3.07N 21 1.24.5	11 53 E	13.45(2 51.46 12.20(2 71.03 12.76(5 96.59	7.10	
2,076'	13.25°	N70.00°E	70.00*	2,044.10	63.	35n 5 64n 5	225.11e 288.04e	233.8 300.5	6' 0. 0' 0.	25.Sen	21	5396	0.70	73.63 283	5393.45	55.55	1.49 S	64.33 W	0.07 -0.06	2	177.00 3. 207.00 34	2.00 13.70 168	50 2174.79 1 60 2203.73 1	262.79 11 281.72 18	05 7 04 6 90 15 66 6	14.11E 15.76.E	16.16@119.37 22.21@134.81	a. 64 x0. 35	
2,300.	13.25*	N70.00°E	70.00*	2,262.14	103.	20n 3	336.28e	351.7	6' 0.	27-Sep	23	5967	1.32	104.92 285	5964.28	43.40	1.98 S	50.72 W	0.20 -0.15	2	238.00 3	1.00 20.10 167 1.00 22.40 168.	70 2233 14 1 70 2282 03 1	411 14 28 442 03 39 449 30 57	74 25 24 5 97 35 24 5 97 44 85 5	17.86 E 20.15 E 22.16 E	30.502144.72 41.402150.92	150 751 479	
	c	LOSURE AT	2,300'TMD	= 351.	76' N72	.94°E (1	72.94°)			-	24	6062 6157	0.97	98.77 95 110.68 95	6059.26 6154.23	41.58 39.24	2.39 S 3.08 S	48.87 W 46,57 W	0.39 -0.37	3	331.00 3 363.00 3	200 27.20 (68) 200 28.80 (68)	50 2318 22 1 90 2346.47 1	496.22 66 524.47 81	11 61.855 12 76.585	25.46 E 28.40 E	86.880157.63 \$1.660159.65	8.71 5.03	
										28-Sep	26	6250	1.58	106.68 93	6247.18	36.44	4.00 S	43.88 W	0.40 -0.38	2 2 2 2	294.00 3 425.00 3 455.00 3	1.00 30.60 169/ 1.00 33.50 170/ 1.00 36.80 170/	90 237340 1 42 2359.67 1 50 242420 1	551.40 96 577.67 112 502.20 130	46 91.885 87 107.885 09 124.915	34.03 E 36.90 E	90,000010119 113,1202162.49 130,2502143.54	9.39 11.00	
									_		27	6441	0.53	86.73 95	6533.13	31.12	6.90 S	40.35 W 39.41 W	0.95 -0.56	1000	485 00 3 517 00 3 552 00 3	1.00 40.10 169. 1.00 43.40 168. 5.00 45.40 168	70 2448.47 1 30 2471.60 1 60 2496.60 1	825.47 149 843.60 169 874.60 194	33 143.90 S 94 164 16 S 41 188.15 S	40.21 E 44.16 E 49.06 E	49 410 164 39 89 560 164 94 94 440 165 39	3.77 1.00 5.75	
MD	Incl	Azim	TVD	+N/-S	E/-W V	S DI	LS Bui	ld Tero	То	-	29	6632	0.62	43.22 96	6629.12	30.62	6.49 S	38.61 W	0.45 0.09	- 2	584.00 3 615.00 3	2 00 47 80 109	90 2516.59 1 80 2538.70 1	666 59 217 716 70 241	63 210 99 5 16 234 24 5	53.29 E 57 34 E	17 64(5165.80 141 16(5166.24	8 06 11.50	
ft	deg	deg	ft	ft	ft ft	deg	y100ft deg	100ft deg/1	Jon	1	31	6822	1.14	70.12 95	6819.10	28.89	5.16 S	35.89 W	0.19 0.18		547.00 3. 577.00 3	200 58.50 198	40 2507.80 1 50 2574.33 1	752.33 291 258.18 318	73 284.18.5	66 04 E	191.75@166.92	11.40 6.28 (4	
100.00	0.00	86.46	100.00	0.00	0.00 0	00 0.	0.00 0.0	0.00	EF EF		32	6915	0.53	85.54 93	6912.09	27.92	4,81 S	34.59 W	0.69 -0.66		104.00 3			1					
200.00	0.40	86.46	200.00	0.00	0.07 0	07 2. 51 2.	.00 2.0	0.00	EF EF	We		ome #13 F	RD							Survey	Ind	Anim	TVD	ANICA	AFGW N	Map arthing E	Map <	Latitude>	- Longitude ->
400.00	4.40	86.46	399.78	0.52	8.43 8	.44 2.	.00 2.0	00.00	EF	Ver	tical Se	ction: 1	80.000	•					RILTEK	R 0.00	deg 0.00	deg 20.10	ft 0.00	ft 0.00	ft 0.00 2121	# 3517.20 5871	ft 494.10 34 4	9 10.197 N	120 17 59.228 W
500.00 600.44	6.40 8.41	86.46 86.46	499.33 598.94	1.10 1.90	17.82 17 30.74 30	.85 2. .80 2.	.00 2.0	0.00	EF	,	MD	Angle A	zimuth	- TVD	North	East	V	ertical	Dogleg	55.00 100.00 208.18	0.00 1.35 4.60	20.10 20.10 20.10	55.00 100.00 208.02	0.00 0.50 5.77	0.00 2128 0.18 2128 2.11 2128	3517.20 5871 3517.70 5871 3522.97 5871	494.10 34 4 494.28 34 4 496.21 34 4	9 10.197 N 9 10.202 N 9 10.254 N	120 17 59.228 W 120 17 59.226 W 120 17 59.204 W
700.00 800.00	8.41 8.41	86.46 86.46	697.42 796.35	2.80 3.70	45.27 45 59.87 59	.36 0. .98 0.	0.00 0.0 0.00 0.0	00.00 0.00	EF		(ft)	(°)	(°)	(ft)	(ft)	(ft)	S	ection	°/100'	300.00	4.60	20.10	299.54 399.22	12.67	4.64 2121	3529.87 5871 3537.40 5871	498.74 34 4 501.49 34 4	 a) 10.323 N a) 10.398 N 	120 17 59.176 W
900.00	8.41	86.46	895.27	4.60	74.46 74	.60 0.	.00 0.0	0.00	EF		40.0 91.0	0.000	206.20) 40.00) 90.97	-1.32	-0).00).65	0.00	0.000 6.471	500.00 600.00 700.00	4.60 4.60 4.60	20.10 20.10 20.10	498.90 598.58 698.25	27.72 35.25 42.77	10.15 2121 12.90 2121 15.65 2121	3544.92 5871 3552.45 5871 3559.97 5871	504.25 34 4 507.00 34 4 509.75 34 4	 10.473 N /9 10.548 N /9 10.623 N 	120 17 59.114 W 120 17 59.083 W 120 17 59.052 W
1000.00	8.41 8.41	86.46 86.46	994.20 1093.12	5.50 6.40 1	03.65 103	23 U. .85 U. .47 O	.00 0.0	0.00	EF		132.0	4.100	197.40	131.89	-3.77	-1	.61	3.77	2.387	800.00	4.60	20.10	797.93	50.29 57.82	18.41 2121	3567.49 5871 3575.02 5871	512.51 34 4 515.26 34 4	 3 10.698 N 49 10.773 N 	120 17 59.021 W 120 17 58.990 W
1200.00 1300.00	8.41 8.41	86.46	1290.97	8.21 1	32.84 133	.10 0.	.00 0.0	0 0.00	EF	r	174.0 218.0	6.900 9.800	178.60) 173.69) 217.22	-7.73 -14.12	-2	2.00 1.85	7.73	7.843 6.591	1000.00 1100.00 1200.00	4.60 4.60	20.10 20.10 20.10	997.29 1096.97 1196.65	65.34 72.87 80.39	23.91 2121 26.67 2121 29.42 2124	3582.54 5871 3590.07 5871 3597.59 5871	518.01 34 520.77 34 523.52 34	3 10.848 N 9 10.923 N 9 10.996 N	120 17 58.959 W 120 17 58.928 W 120 17 58.897 W
1400.00	8.41 8.41	86.46 86.46	1389.90 1488.82	9.11 1 10.01 1	47.44 147 62.04 162	.72 0. .34 0.	0.00 0.0	0.00	EF	r r	261.0	13.100	177.10	259.36	-22.65	-1	.53	22.65	7.714	1300.00	4.60	20.10	1296.33	87.91	32.17 212	3605.11 5871	526.27 34 4 529.03 34	 3 11.073 N 49 11.148 N 	120 17 58.866 W
1600.00	8.41 8.41	86.46 86.46	1587.75	10.91 1 11.81 1	76.63 176 91.23 191	.97 0. .59 0.	0.00 0.0	0.00	EF		305.0 348.0	13.100 12.800	177.20) 302.21) 344.12	-32.61 -42.24	-1 -0	1.03).88	32.61 42.24	0.052	1500.00	4.60	20.10 20.10 20.10	1495.68 1595.36 1695.04	102.96 110.49 118.01	37.68 2121 40.44 2121 43.19 213	3620.16 5871 3627.69 5871 3635.21 587	531.78 34 534.54 34 537.29 34	9 11.223 N 9 11.298 N 9 11.373 N	120 17 58.804 W 120 17 58.773 W 120 17 58.742 W
1800.00	8.41	86.46	1785.60	12.71 2	05.82 206	.22 0.	.00 0.0	0.00	EF	r -	391.0	13.200	181.20	386.02	-51.91	-1	.06	51.91	0.936	1800.00	4.60	20.10	1794.72	125.53	45.94 2121	3642.73 5871	540.04 34	9 11.448 N	120 17 58.711 W
1900.00 2000.00	8.41 8.41	86.46 86.46	1884.52 1983.45	13.62 2 14.52 2	20.42 220 35.01 235	.84 0. .46 0.	.00 0.0	0.00	EF		476.0 565.0	13.500 13.700	180.40) 468.72) 555.23	-71.53 -92.45	-1	.34	71.53 92.45	0.414 0.698	1900.00 2000.00 2100.00	4.60 4.60	20.10 20.10	1994.08 2093.75	140.58 148.11	*6.70 2121 51.45 2121 54.20 2121	9657.78 5871 9655.31 5871	545.55 34 4 548.30 34 4	9 11.524 N 9 11.599 N 9 11.674 N	120 17 58.649 W 120 17 58.618 W
2100.00 2164.33	8.41 8.41	86.46 86.46	2082.37 2146.01	15.42 2 16.00 2	49.61 250 59.00 259	.09 0.	0.00 0.0	0.00	EF		764.0	14.700	182.80	748.14	-141.20	-4	.37	141.20	0.503	2200.00	4.60	20.10	2293.11	163.16	59.71 2121	9680.36 5871	553.81 34	9 11.824 N	120 17 58.556 W
2200.00	8.41	86.46	2181.30	16.32 2	64.21 264	./1 0.	.00 0.0	JU U.OC	EFI	, r	714.0	14.700	699.59	699.78	-140.81	-1	.85	140.81	-57.572	2400.00 2484.46 2500.00	4.60 4.60 4.13	20.10 20.10 20.10	2392.79 2476.98 2492.47	170.68 177.03 178.14	62.46 2121 64.79 2121 65.20 2121	9687.88 5871 9694.23 5871 9695.34 5871	559.30 34 4 559.30 34 4	# 11.899 N .9 11.962 N .9 11.973 N	120 17 58.526 W 120 17 58.499 W 120 17 58.495 W
2254.33	8.41	86.46	2235.04	16.81 2	72.14 272	.0 ca.	.000.1	0.00	, 21	_										2600.00	1.13	20.10	2592.36	182.45	66.77 2121	9699.65 5871	560.87 34	9 12.016 N	120 17 58.477 W

Query-ready Database

A	В	С	D	E	F	G	Н	I	J
tvd	tvd_page_	casing_siz	casing_de	casing_pa	perf_dept	perf_page	plug_dept	plug_page	depth_of_
1208	4	[5.5, 7.0]	[[0.0, 1106	[4, 4]	[[1044.0, 1	[10, 10]	[1208.0]	[10]	[1106.0, 12
1158	26	[10.75, 7.0	[[0.0, 52.0]	[26, 26, 26	[[854.0, 11	[26]	[1155.0]	[26]	[52.0, 837.
1469	6	[7.0, 5.0]	[[0.0, 1434	[4, 5]	0	['wbd_pag	[1319.0]	[4]	[1434.0, 14
1280	21	[8.625, 6.6	[[755.0, 12	[22, 25]	[[331.0, 50	['wbd_pag	[520.0]	[22]	[1280.0, 12
3310	9	[10.0, 7.0,	[[0.0, 97.0]	[9, 20, 20]	[[2226.0, 2	[20, 20, 20	[3296.0]	[20]	[97.0, 99.0
6730	1	[44.0]	[[4760.0,6	[1]	[[2628.0,6	[1, 20, 21,	[6720.0]	[1]	[6728.0]
3130	27	[8.625, 6.6	[[0.0, 90.0]	[26, 29, 27	[[2689.0, 2	[16, 19, 22	[2853.0]	[27]	[90.0, 280
11508	1	[13.375]	[[11116.0]]	[1]	[[8153.0, 9	[1]			[11116.0]
8213	6	[20.0, 10.7	[[0.0, 300.0	[10, 10, 10]	[[5588.0, 5	[4, 7, 8, 9]	[7908.0]	[8]	[300.0, 823
1100	4	[10.75, 8.6	[[314.0, 11	[4, 4]	[[588.0, 76	[4, 8, 10, 1	[1098.0]	[4]	[1100.0, 1
3630	10	[10.75, 7.0	[[0.0, 200.0	[28, 28, 28]	[[1548.0, 1	[6, 8, 10, 1	[2079.0]	[26]	[200.0, 365
1069	41	[6.625]	[[0.0, 1069	[41]	[[818.0, 81	['wbd_pag	[1080.0]	[41]	[1069.0]
1088	5	[5.5]	[[0.0, 1087	[4]	[[714.0, 72	[34]	[1077.0]	[5]	[1087.0]
9055	3	[7.0]	[[460.0, 51	[3]	[[416.0, 50	[2, 3]	[10.0]	[3]	[510.0]
1000	3	[11.75, 10.	[[0.0, 53.0]	[5, 5, 5, 5]	[[687.0, 10	['wbd_pag	e_2']		[53.0, 50.0
7 1610	3	[7.0, 5.5]	[[1318.0, 1	[3, 4]	[[1286.0, 1	[3, 4, 5]	[1276.0]	[4]	[1610.0, 12
1410	16	[7.0, 14.0]	[[0.0, 1409	[16, 21]	[[775.0, 81	[3, 7, 8, 13	[1399.0]	[17]	[1409.0, 44
8182	12	[13.375, 9.	[[504.0, 50	[12, 12, 12]	[[1134.0, 2	[3, 6, 9, 22	[3229.0]	[22]	[504.0, 340
834	8	[5.5]	[[0.0, 834.0	[8]	[[258.0, 27	[7, 8, 10, 1	[[813.0, 83	[8]	[834.0]
995	1	[10.75, 7.0	[[0.0, 80.0]	[1, 1]	[[413.0, 42	['wbd_pag	[725.0]	[1]	[80.0, 850.
2051	48	[9.625, 7.0	[[0.0, 1941	[40, 48]	[[1430.0, 1	[4, 7, 9, 10	[1905.0]	[48]	[1941.0, 20
1066	1	[7.0, 12.0]	[[0.0, 20.0]	[1, 1]	[[407.0, 43	['wbd_pag	[915.0]	[1]	[20.0, 1065
7489	12	[6.0, 7.0]	[[0.0, 7489	[12, 19]	[[717.0, 73	[9, 10, 11,	[1151.0]	[10]	[7489.0, 12
1160	9	[7.0]	[[0.0, 1166	[14]	[[941.0, 92	[9]	[1121.0]	[14]	[1166.0]
5 1220	4	[9.625, 7.0	[[626.0, 12	[4, 5]	[[591.0, 63	[6, 11]	[626.0]	[5]	[1220.0, 12
7 2833	20	[8.625, 5.5	[[0.0, 625.0	[22, 20]	[[1180.0, 1	['wbd_pag	[2791.0, 27	[20, 20]	[625.0, 283
3 2820	42	[12.0, 8.62	[[0.0, 50.0]	[42, 42, 42]	[[420.0, 42	['wbd_pag	[820.0, 101	[2, 2]	[50.0, 2820
857	12	[7.0]	[[338.0, 74	[12]	[[306.0, 31	[4, 5, 8, 12	[829.0]	[12]	[742.0]
2615	3	[8.625]	[[0.0, 336.0	[8]	[[2408.0, 2	[3, 5]	[2260.0, 22	[18]	[336.0, 264
1 890	4	[7.0]	[[1.0, 890.0	[4]	[[490.0, 54	[2, 3, 4, 7,	[523.0]	[5]	[890.0]
2 1009	2	[13.375, 8.	[[155.0, 15	[2, 2, 2]	[[498.0, 50	[2, 4, 5]	[403.0]	[4]	[155.0, 898
3 1609	27	[14.0, 7.0,	[[0.0, 20.0]	[27, 27, 27	[[588.0,65	[27, 27, 27	[558.0, 812	[27, 27]	[20.0, 1608
4 1160	8	[14.0]	[[0.0, 1159	[8]	[[483.0, 50	[3, 4, 5]			[1159.0]
5 1528	3	[8.625, 6.6	[[0.0, 1152	[2, 4]	[[1152.0, 1	[2, 4]	[1468.0]	[3]	[1152.0, 14
5 1107.14	8	[14.0, 8.62	[[32.0, 100	[4, 5]	[[860.0, 87	[4, 5]			[100.0, 112
7 1332	3	[10.75, 9.8	[[50.0, 133	[2, 3]	[[1332.0, 1	[3]	[450.0, 926	[3, 4]	[1332.0, 13

What makes a well suitable?

There are 9 suitability criteria required for a Gravity Well, the most important are:

Lower Cost Clean-Up

1) Seal the well

- 2) Install clean energy storage
- 3) Monitor well bore
- 4) Improve Net Present Value of Asset

Cost Savings: \$50k-\$100k

Activation Fee: oil

Impact Potential

IMPACT: IDLE WELLS & CARBON EMISSIONS

1.2 million more wells plugged by 2050

Number of Plugged Wells (millions) 1 0

IMPACT: ENERGY STORAGE DEPLOYMENT

Estimated resource: 132 GW

- 1/10th of US need

<u>O.35 gigatons of CO₂e/ yr mitigated</u>

What is needed for this technology to succeed?

Repurposing and Regulations

Regulatory Challenges

- Repurposing is novel idea
- Not contemplated in existing regulations
- No incentive for operators to convert if they can't defer P&A

Renewell's Progress

- P&A regulations analyzed
- Direct conversations with regulators in multiple states
- Pursuing legislative and regulatory changes where it makes sense

Regulations Needed

- Clear and comprehensive definition of well repurposing
- Conversion counts towards annual P&A requirement or well removed from plugging list
- Ensures environmental protection
- Final decommission obligations considered

Colorado Example

The Colorado 400 series has a "beneficial use" clause that is workable for repurposing.

- I) Transferring an Out of Service Well or Repurposing an Out of Service Well for Beneficial Use.
 - A. If a Selling Operator transfers an Out of Service Well, the Buying Operator assumes the obligations for the Well under this Rule 434.d, and must Plug and Abandon the Well or repurpose the Well for a beneficial use other than hydrocarbon production based on the Selling Operator's timeline pursuant to Rule 434.d.(4) unless the Buying Operator files, and the Director approves, a Revised Form 6A with an alternative timeline for the Buying Operator.
 - B. An Operator may repurpose an Out of Service Well on its Plugging List for a beneficial use other than hydrocarbon production, subject to the Director's written approval of a Revised Form 6A.

(6)

- Removal from Plugging List. A Well is removed from an Operator's Plugging List:
 - If an Out of Service Well is transferred to a Buying Operator's Plugging List or repurposed for beneficial use pursuant to Rule 434.d.(9); or
 - ii. Following the Director's approval of the Well's Form 6, Well Abandonment Report – Subsequent Report of Abandonment pursuant to Rule 435.b.(2). The removal of a Well from an Operator's Plugging List does not relieve an

California – SB 1433

Renewell supported legislation in CA this year that would have created a pilot program for gravity-based energy storage technologies.

LEGISLATIVE PROGRESS

Senate Natural Resources and Water Senate Environmental Quality Senate Appropriations Senate Floor Assembly Natural Resources Assembly Appropriations Assembly Floor

Meet the Team

Kemp Gregory CEO

Shell: Engineer 5 years UT-Austin, BS in Mech. Eng. Stanford, MS in Sustainability

Aaron Muñoz Lead Mechatronic Engineer

16 years of electrical and mechanical design USF BS, MS, MBA

> SIEMENS

Thomas Chant Lead Data Scientist

3 years of data science & ML Un. New Hampshire, BS in Math CO School of Mines, MS in Data (NH) 3

Stefan Streckfus СТО

Burger King: Engineer 6 years Duke, BS in Mechanical Eng Stanford, MS in Sustainability

Sarah Douglas Mechanical Systems Engineer

4 years of mechanical design and risk analysis, UCLA, BS in Mechanical Engineering

NORTHROP GRUMMAN lcla

Zach Wenrick Lead Electrical Engineer

7 years of grid integration & hardware design UC Boulder, BS in Electrical Engineering

> AlsoEnergy A stem Compar

Notable Advisory Board Members

Ex-CTO at Stem Energy Larsh Johnson

Executive Mentor, 5x Founder Steve Schramm

Ex-CEO at Aera Energy Christina Sistrunk

Fractional CTO, AI Strategy James Taylor

Evan Taranta Director of Government Affairs

14 years of federal & state policy experience Duke, BS in Political Science

23

Team Delivers Fast Hardware Development

Founded

2021: Build Prototype

2022: Texas Pilot w/ Prototype

2023: California Pilot w/ Prototype Weight = 3,000 lbs Power = 5 kW Energy = 1.67 kWh

2024: First Commercial Device

Weight = 30,000 lbs Power = 36 kWEnergy = 36 kWh

Lower Cost Clean-Up

1) Seal the well

2) Install clean energy storage

3) Monitor well bore

4) Improve Net Present Value of Asset

Cost Savings:

Activation Fee: oil

Our Vision

Rather than spending hundreds of billions of dollars to tear out this infrastructure, let's use those funds to create a massive resource for our evolving energy needs.

Stefan Streckfus: stefan@renewellenergy.com

One Solution for 2 Problems = 2 Revenues

1. Activation Fee

Renewell charges the oil company to convert their idle well, receiving the payment in year zero.

2. Energy Storage Services

Renewell provides flexible duration (1-100hrs) to the utility, all at the same roundtrip efficiency (70%).

One more revenue stream: Sourcing-as-a-Service

Renewell will commercialize our proprietary database called the Suitable Well Finder Tool ("SWFT"). Using the latest OCR tools and LLMs, it is designed to coordinate the coming mega-trend of energy infrastructure repurposing.

Which wells are best for?

- Gravity Well
- Other future products

- Geothermal
- CCS / Bio-oil
- CAES
- Hydrogen

Must Have: Regulatory Clarity

California

- Running a bill
- Will create 10-year pilot program
- Passed through 3 senate committees, senate floor, and first assembly committee
- Will establish new well designation and unlock Activation Fee

<u>Colorado</u>

- Using existing code
- Regulator has greenlighted
 Renewell to explore never-used before designation "Beneficial
 Use"
- Talking to O&G companies to move through new process
 - Chevron, Oxy, Civitas
- Will remove wells from plugging list, unlocks Activation Fee

Additional value to customers

Reduce ARO

6 Step Process

Standard Process

Additional Value Potential

Better than a battery

Technology	Projected 2030 capital cost (\$/kWh)								
Vanadium flow	\$447								
Li-ion - High	\$250								
Li-ion - Medium	\$200								
Li-ion - Low	\$145								
Gravity Well	\$5								

Environmental impact is Net Negative CO₂e

Round Trip Efficiency matches Li-ion & pumped-hydro

Flexible output means widest array of services

What happens after 30 years?

An independent insurance policy pays for the remaining P&A.

How it would work:

- One time premium = PV of remaining future P&A cost
- Mimics an existing well specific and individual insurance product
- In place of bonding
- Also covers required surface reclamation
- Work carried out by current operator or Renewell

Gravity Well: 2-in-1 Solution

We monitor the well for methane leaks and mechanical integrity

Weight moves up and down inside the well, converting potential energy to electrical energy

The well is plugged to prevent any interaction with the reservoir or methane leakage

37

Commercial progress

Product Partnerships

Growth Partnerships

Stanford | ENERGY Stanford Climate Ventures

Why adopt early?

Who cares?

Optimized Energy Storage Revenue

1. Utility bill reduction

2. Virtual powerplant

Renewell aggregates wells remotely and collectively to provide services to the local grid

5.1 million

Oil and gas wells will cost \$400 billion to cleaned up in North America.

41

4 Supply ≠ Demand

Because solar and wind supply does not equal demand, the U.S. will need to increase current energy storage capacity by 10x.

\$1.3 billion

is the average annual spend by oil and gas companies on 'plug and abandonment'. This expenditure is for 20,000 idle wells in the US.

