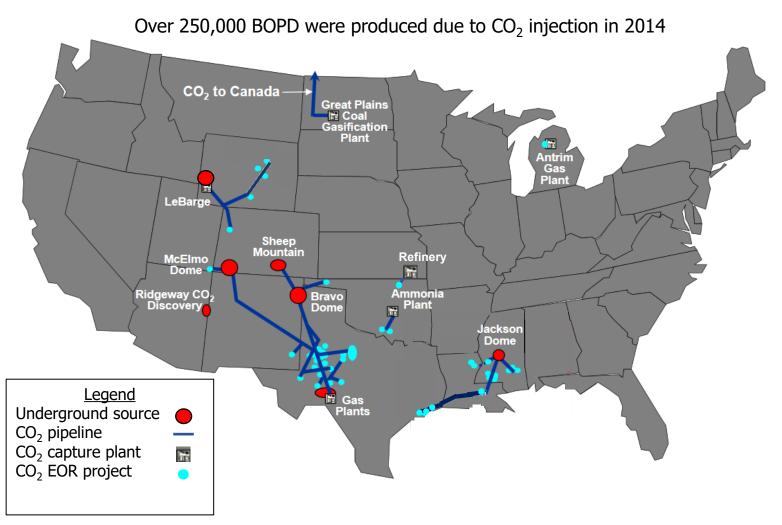

# WINDY COVE ENERGY II

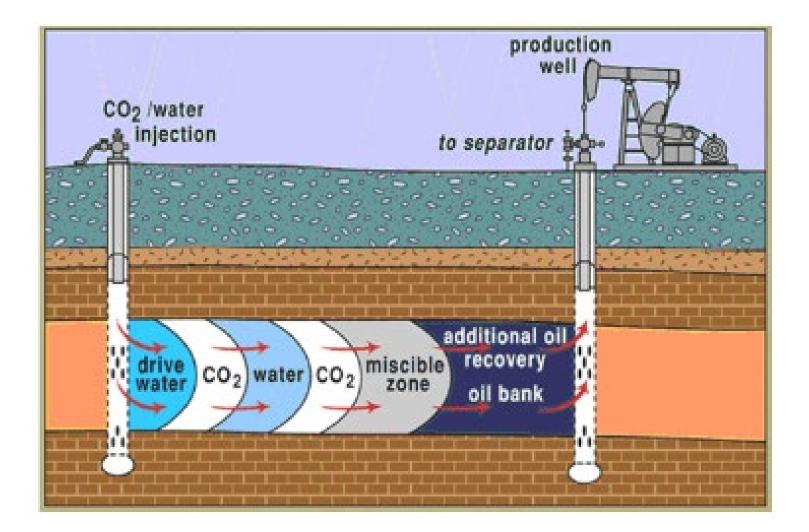
## CO<sub>2</sub>, EOR and Carbon Capture: Regulators in the Know

**November 9, 2020** 


## What is Carbon Storage?



## What is CCUS?


- Carbon Capture Utilization and Storage
- CCUS technologies involve the capture of carbon dioxide (CO<sub>2</sub>) from fuel combustion or industrial processes, the transport of this CO<sub>2</sub> via ship or pipeline, and either its use as a resource to create valuable products or services and/or its permanent storage deep underground in geological formations. (International Energy Agency, IEA)
  - I added the and/
- It seems that the IEA's definition allows for CO<sub>2</sub> storage in a saline reservoir. Where is the utilization?
- CO<sub>2</sub> could be used to make other substances such as plastics, concrete or biofuels.
- The utilization that we will discuss is the use of  $CO_2$  to produce oil. This process is followed by its internment in the subsurface.

## **U.S. CO<sub>2</sub> EOR & CCUS Infrastructure**



The map is updated from the source: Denbury Resources Inc. – " $CO_2$  Pipelines: Infrastructure for  $CO_2$ -EOR & CCS" (2009)

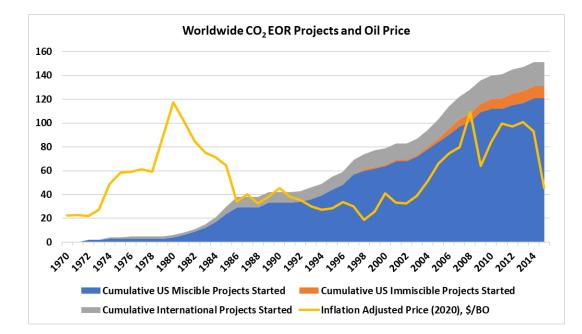
## **CO<sub>2</sub> Flooding Schematic**



## **Beginnings – 1970s**

- CO<sub>2</sub> flooding began in earnest in January 1972 when Chevron began injection at the SACROC oil field
- Shell soon followed in April at North Cross
- Two years later in 1974, a small company, Orlapetco, began injection at Two Freds
- All the fields were connected to natural gas plants located in the Val Verde Basin via pipelines
- CO<sub>2</sub> was being separated from the natural gas sales stream and vented at these plants
- This CO<sub>2</sub> was captured, dehydrated and compressed into pipelines
- Initial successes and the energy crisis caused by the Arab oil embargo led to the search for more and larger CO<sub>2</sub> sources to expand CO<sub>2</sub> flooding to other reservoirs




### Growth & Retrenchment – 1980s & 1990s

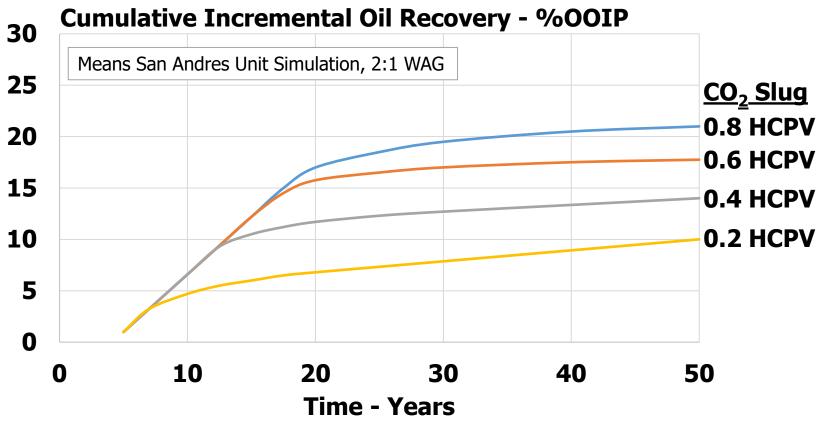
- Major sources of CO<sub>2</sub> and associated pipeline infrastructure were developed in the late 1970s and early 1980s
  - McElmo Dome, Bravo Dome and Sheep Mountain serviced the Permian Basin
  - Jackson Dome serviced the Gulf Coast
  - The Enid ammonia plant serviced Oklahoma
  - LaBarge serviced Wyoming and Colorado (LaBarge produces 30-40% of the world's Helium)
  - Enid and LaBarge are anthropogenic sources
- The oil price drop in 1986 stalled growth until the mid-1990s
- The number of US projects increased from 3 in 1974 to 29 in 1986 to 39 in 1994 and 65 in 2000



Source: "Industry Experience with CO<sub>2</sub> for Enhanced Oil Recovery" Workshop on California Opportunities for CCUS/EOR (2012)

## Rebirth & (Perhaps) Stagnation – 2000s

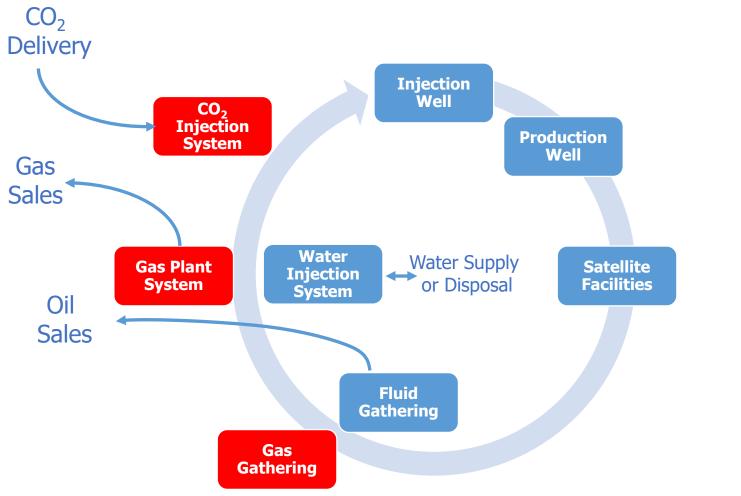



Sources: Oil & Gas Journal, 2010 Worldwide EOR Survey, April 19, 2010 & 2014 Worldwide EOR Survey April 7, 2014

- By 2000 and with over 25 years of  $CO_2$  flood experience, the industry thought that the technical risks were well known
- The number of US projects doubled from 2000 to 2014 (but the projects were not as large as those started in the 1980s and which underwrote the  $CO_2$  source and transportation infrastructure)
- No projects commenced after 2014 when the oil price crashed (twice)
- Will the industry sanction long term projects while the memory of price volatility remains vivid?
- Have all the good floods been done?

## **Solvents – Propane, NGLs, CO<sub>2</sub>**

- Have you ever tried to rinse oil-based paint off a paintbrush with a garden hose?
  - Turpentine, a solvent, works much better
  - Propane, natural gas liquids and CO<sub>2</sub> can act like solvents in the reservoir and move oil that is trapped in the pores during a waterflood
- Miscibility
  - Substances are miscible if, when they are mixed, they form one phase
  - CO<sub>2</sub> acts like a solvent when it becomes miscible with the oil
- First contact vs. multiple contact miscibility
  - Oil is a complex substance comprised of carbon chains with different numbers of carbon atoms
  - $\operatorname{CO}_2$  is not miscible with all the components upon initial contact with the oil
  - As CO<sub>2</sub> moves through the reservoir the lighter components of the oil vaporize into the CO<sub>2</sub> ...causing the mixture to become more like the heavier components, eventually leading to its miscibility with the oil.
  - Similarly  $\text{CO}_2$  condenses into the oil as it passes, making the oil more like  $\text{CO}_2$


## More CO<sub>2</sub> More Oil



The difference after 50 years between 0.2 HCPV and 0.4 HCPV  $\sim$  4% OOIP The difference after 50 years between 0.6 HCPV and 0.8 HCPV  $\sim$  3.25% OOIP

After Hadlow, SPE 24928 (1992)

## **CO<sub>2</sub> Flood Production Systems**



Potential for major alterations shown in red

## Regulations

### Class II

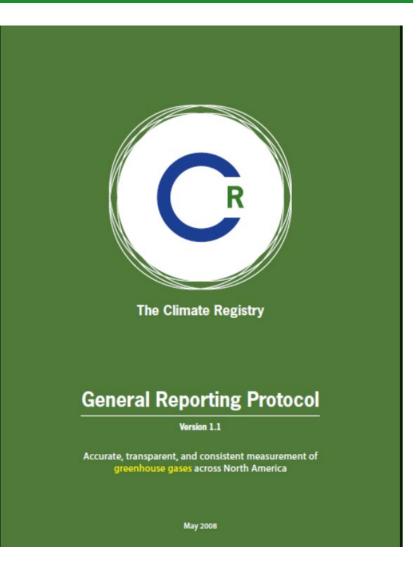
- Inject fluids associated with oil and natural gas production. Class II fluids are primarily brines (salt water) that are brought to the surface while producing oil and gas.
- Categories: disposal wells, enhanced recovery wells, hydrocarbon storage wells
- Enhanced recovery wells fluids consisting of brine, fresh water, steam, polymers, or carbon dioxide are injected into oil-bearing formations to recover residual oil and in limited applications, natural gas.

### Class VI

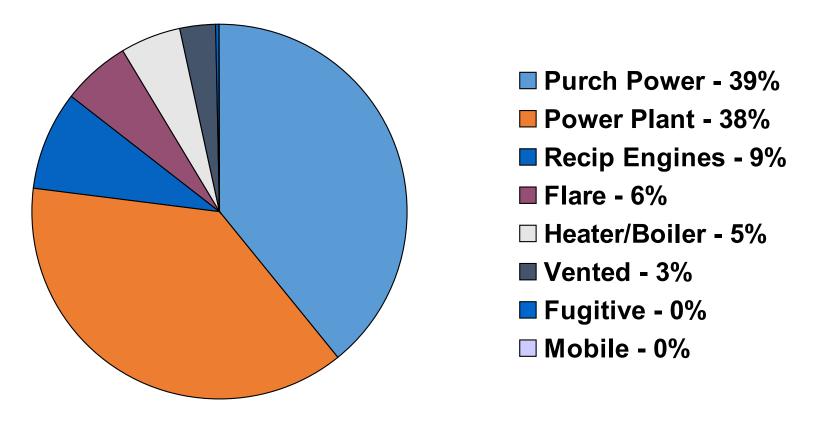
- Inject CO<sub>2</sub> into deep rock formations for the purpose of long-term underground storage or geologic sequestration (GS)

## **Class VI**

- Focused both on protecting drinking water and assuring long term storage of  $\mathrm{CO}_2$
- Address the unique nature of CO<sub>2</sub> injection for long term storage
  - Relative buoyancy of CO<sub>2</sub>
  - Subsurface mobility
  - Corrosivity in the presence of water
  - Large anticipated injection volumes
- Requirements for
  - Siting (an additional requirement vs. Class II)
    - Extensive site characterization requirements
  - Construction
    - Materials must withstand contact with CO<sub>2</sub> over the life of the project
  - Operation
  - Monitoring and testing
    - Comprehensive monitoring requirements addressing well integrity, CO<sub>2</sub> injection & storage and groundwater quality during injection and post-injection site care
  - Reporting
  - Closure
  - Financial responsibility
    - Assure the availability of funds for the life of the project, including post-injection care and emergency response


## **Transition of Class II to Class VI**

- Geologic storage of CO<sub>2</sub> can continue to be permitted under the Class II program
- Use of anthropogenic CO<sub>2</sub> in enhanced recovery (ER) operations does not necessitate a Class VI permit
- Class VI site closure requirements are not required for Class II  $CO_2$  injection operations
- ER operations that are focused on oil or gas operations will be managed under Class II. If O&G recovery is no longer a significant aspect and if Class II cannot manage the increased risk to USDWs, then the operation should be transferred to Class VI.


From: Key Principles in EPA's Underground Injection Control Program Class VI Rule Related to Transition of Class II Enhanced Oil or Gas Recovery Wells to Class VI

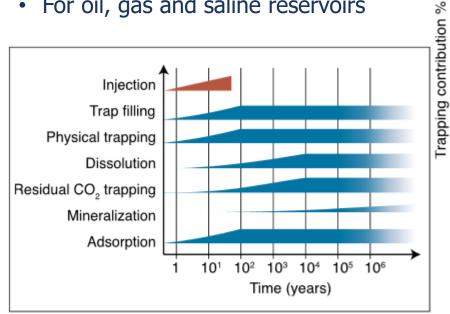
## **EOR Carbon Balance**

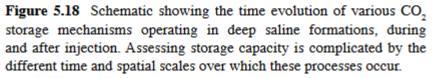
- Calculate carbon emissions for SACROC in 2007 using CA Registry methods (mostly)
- Compare various emission sources
- Look at long-term carbon balance calculations for the SACROC oil field



### **2007 SACROC Complex GHG Emissions**




### 1,046,000 Tonnes Total Complex 972,800 Tonnes CO<sub>2</sub> Flood


## **Field Life Carbon Balance**

| EOR Production <sup>1</sup>                                                                                                                                                                                                                                          | 185 million BO    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Purchased <sup>2</sup>                                                                                                                                                                                                                                               | 260.0 Mt          |
| Direct/Indirect Emissions <sup>3</sup>                                                                                                                                                                                                                               | - 18.5 Mt         |
| Capital Emissions <sup>4</sup>                                                                                                                                                                                                                                       | - 2.0 Mt          |
| Total Sequestered                                                                                                                                                                                                                                                    | 239.5 Mt          |
| <ul> <li><sup>1</sup>10% of 1.85 billion bbl OOIP</li> <li><sup>2</sup>Not all purchased CO<sub>2</sub> was anthropogenic</li> <li><sup>3</sup>CO<sub>2</sub>e emitted 0.1 t/BO</li> <li><sup>4</sup>530 tonnes/\$1 million GDP, \$3.5 billion of capital</li> </ul> | <b>92% stored</b> |

## **Time Scales and Permanence**

- Physical trapping dominates early
- Residual and solubility trapping dominates in the 10s to 100s of years time frame
- Mineral precipitation will typically be a long timeframe mechanism
- For oil, gas and saline reservoirs





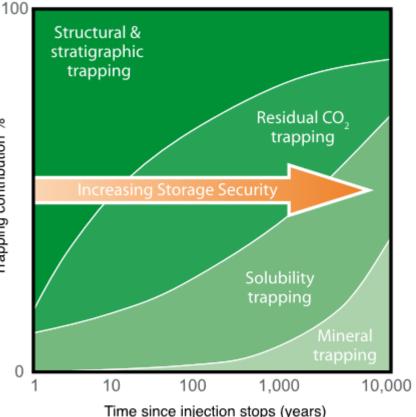
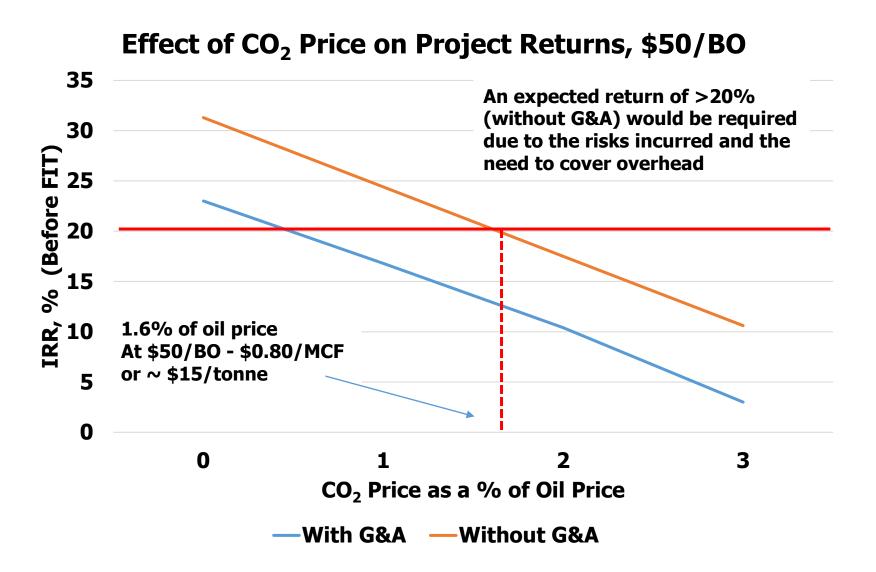
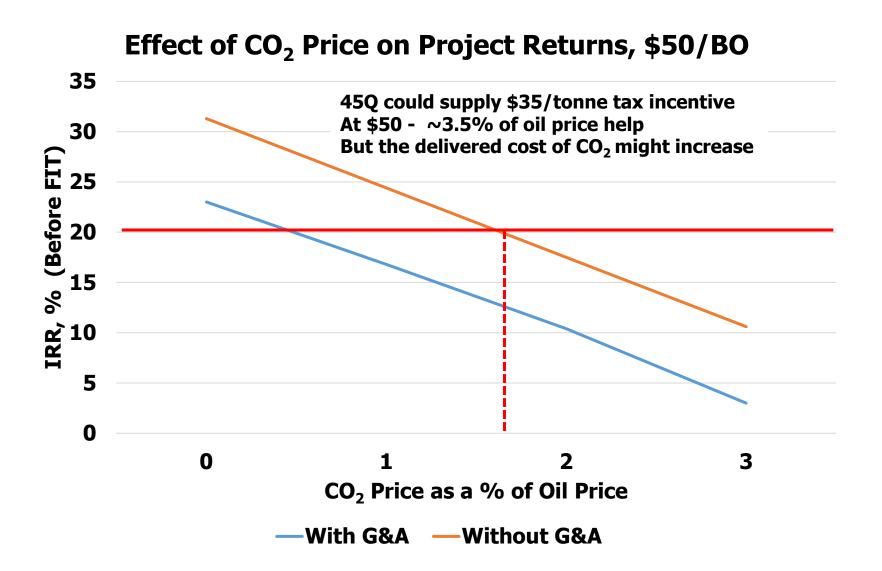




Figure 5.9 Storage security depends on a combination of physical and geochemical trapping. Over time, the physical process of residual CO, trapping and geochemical processes of solubility trapping and mineral trapping increase.


#### WINDY COVE ENERGY II

Source: IPCC, Carbon Dioxide Capture and Storage

## **Lower CO<sub>2</sub> Prices Are Critical**

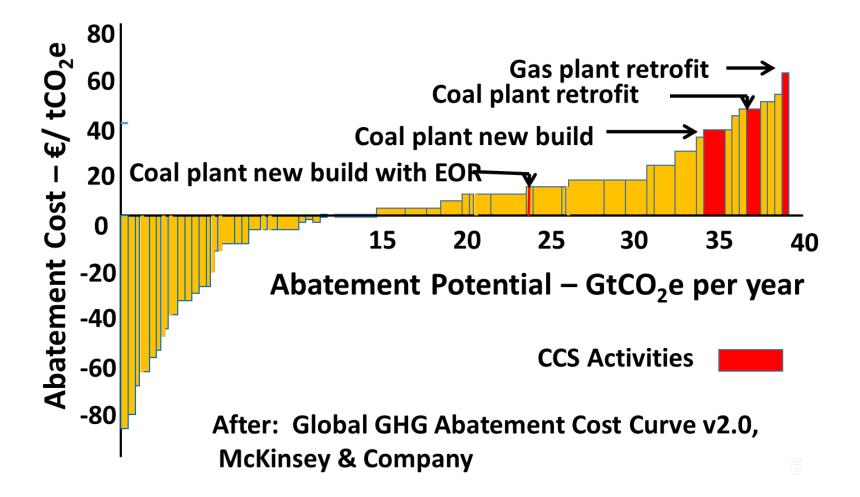


## **But Wait – 45Q to the Rescue**



## Cost

- According to a 2017 Forbes article\*
  - Used data from U.S. EIA and NETL
  - Capturing CO<sub>2</sub> from a new supercritical coal plant adds \$59/MW-hr to electricity costs
  - Or the CO<sub>2</sub> capture cost is \$70.70/tonne (\$3.70/MCF)
  - Tax credits for wind and solar are  $\sim$  \$20-\$25/MW-hr
- Capturing CO<sub>2</sub> from a natural gas plant likely costs more
- The cost to capture, dehydrate and compress pure  $\mathrm{CO}_2$ 
  - From 0 to 2000 psig is approximately \$11/tonne (\$0.60/MCF)
- Principle: If you have nearly pure CO<sub>2</sub>, you can capture it at a price that an oil field can pay for if you are close enough even without tax incentives. If you don't have government incentives, you won't capture non-pure CO<sub>2</sub> for use in oil fields.




Kemper County Coal Plant Source: Wiki Commons

Southern Company's Kemper County IGCC plant with  $CO_2$  capture was originally forecast to cost \$2.2 billion. As of 2017 the completion cost had risen to \$7.3 billion. Southern decided to switch to natural gas.

\*Forbes Online: Carbon Capture And Storage: An Expensive Option for Reducing U.S. Emissions

## **CCS Has Unfavorable Economics**



## **CCUS Is Also Challenged**

- But ...
- We know based on studies at SACROC and elsewhere that  $CO_2$  will stay in the ground
- We know CCUS can work economically in some cases
  - Val Verde Basin natural gas/CO<sub>2</sub> separation plants provided CO<sub>2</sub> to start CO<sub>2</sub> flooding in 1970s
  - Dakota Gasification Plant supplies Canadian floods
  - CVR Refinery in Coffeyville, KS supplies the Burbank field in OK
  - Ethanol plants in Michigan supply oil fields
- What works nearly pure CO<sub>2</sub> sources near oil fields which only require dehydration and compression
- Tax credits such as 45Q help pay to transport  $CO_2$  farther from the pure  $CO_2$  sources
- If CCUS (or CCS) is to expand beyond nearly pure sources, society must provide more incentives than it has, or a technological breakthrough (direct air capture?) must occur