EERC. UNIVERSITYOF. NORTH DAKOTA.

EERC. NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

NORTH DAKOTA GAS CAPTURE UPDATE

Interstate Oil and Gas Compact Commission 2019 Annual Conference

August 26, 2019

Chad Wocken Principal Engineer, Fuel Group Lead

© 2019 University of North Dakota Energy & Environmental Research Center.

NORTH DAKOTA PRODUCTION

NORTH DAKOTA PRODUCTION DATA

61 drill rigs

15,700 producing wells

1.4 million barrels crude oil per day

2.9 billion cubic feet associated gas per day

https://ndpipelines.files.wordpress.com/2019/ 08/ndpa-monthly-update-aug-15-2019.pdf

Solving the Flaring Challenge

Statewide

GREEN – % of gas captured and sold Blue – % flared from zero sales wells Orange – % flared from wells with at least one mcf sold

Simple Terms

Blue – Lack of pipelines Orange – Challenges on existing infrastructure

June 2019 Data – Non-Confidential Wells

WHY DO WE FLARE GAS?

FACTORS INFLUENCING FLARING IN NORTH DAKOTA TODAY

- No gas gathering pipeline and infrastructure
 - Currently 22% of flared gas in ND is due to stranded production
 - Pipeline is planned, but delayed (permitting, right-of-way approval, weather)
- Maintenance or process disruption
 - Short duration
 - Can be unplanned
 - High natural gas liquid (NGL) content, 8-12 gallons NGL/Mcf
- Gas gathering capacity constraints
 - Pipelines and gas plants take more time than wells
 - High initial production (IP) can exceed capacity during first months of production
 - Location and rate of production is constantly changing

EERC. | UND NORTH DAKOTA.

TECHNOLOGIES TO MITIGATE FLARING

JJ Kringstad - North Dakota Pipeline Authority

EERC REMOTE CAPTURE DATABASE

As of August 2019, the EERC's Flaring Solutions database contained 33 companies with technologies in the following categories:

- NGL recovery
- Power production
- CNG or LNG production

• Gas conversion to chemicals or fuels Approximately 50% of these companies have had units deployed at some point in time.

NGL RECOVERY

- Multiple operating principles; 300–5000 Mcfd input capacity
 - Joule–Thomson cooling
 - Mechanical refrigeration
 - Membrane- or sorbent-based separation
- Recovery efficiency of 2–4 gallons NGL/Mcf gas observed in field operations
 - 30%–50% volume reduction, up to 60% reduction in energy content
 - NGLs recovered, stored as a pressurized liquid, and sold
- Residue gas available for power, or CNG/LNG delivery; excess residue gas flared

Considerations

- Commercially available, mobile, capable of remote operation
- Extract highest-value hydrocarbons, reducing residue gas Btu content
- Increases product storage and truck traffic at production site

EERC UND NORTH DAKOTA

POWER PRODUCTION

- Well site power
 - Generators sized from 100 kW to 5 MW
 - 1 MW power requires approximately 300 Mcfd gas
- Power for drilling rigs and well completions
 - Stranded gas can fuel generators used to power drilling and completions equipment
 - Bi-fuel (diesel and natural gas) and dedicated gas generators
- Companies with mobile data centers seeking low cost electricity
 - Mobilize skid mounted electrical generators and computing equipment
 - Scale of 1-10 MW power demand possible at a well site

Considerations

- Provides fuel cost savings over diesel when grid power is unavailable
- Expansion of grid infrastructure is expected to displace on-site gas generation
- Low price for power makes economics of grid-interconnect challenging at the wellsite

TRANSPORTATION FUEL CNG/LNG

Possible impact with 500,000-mile/day fleet

- 50,000 gallons diesel/day vs. 5600 Mcf gas/day
- \$90,000/day fuel savings over diesel (at \$2/gal diesel, \$2/Mcf gas)
- <1% reduction in overall flared volume for each 500,000 mile/day fleet

Considerations

- Fuel cost savings compared to diesel
- Transportation engines require high-purity methane, not easily achievable at small scale.
- Very little infrastructure (refueling stations, fleets) to support natural gas transportation fuel.
- Refueling infrastructure and fleet investment needed

GAS CONVERSION TO FUELS OR CHEMICALS

Small-scale conversion platforms capable of producing synthetic crude, alcohols, or ammonia-based fertilizer

- Nominal gas use of 25,000 Mcfd for 2500-bbl/day production
- Represents approximately 4% reduction in overall flared volume

Considerations

- Improved value on energy basis
- Product selection based on regional markets, cost to transport
- Scale selected to match gas supply and product demand
- 2500-bbl/day production requires aggregation of gas from multiple production locations
- Plant footprint, operational staffing, and permitting need to be addressed for remote operation
- · Process needs to be tolerant of variable gas quality and quantity

OPPORTUNITIES FOR IMPROVEMENT

Additional gas gathering infrastructure

• 28,000 miles of pipe installed since 2008, more planned

Additional regional demand for gas and NGL

- Transportation fleet conversions
- Investment in petrochemical manufacture, gas conversion to higher value chemicals and fuels

Advancements in small scale gas use technologies

Increased efficiency

Gas injection into geologic formations

- Gas storage
- Enhanced oil recovery from conventional reservoirs
- Pressure maintenance within the Bakken

EERC. UN NORTH DAKOTA.

Chad Wocken Principal Engineer, Fuels Group Lead cwocken@undeerc.org 701.777.5273 (phone) Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

