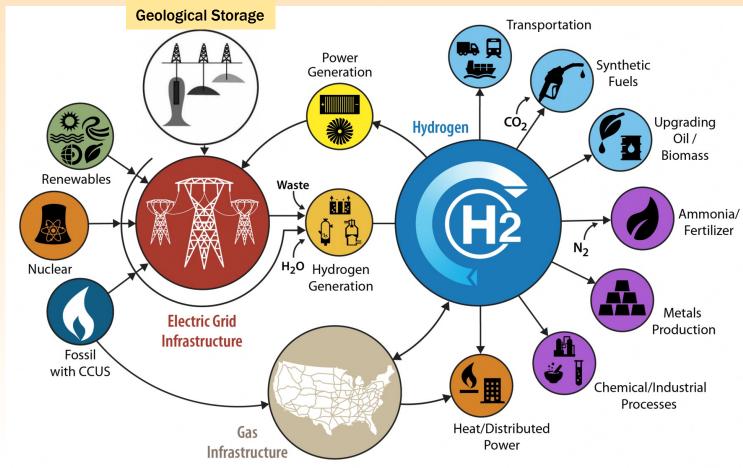
# Hydrogen at Scale in the United States

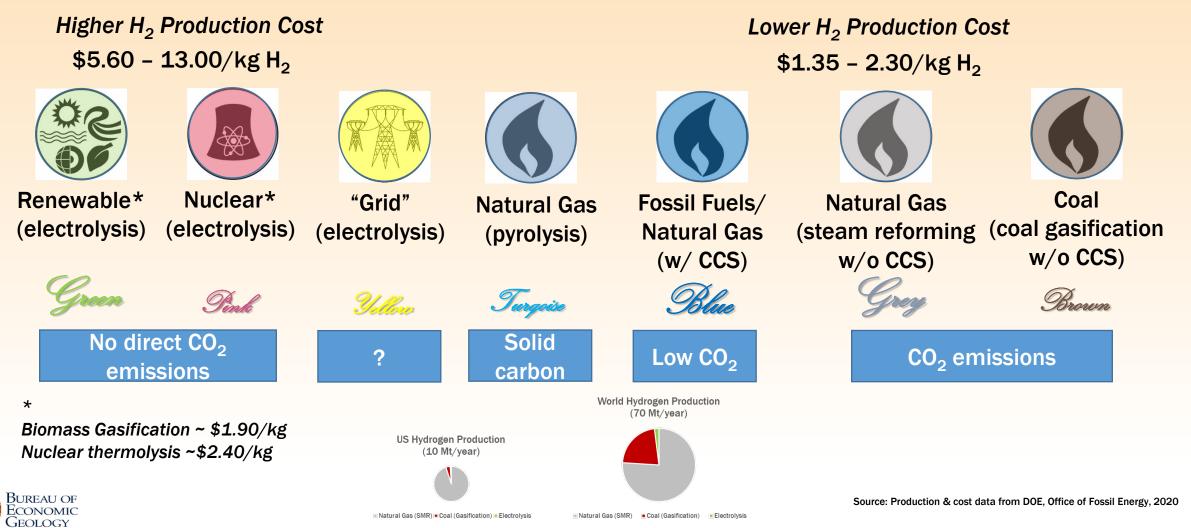
#### Why geology matters Mark W. Shuster

Hydrogen Working Group, Bureau of Economic Geology


Bureau of Economic Geology Hydrogen Working Group:

- Peter Eichhubl, Seyyed Hosseini, JP Nicot, Ian Duncan, Ning Lin, Jay Kipper, Farzam Javadpour, Shuvajit Bhattacharya, and Bo Ren
- Large-scale geological storage, in situ H<sub>2</sub> generation, and economics




# Hydrogen as Part of a Low Carbon Economy in the US

- Transportable
  - Pipeline gas
  - Liquified
  - Compounds (e.g. ammonia)
- Store-able
  - Large capacity (geological)
  - Indefinite storage duration
- Multiple sources
  - Electrolysis
  - Natural gas reforming
  - Coal gasification
- Low carbon emissions
  - From fossil fuels combined with carbon capture and storage (CCS)
  - From electrolysis (hydro, solar, wind, nuclear, geothermal) without CO<sub>2</sub>





# **The Color Spectrum of Hydrogen Supply**

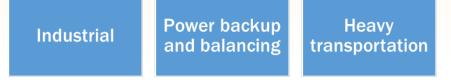


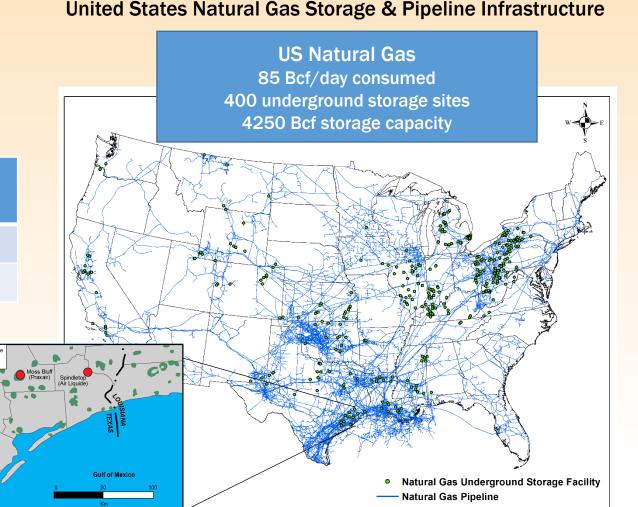
https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE\_FE\_Hydrogen\_Strategy\_July2020.pdf

# Why Geological Storage ?

H<sub>2</sub> Salt Cavern Storag

ified from NEA. 2017


Salt Dome

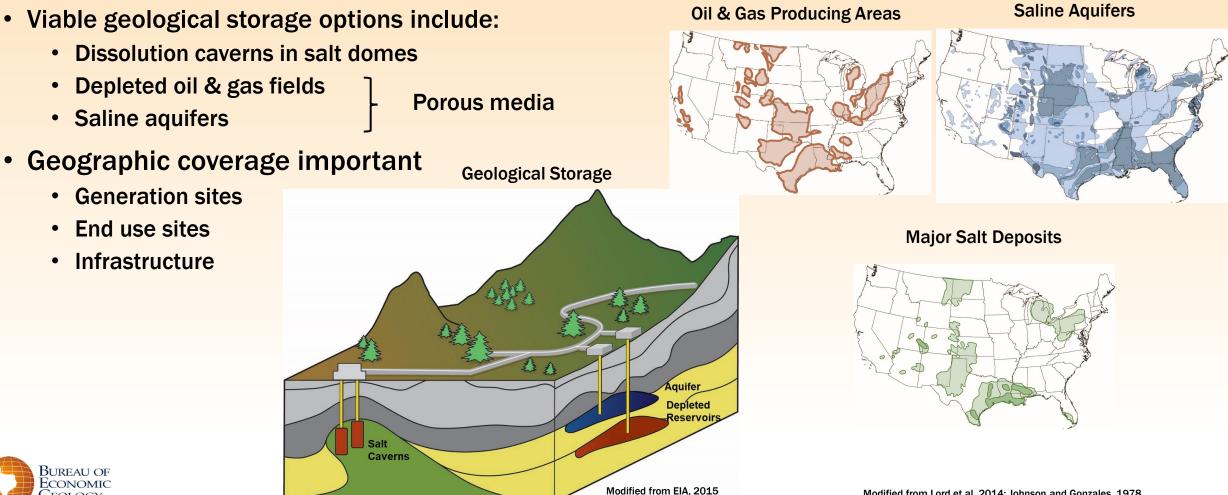

- $H_2 \sim 1/3$  energy of natural gas by volume
- Current H<sub>2</sub> storage in US is ~6 Bcf
- Potential H<sub>2</sub> Growth

| H <sub>2</sub> Future Share of Natural<br>Gas Market | Equivalent H <sub>2</sub> Storage<br>Needed* |
|------------------------------------------------------|----------------------------------------------|
| 1%                                                   | ~100 Bcf                                     |
| 10 %                                                 | ~1000 Bcf                                    |

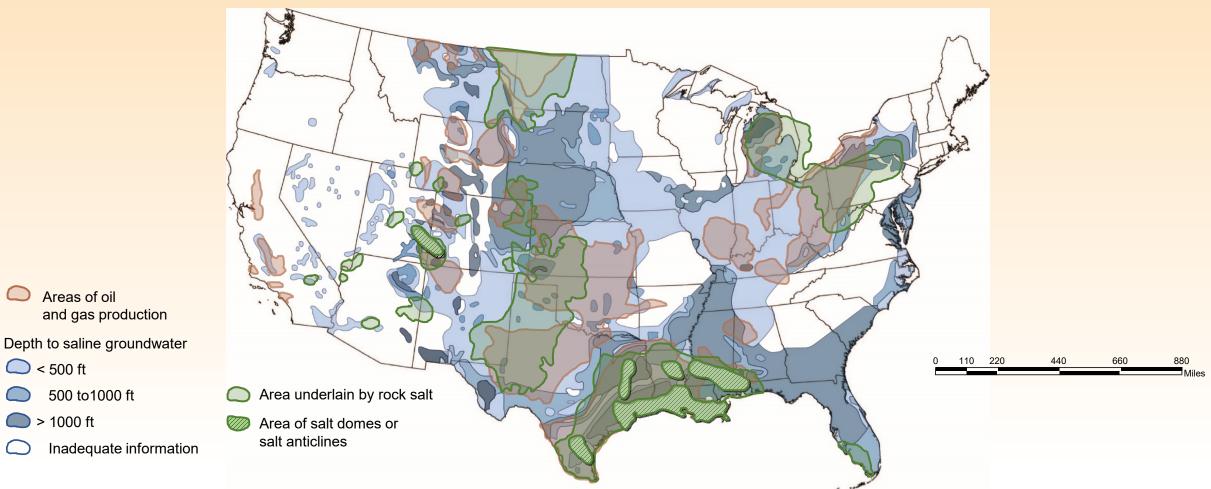
\* Assumes 10 % storage/consumption requirement; 2019 NG market reference

#### Main envisioned application categories of H<sub>2</sub>







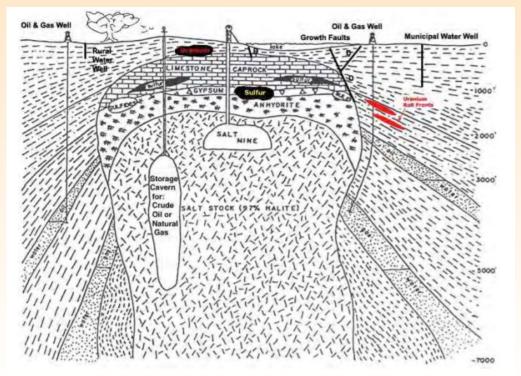


# **Geological Storage**

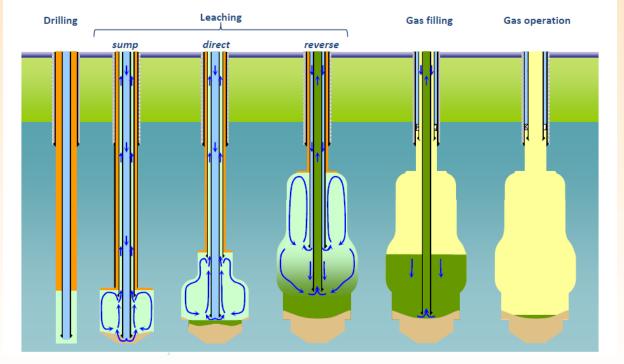
Geological storage provides options for large (> 1000 tonne  $H_2$ ) storage sites

GEOLOGY



# **Aquifers, Salt Domes and Oil and Gas**



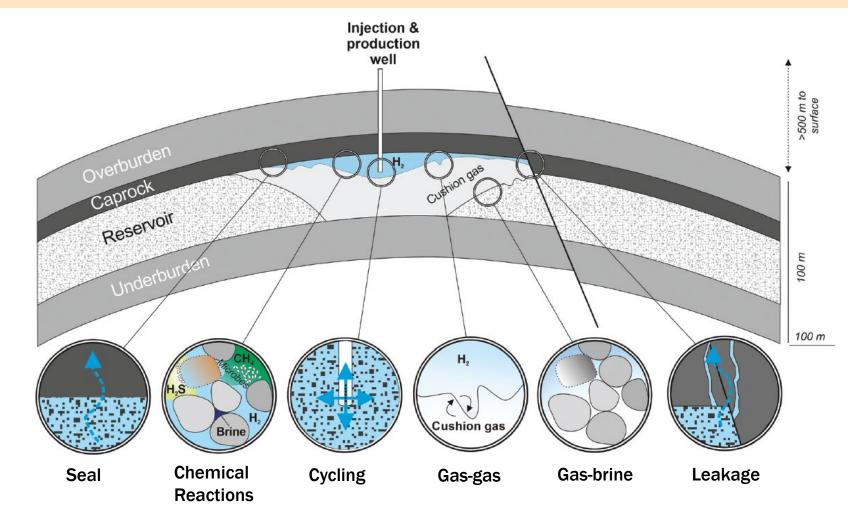

○ < 500 ft</p>

# **Hydrogen Storage in Salt**

#### • Storage in salt (dissolution) caverns



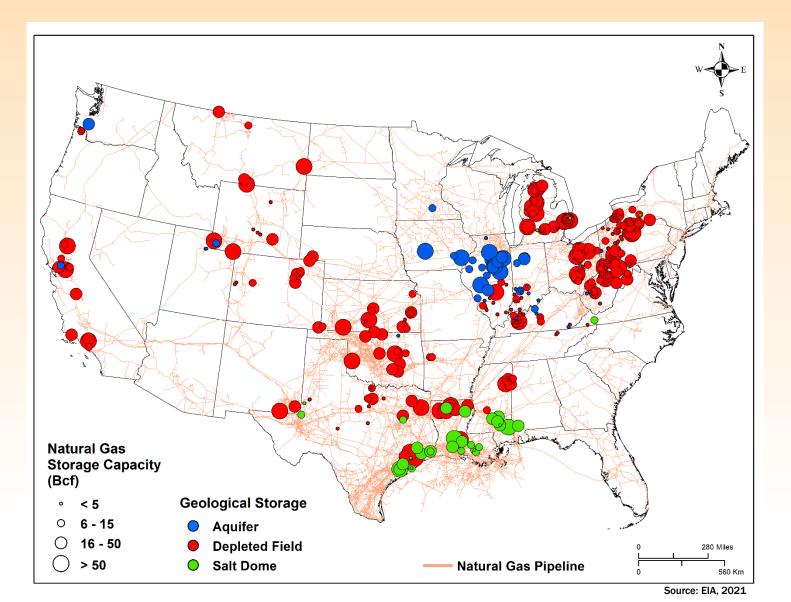



#### **Steps in Creating Salt Cavern**

#### Schematic Salt Stock & Uses



# Hydrogen Storage in Porous-media Reservoirs (Depleted Fields and Saline Aquifers)


- Leakage
- Fluid-rock interactions
- Injection/production
- Gas-gas and gas-brine





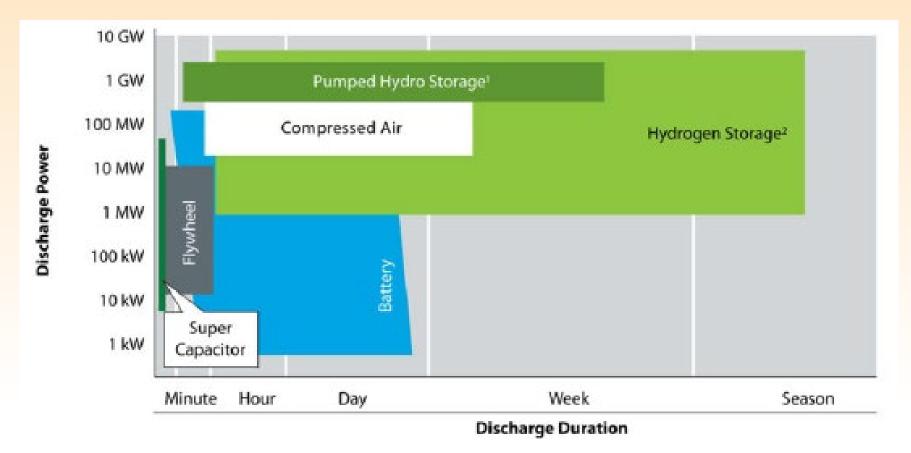
Source: Heinemann et al, 2021 Energy Environ. Sci., 2021,14, 853

#### **Natural Gas Infrastructure and Geological Storage**





# Large-scale Geological Storage of H<sub>2</sub> in US


| Туре                       | Status                                                            | Comments                                                                                                                                                                  | Research                                                                                                                                                                                            |
|----------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salt (dissolution) caverns | 3 active H <sub>2</sub> storage sites in Texas for industrial use | <ul> <li>Limited geographic<br/>distribution of suitable<br/>salt deposits</li> </ul>                                                                                     | <ul> <li>Cost/life-cycle analysis</li> <li>Catalog areas for<br/>expanded storage</li> </ul>                                                                                                        |
| Depleted oil & gas fields  | Untested for H <sub>2</sub> storage<br>(proven for Natural Gas)   | <ul> <li>Wide geographic distribution</li> <li>H<sub>2</sub>-reservoir interaction is not well understood</li> </ul>                                                      | <ul> <li>Cost/life-cycle analysis of storage in reservoirs</li> <li>Chemical reactions</li> <li>Geomechanics</li> <li>Pilot field tests of H<sub>2</sub></li> <li>Catalog suitable sites</li> </ul> |
| Saline aquifers            | Untested for H <sub>2</sub> storage<br>(proven for Natural Gas)   | <ul> <li>Wide geographic<br/>distribution</li> <li>H<sub>2</sub>-reservoir interaction is<br/>not well understood</li> <li>Suitability of sealing<br/>caprocks</li> </ul> | <ul> <li>Cost/life-cycle analysis of storage in reservoirs</li> <li>Chemical reactions</li> <li>Geomechanics</li> <li>Pilot field tests of H<sub>2</sub></li> <li>Catalog suitable sites</li> </ul> |



Need research to develop expanded inventory of suitable storage sites across the US

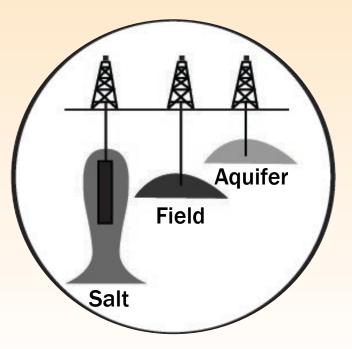
# **Comparative Energy Storage**

Energy reliability and resilience is paramount for US energy infrastructure



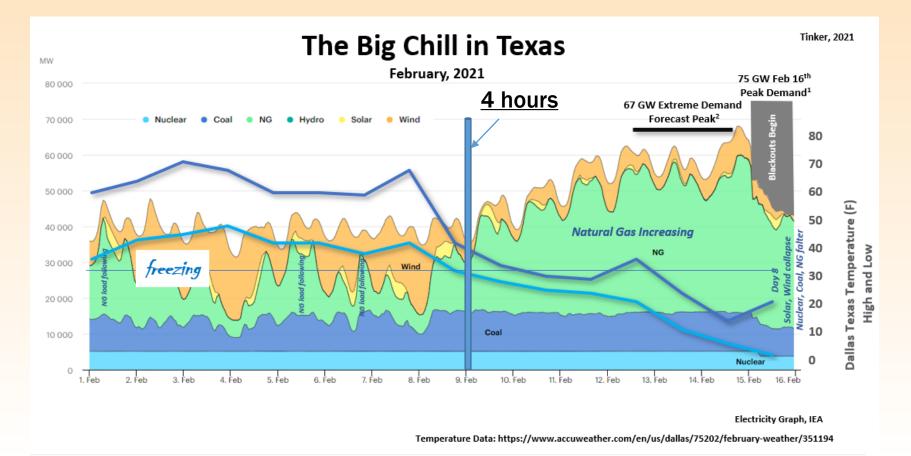


Source: 2020 U.S. DOE Energy Storage Handbook, Ch.11, Headley & Schoenung


### **Better (More Energy & Longer Lasting) "Batteries" ?**

Vistra Energy's Lithium-ion battery system Moss Landing, CA






<u>1.2 GWh (300 MW);</u> <u>4 hour storage duration</u> One (small) Geological Hydrogen Site (~1 Bcf)

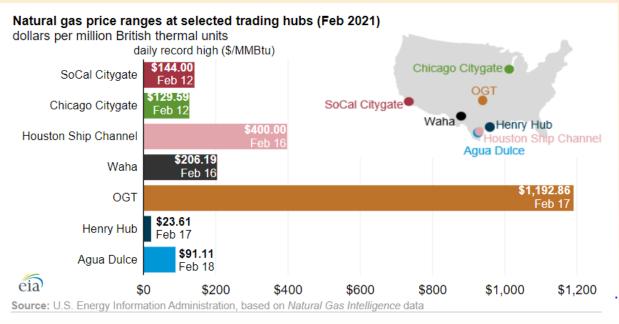


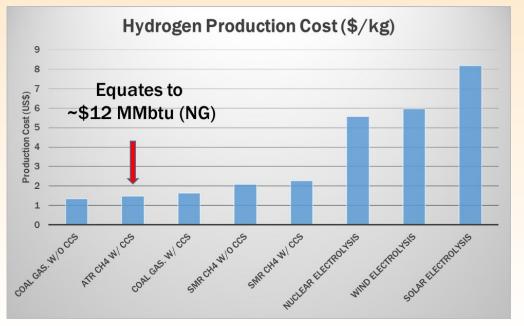
<u>100 GWh</u> <u>Seasonal (months) storage duration</u>

### **Need Energy Storage for Extended Periods**



<sup>1</sup>U.S. Energy Information Administration ERCOT demand forecast peak of 75 GW


<sup>2</sup>North American Electric Reliability Corp. predicted winter extreme weather event demand peak in ERCOT






# **Recent Short-term NG Price Spikes**

# Incentivized hydrogen storage and supply could be used as alternative strategic energy reserve

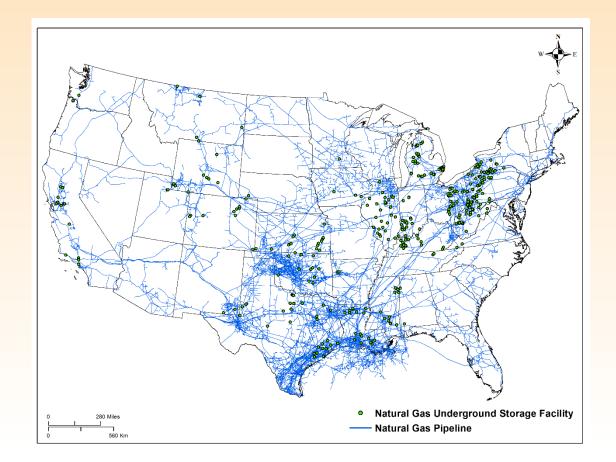




Source: 2020 U.S. DOE Hydrogen Strategy



Source: EIA, March 5, 2021

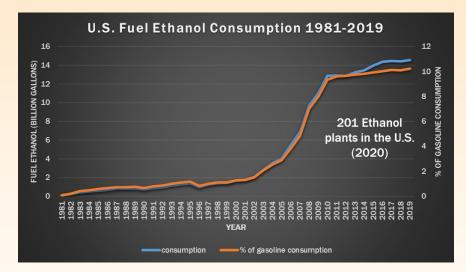

# **Some Ideas to Help Build H<sub>2</sub> Markets**

- Develop market development scenarios of regional markets in the U.S. leveraging local value chains and industries
- Develop policies and incentives for H<sub>2</sub> (e.g.) that make sense within the spectrum of energy transition options and local value chains
  - Low % hydrogen blend in U.S. natural gas system
  - Strategic hydrogen supply and storage
- Support research for integrated pilot systems to test and optimize technologies and supply chains
  - Supply/Generations Geological Storage (including CCS for fossil fuelbased systems) – Transportation - Usage



### **Market and System-scale Modeling Research**

- Develop and assess scenarios for large-scale hydrogen market and infrastructure development in the U.S.
- Use U.S. natural gas system as baseline to inform scenarios
- Identify and match industry usages and potential supply sources considering demand characteristics and locations



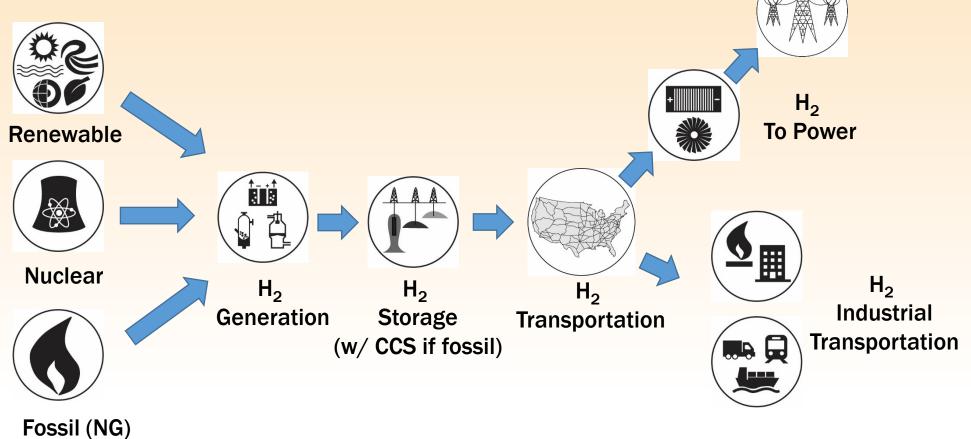



### **"10** %"

- Blend low % (e.g. 10 %) hydrogen into US natural gas system
- Reduce US GHG emissions AND develop market opportunities
  - 10 % NG (8.5 Bcf/day) equates to US CO<sub>2</sub> emissions of 165 Mt/year
  - Develop markets (supply, storage, transportation, demand)
  - Understand that not all NG usages may be able to accommodate H2
- Stepping stone approach paves way for hydrogen economy

#### **Ethanol Policy Example**




https://www.nrel.gov/docs/fy13osti/51995.pdf

Melaina, M W, Antonia, O, and Penev, M., 2013, *Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues*. United States: Web. doi:10.2172/1068610



## **Integrated Full-Cycle Pilot Systems Research**

- Supply Storage Transportation End Use
- Allow for different systems reflecting different value chains





#### **Comments on Hydrogen Policy, Regulations, & Strategy**

- Main guiding U.S. policies Energy Policy Act (2005) and Energy Independence and Security Act (2007)
  - Support R&D ; focus on H<sub>2</sub> as alternative fuel for transportation
- No cohesive H<sub>2</sub> framework; regulations within OSHA, EPA (GHG), and PHMSA for H<sub>2</sub> hazards and transportation
  - FERC: new rule for use of thermal energy to produce  $H_2$  for fuel cell electric power generation; FERC may have jurisdiction for interstate pipeline transportation of  $H_2$ /Natural gas blends
- Geological storage of "natural gas and other gaseous materials" including H<sub>2</sub> regulated in Texas by TX Railroad Commission
- DOE released U.S. Hydrogen Strategy and Hydrogen Program Plan in 2020
  - Emphasis on Research, Design & Development from 2020 2030
  - Increasing private sector role to scale up market deployment from 2030 onward
- EU Hydrogen strategy released in 2020
  - Sets renewable hydrogen generation capacity and production targets for 2020 2030
  - Estimates Euro 55 90/tonne  $CO_2$  pricing to make blue and green hydrogen competitive



# Conclusions

- Geological storage of hydrogen with broad geographic coverage will be important for large-scale hydrogen utilization in the U.S.
- Characterization of suitable storage sites including testing of depleted fields and saline aquifers is viewed as critical.
- Integrated market-chain pilot systems (supply, storage, transportation, and usage) could function as full-system test sites.
- Regulatory policy framework functions for current hydrogen production, storage, transportation and usage but will need to be revised/updated for large-scale hydrogen energy systems.



# **Thank you – Questions ?**



# **U.S.** Policies

- Support R&D
- Main focus on H<sub>2</sub> as alternative fuel for transportation

| Act/Incentive                               | Purpose                                                                                                                                              |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy Independence and Security Act (2007) | Increase energy independence & security; increase<br>renewable fuel production; support GHG capture<br>research – Indirect support of green hydrogen |
| Energy Policy Act (2005)                    | Directive for R&D (Title VIII) on technologies related to hydrogen production, storage, and use                                                      |
| Alternative Fuel Excise Tax Credit          | Tax credit of \$0.50/gallon of liquified H2, NG, biofuels                                                                                            |
| Alternative Fuel Infrastructure Tax Credit  | Tax credit for fueling equipment including liquified H2                                                                                              |
| Alternative Fuel Tax Exemption              | Exemptions for alternative fuels for farm equipment, city buses                                                                                      |
| Fuel Cell Motor Vehicle Tax Credit          | Up to \$8,000 for purchase of Fuel Cell light-vehicle                                                                                                |



# **U.S. Codes and Regulations**

- Lack of cohesive regulations for H<sub>2</sub> in Code of Federal Regulations
- Most extensive H<sub>2</sub> regulations are w/in OSHA, EPA, & PHSMA

| se                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dresses hazardous materials; installation of H2 systems, ations, containers, piping etc.                                                                                                                                                                                                                                            |
| irect reference through GHG Reporting: any H2 production<br>arce emitting 25,000 tonnes of CO2 must comply with GHG<br>porting<br>emical Action Prevention scheme addresses storage of hydrogen<br>0,000 pounds                                                                                                                     |
| gulate 700 miles of H2 pipelines (as Flammable Gas)<br>search on H2 effects on steel pipelines<br>gulate H2 in transportation<br>sign, filling & marking Fuel Cells<br>nsportation of compressed gases incl. H2                                                                                                                     |
| gulate interstate <u>natural gas</u> pipeline transmission; jurisdiction<br>and cover hydrogen blends but likely need new regulatory<br>asiderations<br>w PURPA* (RM21-2) include thermal energy from cogeneration<br>produce hydrogen for electricity generation using fuel cells<br>(Public Utility Regulatory Policies Act 1978) |
| -                                                                                                                                                                                                                                                                                                                                   |



# **U.S. and EU Strategies and Plans**

• Both U.S. and EU have strategies and plans for Hydrogen

| DOE Hydrogen Strategy (July, 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EU Hydrogen Strategy (July, 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOE Hydrogen Program Plan (November, 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Focus on Research, Design &amp; Development</li> <li>2020 Enabling activities by Government</li> <li>H2 production to meet \$1-\$2/kg cost metrics</li> <li>H2 delivery to enable low-cost safe &amp; reliable delivery/distribution</li> <li>H2 storage to enable low cost, high capacity storage</li> <li>H2 Conversion: fuel cell and combustion technologies</li> <li>H2 End-use: develop multiple applications; optimize hydrid and integrated energy systems</li> <li>H2 Cross cutting: address safety, codes and standards; develop best practices</li> </ul> | <ul> <li>Estimates Euro 55 – 90/tonne CO2 to make H2 with CCS competitive with 'grey' H2</li> <li>Roadmap to develop H2 in Europe         <ul> <li>2024: 6 GW of H2 electolysers (1 mln tonnes H2)</li> <li>2030: 40 GW of H2 electrolysers (10 mln tonnes H2)</li> <li>2030 +: dedicate 25 % of renewable power for H2 generation</li> </ul> </li> <li>Promote research and innovation:         <ul> <li>H2 electrolysers</li> <li>Infrastructure</li> <li>Expanded end-use applications</li> <li>Improved &amp; harmonized safety standards</li> <li>Large-scale projects across value-chain</li> </ul> </li> </ul> |

https://www.energy.gov/articles/energy-department-releases-its-hydrogen-program-plan



### **Undergound Storage Regulations**

- FERC has jurisdiction for approximately 223 underground natural gas storage facilities that are part of the interstate natural gas network
- Federal regulators deferred to States in 1997 to have oversight of underground natural gas storage
- Geological hydrogen storage in Texas is regulated by the Texas Railroad Commission
  - Texas Title 16: Part 1, Chapter 3
    - 3.96: Underground Storage of Gas in Productive or Depleted Reservoirs
    - "Storage of natural gas or other gaseous material..."
    - 3.97: Underground Storage of Gas in Salt Formations
- Hydrogen injection is not under EPA Underground Injection Control (UIC) regulations for CO<sub>2</sub> storage
  - States can assume primacy for UIC

