

### Clean Harbors Environmental Services, LLC Lone Mountain Facility Waynoka, Oklahoma

# RCRA/HSWA Permit Renewal Application

Volume 7

October 1, 2020



# VOLUME 7

### **CONTENTS IN THIS VOLUME:**

**SECTION EF2** 

**SECTION EF3** 

**SECTION EF4** (OUT OF SERVICE)

**SECTION EO1** 

**SECTION FT1** 





### **SECTION EF2**



# EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT

LONE MOUNTAIN FACILITY

WAYNOKA, OKLAHOMA



APRIL 2016



CA1960 6-30-2016

015493

APRIL 2016 (015493)

#### TABLE OF CONTENTS

| 7.        | IANK                   | SYSTEM DESCRIPTION                                                    | 1    |  |  |  |  |  |  |
|-----------|------------------------|-----------------------------------------------------------------------|------|--|--|--|--|--|--|
| 2.        | TANK SYSTEM ASSESSMENT |                                                                       |      |  |  |  |  |  |  |
|           | 2.1                    | General Description of Evaporator Feed Tank No. 2 (EF2)               |      |  |  |  |  |  |  |
|           | 2.2                    | 2 Design Standard(s)                                                  |      |  |  |  |  |  |  |
|           | 2.3                    | Hazardous Characteristics of Managed Waste(s)                         | 1    |  |  |  |  |  |  |
|           | 2.4                    | Existing Corrosion Protection                                         | 1    |  |  |  |  |  |  |
|           | 2.5                    | Documented Age of Tank                                                | 2    |  |  |  |  |  |  |
|           | 2.6                    | Results of Leak Test                                                  | 2    |  |  |  |  |  |  |
|           | 2.7                    | Existing Data Obtained                                                | 2    |  |  |  |  |  |  |
|           | 2.8                    | Calculation of Foundation Loading                                     | 2    |  |  |  |  |  |  |
|           | 2.9                    | Calculation of Foundation Loading                                     | 2    |  |  |  |  |  |  |
|           | 2.10                   | Required Structural Calculation                                       | 2    |  |  |  |  |  |  |
|           |                        | 2.10.1 Wall Thickness Comparison                                      | 2    |  |  |  |  |  |  |
|           |                        | 2.10.2 Bottom Thickness Comparison                                    | 3    |  |  |  |  |  |  |
|           |                        | 2.10.2 Bottom Thickness Comparison                                    | 4    |  |  |  |  |  |  |
|           |                        | 2.10.3 Foundation Integrity                                           | 4    |  |  |  |  |  |  |
| 3.        | SECO                   | NDARY CONTAINMENT SYSTEM                                              | _    |  |  |  |  |  |  |
|           | 3.1                    | General Description of Secondary Containment                          | 5    |  |  |  |  |  |  |
|           | 3.2                    | Design Standards                                                      | 5    |  |  |  |  |  |  |
|           | 3.3                    | Hazardous Characteristics of Wastes Stored                            | 5    |  |  |  |  |  |  |
|           | 3.4                    | Existing Corrosion Protection                                         | 5    |  |  |  |  |  |  |
|           | 3.5                    | Documented Age of the Containment System.                             | 6.   |  |  |  |  |  |  |
|           | 3.6                    | Results of Leak Test                                                  | 6.   |  |  |  |  |  |  |
|           | 3.7                    | Existing Data Obtained                                                | 6.   |  |  |  |  |  |  |
|           | 3.8                    | Calculation of Existing Capacity                                      | 6.   |  |  |  |  |  |  |
|           | 3.9                    | Required Volume.                                                      | 6.   |  |  |  |  |  |  |
|           | 3.10                   | Comparison of Available Volume to Required Volume                     | /.   |  |  |  |  |  |  |
|           |                        | The same to require a volume                                          | /.   |  |  |  |  |  |  |
| 4.        | CONC                   | LUSIONS                                                               | 7    |  |  |  |  |  |  |
|           | 4.1                    | Primary Tank Vessel                                                   | ·/.  |  |  |  |  |  |  |
|           | 4.2                    | Secondary Containment                                                 | ./.  |  |  |  |  |  |  |
|           |                        |                                                                       |      |  |  |  |  |  |  |
| 5.        | RECOA                  | MMENDATIONS                                                           | 0    |  |  |  |  |  |  |
|           | 5.1                    | Primary Tank                                                          | . 0. |  |  |  |  |  |  |
|           | 5.2                    | Secondary Containment                                                 | . 0. |  |  |  |  |  |  |
|           | 5.3                    | Routine Inspections                                                   | . 0. |  |  |  |  |  |  |
|           |                        |                                                                       |      |  |  |  |  |  |  |
| 6.        | CERTIF                 | ICATION                                                               | Ω    |  |  |  |  |  |  |
|           |                        |                                                                       | . 0. |  |  |  |  |  |  |
| TABLE     |                        |                                                                       |      |  |  |  |  |  |  |
| TABLE 2   |                        | EF2 TANK DATA                                                         |      |  |  |  |  |  |  |
| TABLE 2.2 |                        | COMPARISON OF ACTUAL STRUCTURAL TO THEORETICAL VALUES FOR THE EF2 TAN | K    |  |  |  |  |  |  |
| TABLE 3   | 3.1                    | SECONDARY CONTAINMENT AREA DATA                                       |      |  |  |  |  |  |  |
| FIGURE    | : 1                    | FE2 TANK DETAILS                                                      |      |  |  |  |  |  |  |
| IJUKE     | . 1.                   | EF2 TANK DETAILS                                                      |      |  |  |  |  |  |  |



APRIL 2016 015493

| FIGURE 1a.                      | EF2 MEASURED PLATE THICKNESS     |
|---------------------------------|----------------------------------|
| FIGURE 2.                       | EF2 TANK SURVEY POINTS SCHEMATIC |
| The second second second second | The series will the              |

FIGURE 3. EF2 TANK HISTORICAL FOUNDATION SURVEY DATA

FIGURE 4. EF2 SECONDARY CONTAINMENT SYSTEM

FIGURE 5. EF2 TANK SECONDARY CONTAINMENT SECTION A-A

APPENDIX A. PRIMARY TANK VOLUME CALCULATION - NOVEMBER 2000 SUBMITTAL PRIMARY TANK WALL THICKNESS - NOVEMBER 2000 SUBMITTAL

APPENDIX C. SEISMIC CALCULATIONS - NOVEMBER 2000 SUBMITTAL WIND LOAD CALCULATIONS - NOVEMBER 2000 SUBMITTAL

APPENDIX E. FOUNDATION INTEGRITY MONITORING DOCUMENT - JANUARY 2011 SUBMITTAL LAW ENGINEERING GEOTECHNICAL REPORT - NOVEMBER 2000 SUBMITTAL

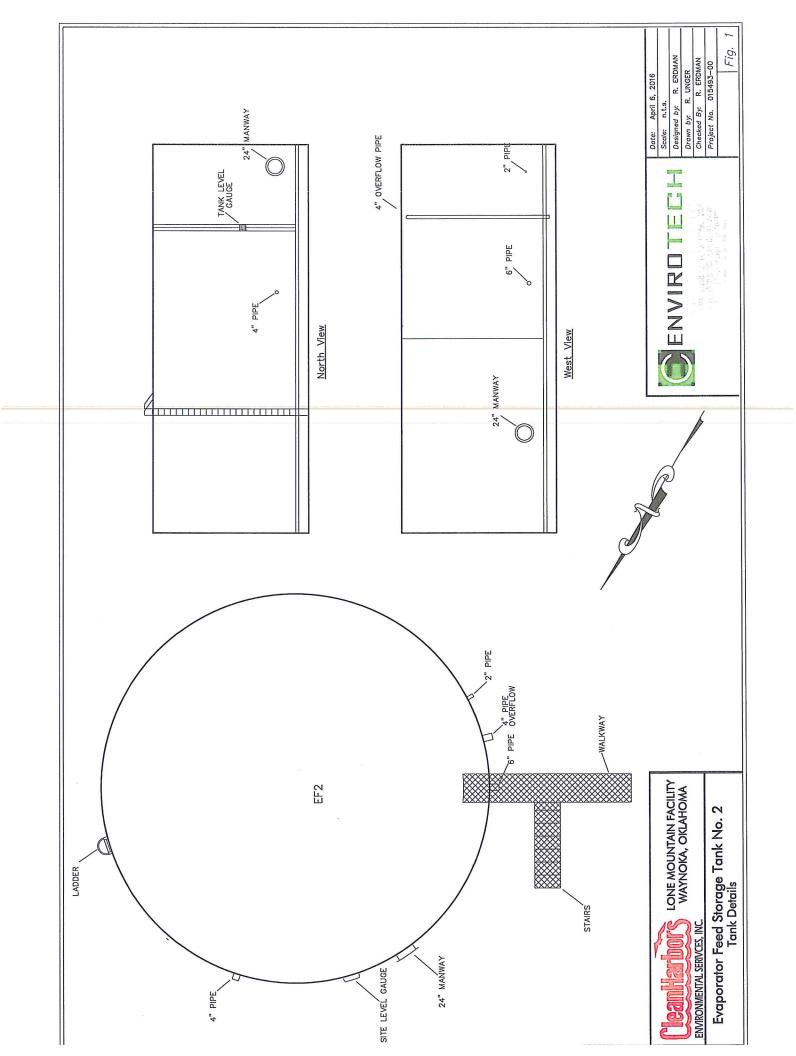
APPENDIX G. FOUNDATION DESIGN ANALYSIS - NOVEMBER 2000 SUBMITTAL CHEMPROOF PERMACOAT 3000 DOCUMENTATION

APPENDIX I. SECONDARY CONTAINMENT CALCULATIONS - NOVEMBER 2000 SUBMITTAL





APRIL 2016 015493


#### 1. TANK SYSTEM DESCRIPTION

Clean Harbors Environmental Services, Inc., retained Envirotech Engineering & Consulting, Inc., to conduct the required 5-year assessment of Evaporator Feed Tank No. 2 (EF2), as outlined in the previous January 2011 assessment. A visual inspection of Tank EF2 was conducted by Envirotech on November 25, 2015. This report is a continuation of previous five-year assessments and references the original design data developed for this tank. Evaporator Feed Tank No. 2 (EF2) is a 60-ft.-dia. circular-steel aboveground open-top wastewater storage and treatment tank installed in July 1987. The 360,000-gal. (nominal) tank is utilized for storage and incidental treatment of pre-treated wastewater. Certain wastewater not requiring pretreatment may also be stored in the tank (i.e., contaminated rainwater, landfill leachates, etc.) After storage, the wastewater is transferred for final treatment and/or disposal. The tank (along with a similar Tank EF1 and a tank holding reagent-grade bleach) is located immediately east of the pretreatment area in a common-lined concrete secondary containment system. Tank volume calculations are included in *Appendix A*. An "As-Built" drawing depicting the tank details is included as *Figure 1*.

#### 2. TANK SYSTEM ASSESSMENT

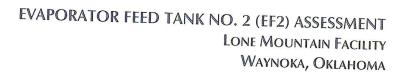
- 2.1 General Description of Evaporator Feed Tank No. 2 (EF2). Evaporator Feed Tank No. 2 (EF2) is a vertical circular carbon-steel tank with a nominal 60-ft.-dia. sitting on an 8-in. channel that rests upon a concrete ring wall foundation. A sand base and high-density polyethylene (HDPE) liner leak detection system is located directly under the primary tank floor with detector pipes extending through the ring wall and liner for positive leak identification.
- 2.2 Design Standard(s). The tank was constructed in 1987 and appears to be field-designed and constructed. Although the tank appears to be a modified design, for purposes of this assessment, structural calculations were prepared to compare the existing tank and supports to those applicable sections in the American Petroleum Institute Standard 653 1995 2<sup>ND</sup> Edition (API-653) and the American Institute of Steel Construction (AISC) Manual of Steel Construction 8<sup>TH</sup> Edition. These calculations are included in Appendices B thru D. The actual steel specifications by which the tanks are constructed are not known, but have been assumed to be A36 (carbon steel).
- 2.3 Hazardous Characteristics of Managed Waste(s). The wastes managed in this tank are both characteristic and listed waste, as summarized in 40 CFR Part 261, Subparts C and D. This tank is a storage tank where aqueous-based waste materials that required oxidation, neutralization, filtration, or settling (among other physical/chemical treatment methods) were stored prior to evaporation or shipment off-site. Currently, the only material placed in the tank is treated wastewater. According to Clean Harbors, the waste managed in this tank has the following general characteristics:
  - 4 < pH < 13;
  - N > 1;







### EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT Lone Mountain Facility Waynoka, Oklahoma


APRIL 2016 015493

- Temperature = Ambient; and
- Low-Solvent Constituents.

The tank is lined with coal tar that is resistant to most constituents-of-concern. The coal tar liner has survived well in this working environment.

With regards to the potential for corrosion, it was determined that the pH and normality levels of the waste are the primary areas-of-concern. This was to determine the applicability of a corrosion allowance for the tank material type and thickness.

- 2.4 Existing Corrosion Protection. The tank is isolated from soil and water by a ring wall, below which is a leak detection system. This system is comprised of an HDPE liner below a layer of sand on a concrete mat foundation. The HDPE liner and concrete mat foundation isolate the sand from the underlying soil. Water may be entrained in the sand when placed prior to construction of the tank bottom, but the secondary containment system is designed to drain entrained fluids to one of the leak detection drains that penetrate the ring wall. For further protection, a coal tar liner is employed on the bottom and sidewalls of the tank interior. In addition, the tank has an exterior epoxy paint layer.
- **2.5 Documented Age of Tank.** Tank EF2 was erected and installed in July 1987 and is 28-years old as of this assessment conducted in November 2015.
- 2.6 Results of Leak Test. On November 25, 2015, a visual inspection of the tank system was conducted to satisfy the requirements of a leak test. No evidence of leakage from the welds, seams, flanged connections, valves and threaded connections was observed. The leak detector pipes that extend through the ring wall foundation showed no indication of tank bottom leakage.
- **2.7 Existing Data Obtained.** The existing data associated with the referenced tank is summarized in *Table 2.1*.
- **2.8 Calculation of Foundation Loading.** The total weight of the tank and its contents equals 1,968-ton. Detailed calculations reflecting the minimum required foundation thickness and steel reinforcement are included herein as *Appendix G*.
- **2.9 Required Structural Calculation.** The calculated required wall thickness for this tank is 0.2363-in. This thickness includes 0.0625-in. added for corrosion allowance. This corrosion allowance is based on a "best-engineering" estimate, considering the materials being treated and a 20-yr. design life. Detailed calculations required for wall thickness and structural analysis of the tank support system are included herein as *Appendices B thru D*.





APRIL 2016 015493

**2.10** Comparison of Actual Structural to Theoretical Values. The comparison of actual structural to theoretical values is summarized in *Table 2.2*. Some minor variance of instrument readings can be attributed partially to the idiosyncrasies of the testing equipment such as density of "couplant" and roughness of tank surface at each test point.

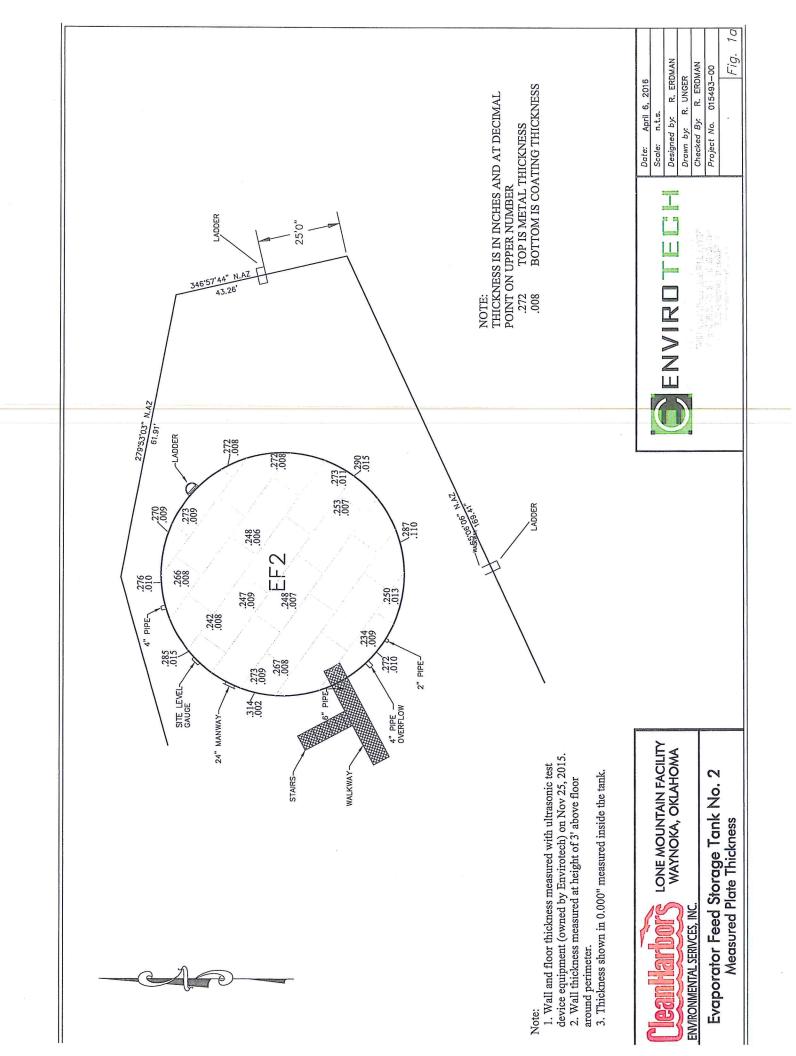
|                                 | ABLE 2.1<br>ANK DATA      |  |  |
|---------------------------------|---------------------------|--|--|
| Tank Diameter                   | 60-ft.                    |  |  |
| Tank Height                     | 16.9-ft.                  |  |  |
| Maximum Operating Level         | 15.9-ft.<br>A36 (Assumed) |  |  |
| Material                        |                           |  |  |
| Wall Thickness (See Appendix B) | 0.25-in.                  |  |  |
| Specific Gravity                | 1.3                       |  |  |
| Operating Temperature           | Ambient                   |  |  |
| Maximum Volume                  | 47,785-cf                 |  |  |
| Seismic Zone                    | 1                         |  |  |

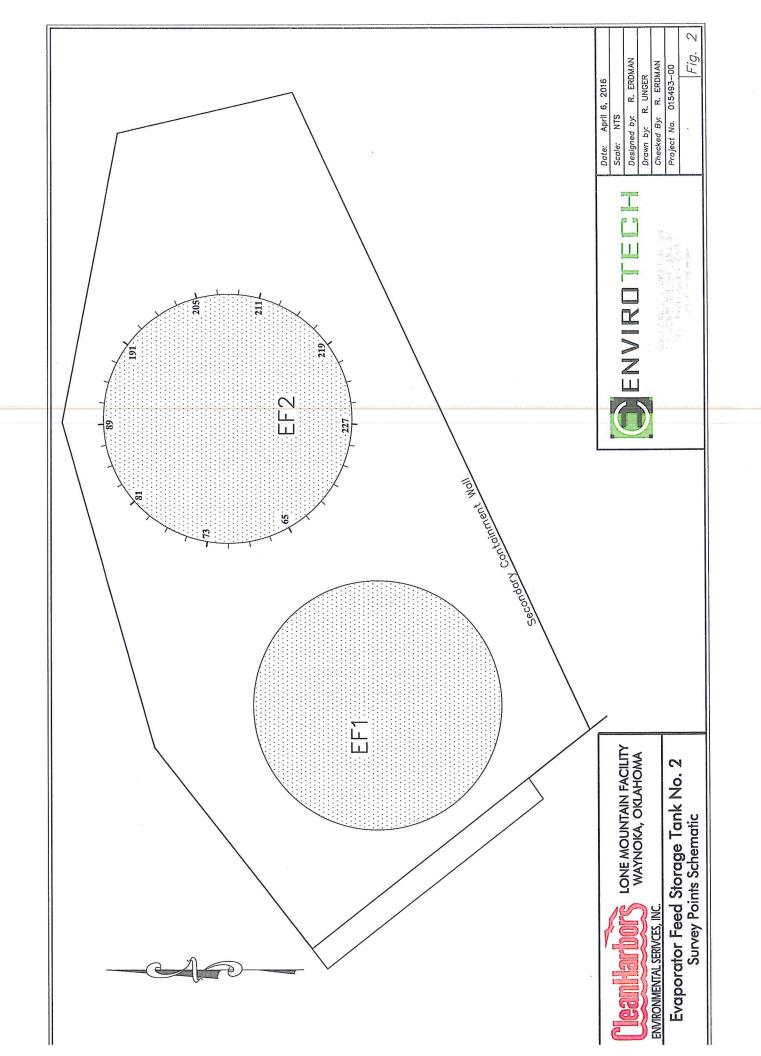
| TABLE 2.2  COMPARISON OF ACTUAL STRUCTURAL TO THEORETICAL VALUES FOR THE  EF2 TANK |            |  |  |  |  |  |
|------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| WALL THICKNESS COMPARISON                                                          |            |  |  |  |  |  |
| Calculated Required Wall Thickness 0.2363-in.                                      |            |  |  |  |  |  |
| Minimum Required Wall Thickness by API 653 (2.3.3.1)                               | 0.1738-in. |  |  |  |  |  |
| Original Plate Thickness                                                           | 0.25-in.   |  |  |  |  |  |
| Measured Wall Thickness w/Coating (minimum)                                        | 0.279-in.  |  |  |  |  |  |
| BOTTOM THICKNESS COMPARISON                                                        |            |  |  |  |  |  |
| Minimum Required Bottom Thickness by API 653 0.10-in.                              |            |  |  |  |  |  |
| Original Plate Thickness                                                           | 0.24-in.   |  |  |  |  |  |
| Measured Bottom Thickness w/Coating (minimum)  0.243-in.                           |            |  |  |  |  |  |

2.10.1 Wall Thickness Comparison. During the November 2015 assessment, a visual inspection and an ultrasonic thickness corrosion survey were conducted on the tank walls. Wall thickness measurements of the interior protective surface ranging from

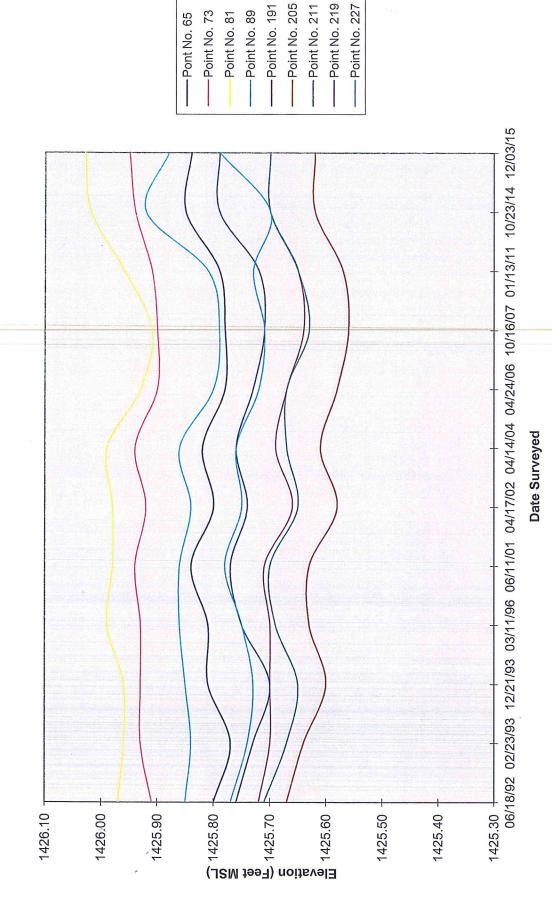





APRIL 2016 015493


0.270-in. to 0.314-in. exceeded the minimum required wall thickness of 0.2363-in. and 0.1738-in., as graphically depicted on *Figure 1a*. The interior wall coating appeared sound and intact, with no pitting or corrosion. Separate readings indicating that the coating thickness varies are most likely the result of normal wear and tear. Furthermore, the difference in values does not indicate a reduction that would adversely impact the minimum thickness requirement.

- 2.10.2 Bottom Thickness Comparison. During the November 2015 assessment, a visual inspection was conducted on the tank bottom. Floor thickness measurements of the interior protective surface, ranging from 0.270- to 0.391-in., exceeded the minimum required floor thickness of 0.10-in., as graphically depicted on *Figure 1a*. The floor coating appeared sound and intact, with not pitting or corrosion. Separate readings indicating that the coating thickness varies are most likely the result of normal use. Furthermore, the difference in values does not indicate a reduction that would adversely impact the minimum thickness requirement.
- **2.10.3 Foundation Integrity.** Evaporator Feed Tank No. 2 (EF2) is situated on a concrete ring foundation with a sand base. The sand base rests on a concrete slab that is tied to the foundation ring. Indications of insignificant minor cracks in the foundation ring have been coated with an impermeable coating. On the top of the foundation ring is a steel channel to which the tank is attached.


In September 1993, USPCI (former facility owner) retained Law Engineering to conduct an investigation that would yield site-specific subsurface data in the vicinity of Tank EF2. Law drilled four (4) geotechnical borings as part of this investigation. In general, the soil profile consisted of 1- to 2-ft. of gravel followed by 15- to 20-ft. of soft-to-hard, reddish-brown silty clay. A review of the data within the Law report, including the boring logs, indicates the soil strengths should be adequate to support the tank and associated ring foundation. The applicable portion of the Law report is included herein as *Appendix F*. In addition, a foundation design analysis is included in *Appendix G*.

To quantify foundation settlement since October 2001, Jividen Surveying shot nine (9) points around the perimeter of the tank on several occasions, as indicated in the monitoring documents included in *Appendix E*. The survey points are graphically depicted on the drawing included herein as *Figure 2*. These existing foundation elevations were compared with previous surveys of the same points. A graphic representation of the historical foundation data is included herein as *Figure 3*. The most recent survey data indicates that minor foundation movement continues to occur at a reasonably uniform rate excepting point No. 89 which demonstrated an 0.11 ft. difference in 2014 but returned to its normal level in 2015. It was determined this was due to a measurement recording error. Foundation movement appears uniform without generating a concern for structural or containment failure. Generally, the tank in its entirety has demonstrated a minor cyclical rise and fall in





EVAPORATOR FEED TANK NO. 2 FOUNDATION SURVEY DATA



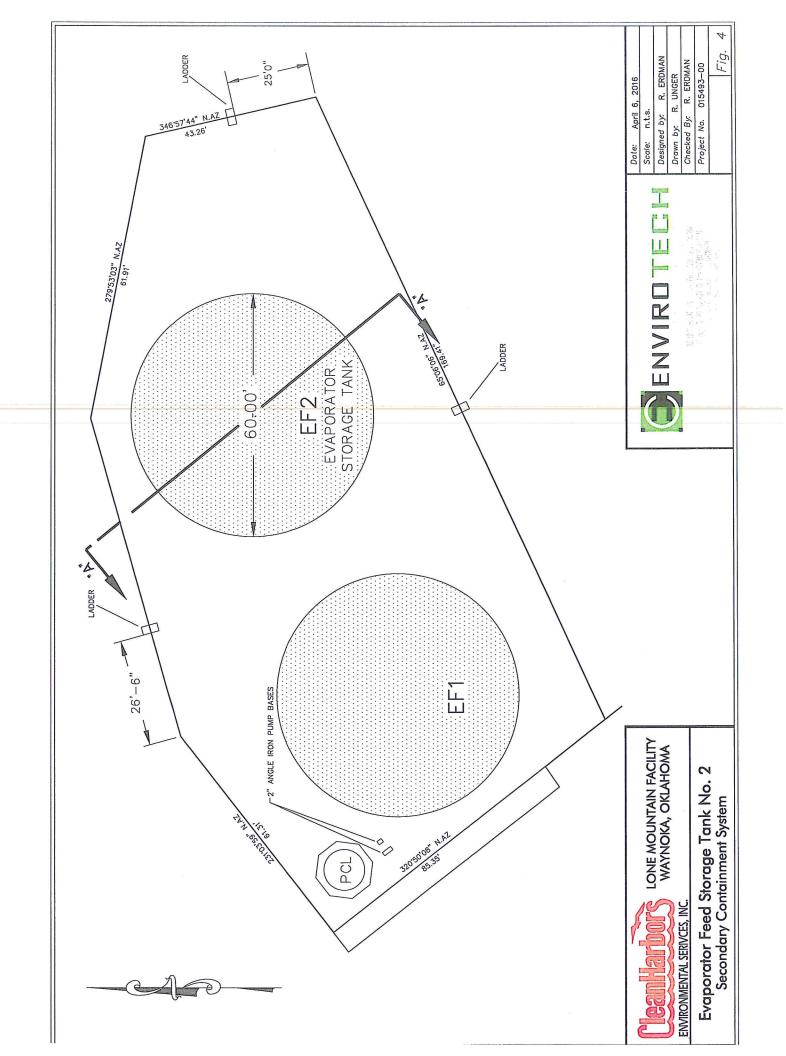


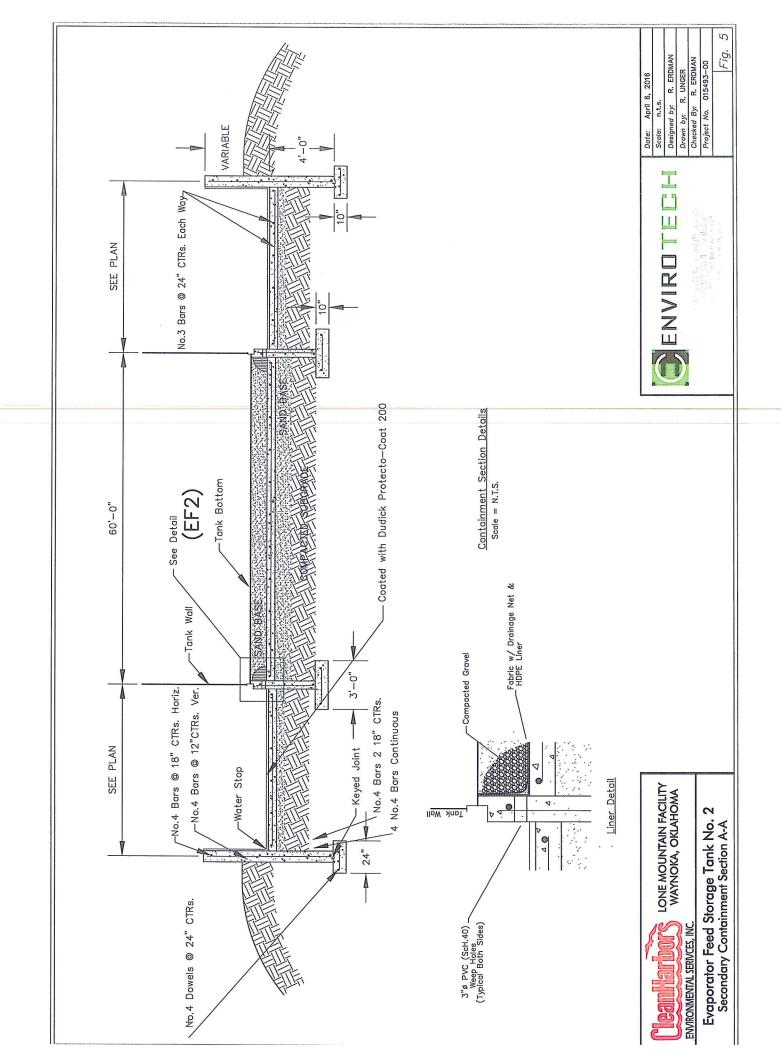
APRIL 2016 015493

elevation over time that is attributed to normally-occurring groundwater table fluctuations and which has not resulted in any known tank damage.

### 3. SECONDARY CONTAINMENT SYSTEM

3.1 General Description of Secondary Containment. The secondary containment system is designed and operated to prevent migration of wastes or liquids out of the system. Evaporator Feed Tank Nos. 1 and 2 are located in a reinforced-concrete-base floor area with vertical concrete sidewalls. This area is inspected on a daily basis.


A previously-reported visual inspection prior to October 2001 showed apparent stress cracks or other conditions that would indicate an insufficiency in the foundation design. The previously-referenced geotechnical investigation has addressed these issues. It was determined that this apparent failure in the concrete was due to the lack of proper steel reinforcement and/or differential settlement (consolidation) in the subgrade. The subgrade appeared to be comprised of fill material. The possibility that the subgrade was not properly compacted before the concrete was poured was suspected. It was determined that the concrete under the primary tank was in fair condition. The ground surrounding the secondary containment system is sloped to shed rainfall runoff to aid in preventing saturated soil. The containment system is walled-off and receives no direct vehicular traffic. The foundation walls and base are mass-poured in-place.


During this assessment, the concrete secondary containment area appeared to be in satisfactory condition. The walls and floor have a uniform sealant coating and an ongoing maintenance program repairs cracks on a continual basis. The ground surrounding the secondary containment system is sloped to shed rainfall runoff to aid in preventing saturation of the foundation soil.

The containment area and tanks are visually monitored on a daily basis for leaks. The floor is sloped to collect any drainage or spills. Any released tank contents or surface runoff will drain on top of the sloped concrete to the sump area. The accumulated liquids are then withdrawn within a specified time period. The secondary containment system is graphically depicted in the drawings included herein as *Figures 4 and 5*.

- 3.2 **Design Standards.** "As-Built" drawings for this area were obtained and utilized as a reference. The structural capacity of the foundation and walls were compared to those applicable sections in the *API 653-95* and the *American Concrete Institute (ACI 318/89/318r-89)*. These calculations were used as a guide to verify the ability of the system to contain hazardous waste.
- 3.3 Hazardous Characteristics of Wastes Stored. The wastes managed in the primary tank are both characteristic and listed waste, as found in 40 CFR Part 261, Subparts C and D. This tank is a storage tank where aqueous-based waste materials that required oxidation, neutralization, filtration, or settling (among other physical/chemical treatment methods) were







# CleanHarbors ENVIRONMENTAL SERVICES, INC.

# EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT LONE MOUNTAIN FACILITY

waynoka, Oklahoma

APRIL 2016 015493

stored prior to evaporation or shipment off-site. Currently, the only material placed in the tank is treated wastewater. The waste managed in this tank has the following general characteristics:

- 4 < pH < 13;</p>
- N > 1;
- Temperature = Ambient; and
- Low-Solvent Constituents.

The hazardous characteristics of the waste treated in the primary tank were examined. It was determined that the pH and normality levels of the waste are the primary areas-of-concern.

- **3.4 Existing Corrosion Protection.** The entire secondary containment area has been coated with Dudick, Inc. Protecto-Coat 200.
- 3.5 Documented Age of the Containment System. The secondary containment system was constructed and installed in 1987, thus making the system 28-years old at the time of this assessment. The system has undergone significant upgrading since it was initially installed to include the following.
  - A coating was applied in June 2012. The secondary containment surface coating Chemproof Polymers-Permacoat 3000 on horizontal surfaces and Chemproof Polymers-Permacoat 3000V on vertical surfaces. Equivalent or superior coating materials are used during any necessary repairs to the coating. Information regarding Chemproof Polymere-Permacoat is included herein as *Appendix H*.
  - Potential cross-connections were eliminated in 1993. The main lines from the primary treatment and storage areas exited the containment area through the floor of the secondary containment area down to the final treatment area, thereby potentially allowing material from a tank failure to migrate into the secondary containment area within the final treatment area. Elimination of this potential cross-connection acts to segregate the secondary containment area for EF1 and EF2 from any other.
- 3.6 Results of Leak Test. A visual inspection of the containment area was conducted to satisfy the requirements of a leak test. No evidence of leakage from the manways or signs of penetration of the tank or containment area was observed. Based on this inspection, this area appears to be adequate to contain any leaks or spills.
- **Existing Data Obtained.** The collected data associated with the secondary containment area is summarized in *Table 3.1*.
- **3.8 Calculation of Existing Capacity.** The volume containment capacity available (CCA) calculation is:









CCA = Gross Volume - Volume of Items in Containment - Volume of Rainfall

Detailed calculations of the available containment volume are included in *Appendix I*. The containment capacity available equals 59,487-cf.

| TABLI<br>SECONDARY CONTAI    |                         |  |  |  |  |
|------------------------------|-------------------------|--|--|--|--|
| Area 14,589-ft. <sup>2</sup> |                         |  |  |  |  |
| Available Wall Height        | 5.5-ft.                 |  |  |  |  |
| Material                     | Concrete                |  |  |  |  |
| Gross Volume                 | 80,240-ft. <sup>3</sup> |  |  |  |  |

3.9 Required Volume. The containment capacity required (CCR) is calculated as follows:

CCR = Volume of Largest Tank in Secondary Containment = (EF2) = 47,785-cf

3.10 Comparison of Available Volume to Required Volume. The containment capacity comparison is calculated as follows:

Containment Capacity Required = 47,785-cf Secondary Containment Volume Available = 59,487-cf Excess Containment Volume = 11,702-cf Safety Factor = 1.24

CCA > CCR. Adequate capacity (under normal operating conditions) is available.

#### 4. CONCLUSIONS

4.1 **Primary Tank Vessel.** The tank vessel at the time of inspection is appropriate for use with the present waste stream at given densities, chemical, and physical characteristics, as verified by Clean Harbors. While the useful life of the steel tank was originally estimated at 5-years, interim inspections have revealed satisfactory service conditions. Therefore, it appears that the life may be extended up to an additional 5-years, provided an annual tank foundation survey is conducted at the points previously identified in *Figure 2* to ensure that the annual maximum settlement does not exceed 1-in.

In the event the tank foundation settles more than 1-in/yr., ENVIROTECH ENGINEERING & CONSULTING, INC. requests that a new tank assessment be conducted immediately.

4.2 Secondary Containment. The secondary containment area at the time of inspection is appropriate for use with the present waste stream at given densities, chemical, and physical



APRIL 2016 015493

**4.2 Secondary Containment.** The secondary containment area at the time of inspection is appropriate for use with the present waste stream at given densities, chemical, and physical characteristics. While the useful life of the secondary containment was originally estimated at 5-years, interim inspections have revealed satisfactory service conditions. Therefore, it appears that the life may be extended up to an additional 5-years, provided the constraint addressed in *Section 4.1* is complied with.

#### 5. RECOMMENDATIONS

- Primary Tank. Clean Harbors should continually ensure compatibility with the waste and densities stored. Daily inspections should be continued to detect any visual corrosion or defects. Due to the known history and pattern of movement, inspection in terms of collecting and evaluating the foundation survey for settlement shall be performed between one (1) to three (3) years.
- **5.2 Secondary Containment.** The secondary containment should be visually inspected periodically for any deterioration as well as structural integrity.
- **Routine Inspections.** When routine and preventive measures are to be implemented, the tank should be cleaned and internally inspected to determine any interior defects or corrosion. Continued routine painting and coating of tanks on the interior and exterior, as well as routine inspections, is recommended.

#### 6. CERTIFICATION

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for collecting the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment, for knowing violations."

| DATED this | day of April, 2016 |
|------------|--------------------|
|            |                    |

Ron Erdman, P.E. Envirotech Engineering & Consulting, Inc.

C.A. 1960 - Expiration 06/30/2016



APRIL 2016 015493

### APPENDIX A.

### PRIMARY TANK VOLUME CALCULATIONS



APRIL 2016 015493

### PRIMARY TANK VOLUME CALCULATIONS

| DIMENSIONS                                              |
|---------------------------------------------------------|
| Geometry                                                |
| TANK VOLUME                                             |
| Maximum Volume                                          |
| Total Primary Tank Volume47,785.26-cf = 357,458.57-gal. |
| WEIGHT ON FOUNDATION                                    |
| Contents S.G                                            |
|                                                         |
| SURFACE AREA CALCULATION                                |
|                                                         |
| SURFACE AREA CALCULATION  Tank Top                      |
| SURFACE AREA CALCULATION         Tank Top               |
| SURFACE AREA CALCULATION         Tank Top               |



APRIL 2016 015493

### APPENDIX B.

### PRIMARY TANK WALL THICKNESS





APRIL 2016 015493

#### PRIMARY TANK WALL THICKNESS

| DIMENSIONS                                   |
|----------------------------------------------|
| Geometry                                     |
| STEEL THICKNESS CALCULATIONS                 |
| Thickness (t)                                |
| Calculated Minimum Wall Thickness 0.2363-in. |



APRIL 2016 015493

### APPENDIX C.

### SEISMIC CALCULATIONS





APRIL 2016 015493

#### SEISMIC CALCULATIONS

| DIMENSIONS                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diameter       60.00-ft         Height       16.90-ft         Weight of Tank (Steel)       75,817.00-lb         Weight of Maximum Contents       3,876,340.00-lb         Tank Shell Thickness       0.25-in         Tank Bottom Thickness       0.240-in |
| STRESS IN TANK SHELL FROM SEISMIC FORCES                                                                                                                                                                                                                 |
| Max. weight of tank contents that may be used to resist shell overturning moment                                                                                                                                                                         |
| OR                                                                                                                                                                                                                                                       |
| Fa (.5*Fty)                                                                                                                                                                                                                                              |
| ☐ OVERTURNING MOMENT                                                                                                                                                                                                                                     |
| Overturning Moment (M)                                                                                                                                                                                                                                   |





#### EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT Lone Mountain Facility Waynoka, Oklahoma

APRIL 2016 015493

| Lateral Earthquake Force Coefficient (C1)                  |                      |
|------------------------------------------------------------|----------------------|
| D/H                                                        | 0.240                |
| k Factor ( $\bigcirc$ D/H = 3.55)                          | 3.55                 |
| k Factor (@ D/H = 3.55)                                    | 0.680                |
| Site Amplification Factor (S)                              | 1.5                  |
| Natural Period of First Sloshing Mode (T)                  | 5.11                 |
| Lateral Earthquake Force Coefficient (C2)                  | 0.07755              |
| vveight of Tarik (vvs)                                     | 60 230 32            |
| Weight of Tank Contents (Wt)                               | 3 876 340 00         |
| $VVI/VVI(WD/\Pi = 3.55)$                                   | 0.22                 |
| VVZ/VVI(@D/H = 3.55)                                       | 0.60                 |
| Weight of Effective Mass (W1)                              | 1 240 428 80         |
| Weight of Effective Mass (W2)                              | 2 225 804 00         |
| Height from Bottom of Shell to Center of Shell (Xs)        | 2,323,004.00         |
| X1/H                                                       | 0.45                 |
| Height from Bottom of Center of Lateral Seismic Force (X1) | 0.38                 |
| X2/H                                                       | 6.422                |
| Height from Bottom of Contar of Lateral Sciencia 5         | 0.55                 |
| Height from Bottom of Center of Lateral Seismic Force (X2) | 9.295                |
| Overturning Moment (M)                                     |                      |
| Overturning Moment (M)                                     | 695,718-ft/lb.       |
| Opposing Mamont (Adt)                                      |                      |
| Opposing Moment (M*)                                       | . 118,097,110-ft/lb. |

APRIL 2016 015493

# APPENDIX D.

### WIND LOAD CALCULATIONS



APRIL 2016 015493

#### WIND LOAD CALCULATIONS

| DIMENSIONS                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diameter       60.00-ft.         Height       16.90-ft.         Weight of Tank (Steel)       60,230.32-lb.         Weight of Max. Contents       3,876,340.00-lb.         Tank Shell Thickness       0.25-in.         Tank Bottom Thickness       0.240-in. |
| OVERTURNING MOMENT FROM WIND LOADS                                                                                                                                                                                                                          |
| M                                                                                                                                                                                                                                                           |





APRIL 2016 015493

### APPENDIX E.

# FOUNDATION INTEGRITY MONITORING DOCUMENTS

### Annual Tank In-Service Inspection Checklist

| Tank No<br>Tank Lo<br>Inspect | cation: _       | EF-?                  |                                    |                         | Tenk Nur<br>Date:<br>Signature |                              | 2 10-2                          | 3-20                      | 14             |
|-------------------------------|-----------------|-----------------------|------------------------------------|-------------------------|--------------------------------|------------------------------|---------------------------------|---------------------------|----------------|
| Date of                       | Last Inspection | n:                    |                                    |                         |                                |                              |                                 |                           |                |
| l.                            | Foundation      |                       |                                    |                         |                                |                              |                                 |                           |                |
|                               | Α.              | Measure f<br>Note: No | oundation leval<br>other tanks rec | lness and<br>ruot eriup | bottom elev<br>dation levelr   | regons (8 po<br>ness and ele | oknis for EF-1<br>evation surve | l <u>and</u> 9 poir<br>y. | its for EF-2). |
|                               | EF-1:           |                       |                                    |                         |                                |                              |                                 |                           |                |
| •                             | 37              |                       | 47                                 |                         | \$5                            |                              | 263                             |                           |                |
|                               | 271             |                       | 278                                |                         | 293                            |                              | 303                             | ~                         |                |
|                               | EF-2:           |                       |                                    |                         |                                |                              |                                 |                           |                |
|                               | 65 1425         | .85                   | 73 1425.9                          | 14                      | 89 14/21                       | 6.02                         |                                 |                           | 191 1425,70    |
|                               | 205 1425        | 5.62                  | 291 1425                           | .70                     | 219/142                        | 5.79                         | 227 147                         | 25.70                     |                |
|                               | В.              | Has the               | yesily maximui                     | m setten                | obsocs insi                    | ed 1 inch? (I                | EF-1 and EF                     | -2 only)                  |                |
|                               |                 |                       | <u>EF-1:</u>                       |                         | c                              |                              | EF-2:                           |                           |                |
|                               |                 | Yes                   | _                                  | No                      |                                | Yes                          | _                               | No                        | <del>-</del>   |
|                               | C.              |                       | inch annular c<br>. (EF-1 only)    | hannel fo               | r deilection (                 | of more than                 | n 2 degrees                     | from its con              | rect           |
|                               |                 | Defiecti              | on                                 |                         | _                              |                              |                                 |                           |                |
| Comn                          | :dner           |                       |                                    |                         |                                |                              |                                 |                           |                |
|                               |                 |                       |                                    |                         |                                |                              |                                 |                           |                |
|                               |                 |                       |                                    |                         |                                |                              |                                 |                           |                |

### Annual Tank In-Service Inspection Checklist

| Tank Name:                        | ame: EF-2                                                                                                                                                              |                                                                                                           | Tank Number: | 幕2           |             |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|--|
| Tank Location:                    | WWPT                                                                                                                                                                   |                                                                                                           | Date:        |              |             |  |
| Inspected By:                     |                                                                                                                                                                        | Signatura:                                                                                                | ·            |              |             |  |
| Date of Last Inspection: 12-03-20 |                                                                                                                                                                        | 15                                                                                                        | V            |              |             |  |
|                                   |                                                                                                                                                                        |                                                                                                           |              |              |             |  |
| Foundation                        | า                                                                                                                                                                      |                                                                                                           | *            |              |             |  |
| Α.                                | Measure foundation levelness and bottom elevations (8 points for EF-1 and 9 points for EF-2).  Note: No other tanks require foundation levelness and elevation survey. |                                                                                                           |              |              |             |  |
| EF-1:                             |                                                                                                                                                                        |                                                                                                           |              |              |             |  |
| 37                                |                                                                                                                                                                        | 47 1                                                                                                      | 55           | 263          |             |  |
| 271                               |                                                                                                                                                                        | 279                                                                                                       | 293          | 303          |             |  |
| EF-2:                             |                                                                                                                                                                        |                                                                                                           |              |              |             |  |
| 65 1425.54                        |                                                                                                                                                                        | 73 1425.95                                                                                                | 31 1426.03   | 89 1425.88   | 191 1425,70 |  |
| 205 142                           | 5.62                                                                                                                                                                   | 211 1425.70                                                                                               | 219 1425.79  | 227 1425:79  |             |  |
| В.                                | Has the yearly maximum settlement exceeded 1 inch? (EF-1 and EF-2 only)                                                                                                |                                                                                                           |              |              |             |  |
|                                   |                                                                                                                                                                        | <u>EF-1:</u>                                                                                              | 0            | <u>EF-2;</u> |             |  |
|                                   | Yes                                                                                                                                                                    | No                                                                                                        | Yeş          | No           |             |  |
| , с.                              | Check 8 in position. (                                                                                                                                                 | Check 8 inch annular channel for deflection of more than 2 degrees from its correct position. (EF-1 only) |              |              |             |  |
|                                   | Deflection                                                                                                                                                             |                                                                                                           | _            |              |             |  |
| Comments:                         | ,                                                                                                                                                                      |                                                                                                           |              |              |             |  |
|                                   |                                                                                                                                                                        |                                                                                                           |              | U            |             |  |
|                                   |                                                                                                                                                                        |                                                                                                           |              |              |             |  |
| -                                 | -                                                                                                                                                                      |                                                                                                           |              |              |             |  |



APRIL 2016 015493

### APPENDIX F.

### LAW ENGINEERING GEOTECHNICAL REPORT



Ir. Walter Sonne, P.E. USPCI, Inc. 515 West Greens Road, Suite 500 ouston, Texas 77067

SUBJECT:

REVISED REPORT OF GEOTECHNICAL EXPLORATION -

Expansion of Wastewater Treatment Facilities-Lone Mountain Facility, Major County, Oklahoma Law Engineering Projects No. 392-01406-01

Law Engineering, Inc. has completed the geotechnical exploration at the subject site. Our ervices were provided in accordance with our Revised Proposal for Geotechnical xploration Services No. HP-8173-93G, dated September 22, 1993; and a Request for Change Order letter dated October 12, 1993. This report briefly discusses our nderstanding of the project information, describes our exploratory procedures and ...ndings, and presents our recommendations and conclusions. The data obtained during the field exploration and from the laboratory testing program is presented in the endices.

We will be happy to discuss our recommendations with you and would welcome the pportunity to provide the additional studies or construction testing services necessary to complete this project. We look forward to serving as your geotechnical engineer on the remainder of this project and on future projects.

n you have any questions, or if you require additional information, please do not hesitate to contact us.

Sincerely,

AW ENGINEERING, INC.

ernando Pons. E.I.

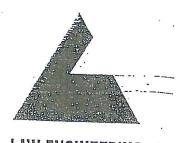
roject Geotechnical Engineer

Michael W. Palmer, P.E.

Principal Geotechnical Engineer USPCy-Glient Manager

Michael H. Homan, P.E.

Principal Geotechnical Engineer Oklahoma Registration No. 15777


)istribution Copies:

Walter Sonne

(2) - USPCI

Larry Marr

(1) - USPCILAW COMPANIES GROUP, INC.



### LAW ENGINEERING

# REVISED REPORT OF GEOTECHNICAL EXPLORATION

OF WASTEWATER TREATMENT FACILITIES

LONE MOUNTAIN FACILITY MAJOR COUNTY, OKLAHOMA

prepared for USPCI, Inc. HOUSTON, TEXAS

LAW ENGINEERING PROJECT NO. 392-1406-01
NOVEMBER 1993

xpansion of Wastewater Facilities CI, Inc. aw Eng. Proj. No. 392-01406-01

#### 1.0 PURPOSE OF EXPLORATION

The purpose of this exploration was to obtain specific subsurface data at the site and to ovide recommendations and opinions for:

- General geotechnical design and construction criteria for the Expansion of Wastewater Final Treatment Facilities (WWFT): Phase I (Expansion of the WWFT Building) and Phase II (Leachate Storage Tanks).
- Site preparation and construction of compacted fills for the WWFT Phase I, and the WWFT Phase II.
- o Soil stratigraphy at the Wastewater Pretreatment Facilities (WWPT): Phase III tanks.

should be noted that it was not the purpose of this study to directly assess or to address any environmental conditions at the site, i.e., the presence of contaminants or r substances in the soil, rock, or ground water. An additional study should be undertaken if USPCI decides to specifically address environmental conditions.

Expansion of Wastewater Facilities JPCI, Inc. Law Eng. Proj. No. 392-01406-01

#### 2.2 LEACHATE STORAGE TANKS

We understand that USPGI plans to construct three tanks within a containment area. The proposed site of construction is south of Cell 4. The proposed tanks will include a 60-foot diameter, 16-feet tall, 300,000 gallon tank; and two 33-foot diameter, 16-feet tall, 100,000 gallon tanks

The proposed tanks, containing leachate with a specific gravity of 1.3, will be located within a concrete containment structure with walls on the order of 7 feet in height.

We understand that the preferred foundation system at the present time is a drilled pier underground system, 18-inch diameter, straight-sided drilled piers founded at 8-feet on centers. In turn, these drilled piers will support the containment wall and a 10-inch thick concrete slab on 6 inches of sand and 24 inches of structural fill.

## 2.3 WASTEWATER PRETREATMENT (WWPT) BUILDING

we understand that two existing on-line 300,000 storage tanks structures within the Wastewater Pretreatment (WWPT) Building are experiencing foundation distress. We further understand that these two tanks and the containment area are supported on shallow footings.

nansion of Wastewater Facilities 2Cl, Inc. aw Eng. Proj. No. 392-01406-01

## 4.1.3 Wastewater Pretreatment (WWPT) Building

exploration borings L-5, L-6, L-6A, and L-7 were drilled in this area. The measured surface elevation of these borings were 1418.35, 1428.62, 1428.48, and 1430.23 feet MSL, spectively, as provided by USPCI. The subsurface conditions for this area are generalized as follows:

#### AREA C

## WASTEWATER PRETREATMENT BUILDING

(Borings L-5, L-6, L-6A, and L-7)

| · · ·        | ·                                                                                                     |                                                                                                                                                                                                                                                                                         |
|--------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH (ft)   | DESCRIPTION                                                                                           | USCS<br>CLASSIFICATION <sup>2</sup>                                                                                                                                                                                                                                                     |
| . 0 to 2     | FILL: GRAVEL                                                                                          | Unclassified                                                                                                                                                                                                                                                                            |
| 1 to 22.5    | FILL: Soft to hard, reddish brown with gray, silty CLAY, with gypsum fragments and gravel.            | CL                                                                                                                                                                                                                                                                                      |
| 15.5 to 20.5 | Very stiff to hard, reddish brown with gray, silty CLAY, with gypsum fragments and gray silt streaks. | CL .                                                                                                                                                                                                                                                                                    |
| 18.5 to TOB1 | Gray silty CLAYSTONE to reddish brown silty CLAYSTONE                                                 | Unclassified ·                                                                                                                                                                                                                                                                          |
|              | 0 to 2<br>1 to 22.5<br>15.5 to 20.5                                                                   | 0 to 2  FILL: GRAVEL  1 to 22.5  FILL: Soft to hard, reddish brown with gray, silty CLAY, with gypsum fragments and gravel.  15.5 to 20.5  Very stiff to hard, reddish brown with gray, silty CLAY, with gypsum fragments and gray silt streaks.  18.5 to TOB'  Gray silty CLAYSTONE to |

Termination of Boring Unified Soil Classification System mansion of Wastewater Facilities CI, Inc. w Eng. Proj. No. 392-01406-01

ith reference to the Soil Stratum Summary, the TEST BORING RECORDS, Soil Profiles and the Laboratory Test Results, our discussion of the soil conditions for Area C is as lows:

Stratum IC consists of GRAVEL to gravelly fill soils encountered in all borings from a isting surface to approximately 2 feet below existing grade.

Stratum IIC consists of fill soils of soft to hard, reddish brown with gray, silty CLAY with psum fragments and gravel. Law personnel performed continuous sampling with silely tubes, and utilized on-site extruding techniques to better identify the extent of this fill stratum. These fill soils were encountered from a depth of 1 foot from existing surface 22.5 feet below grade. Organic odor and wet seams were identified in the lower two leet of this formation in Borings L-6 and L-7. Plasticity for this stratum was medium with plasticity index values ranging from 17 to 21. Liquid limit values range from 43 to 45 were generally moist with occasional wet seams. Natural moisture contents ranged from 24 percent, and were from 0 to 2 percent above corresponding PL values.

Pocket penetrometer tests and laboratory unconfined compression tests, on relatively andisturbed samples, indicated shear strength values that varied erratically throughout a fill depth in Boring L-5 (easternmost boring). Shear strength values in Borings L-6 and L-7 were similar throughout the same depths of the fill stratum. There was a similar decrease of shear strength values with depth in Borings L-6 and L-7 to a depth approximately 12.5 feet. (See TEST BORING RECORDS L-6 and L-7).

ratum IIIC consists of very stiff to hard, reddish brown with gray, silty CLAY with psum fragments and gray silt streaks. These soils were encountered in all borings, except Boring L-5, from 15.5 feet from existing surface to a depth of 20.5 feet below ade. One Standard Penetration Test N-value was 40 blows per foot (bpf) at a depth 17 feet in Boring L-6A. Plasticity for this stratum was medium with a plasticity index value of 13, a LL value of 32 percent, and a PL value of 19 percent. One natural moisture intent was 24 percent. Based on this natural moisture content and corresponding L terberg Limit tests, the soil was very moist with a moisture content 5 percent above the corresponding PL value. Pocket penetrometer tests resulted in cohesion values ranging 10 m 3,750 psf to an excess of 4,500 psf.

Fxpansion of Wastewater Facilities PCI, Inc.
Law Eng. Proj. No. 392-01406-01

Stratum IVC consists of gray silty CLAYSTONE to reddish brown silty CLAYSTONE. This formation was encountered from a depth of 18.5 feet below existing surface to termination depth. Standard Penetration Test N-values resulted in refusal values ranging from 6 inches per 50 blows to 4.5 inches per 50 blows. One natural moisture content was 21 percent. All pocket penetrometer tests resulted in cohesion values in excess of 4,500 psf.

## 4.2 WATER LEVEL CONDITIONS

Water level observations were made in the boreholes during drilling operations and 24 hours after completion of drilling to investigate the short term ground water levels.

'Ground water was identified during our subsurface exploration at depths of 7 feet and 5.5 feet in Borings L-1 and L-2A, respectively (24 hour readings). Ground water was incountered 1.5-feet to 1-foot above the top of the claystone formation in these borings.

rings L3 and L4 were dry at the time of drilling and 24 hours the control of the

Water was identified during drilling at a depth of 24 feet below existing ground surface in Boring L-5. Boring L-6 was dry to termination depth during drilling operations and 24 nours thereafter. Ground water was not identified in Borings L-6A and L-7 during and immediately following drilling operations. Law personnel could not obtain 24 hour water evel readings at L-5, L-6A, or L-7, due to caving soils in L-5 at 15.8 feet, and surficial puttings that obstructing the boreholes at L-6A and L-7.

Fluctuations in rainfall, evaporation, construction activity, surface runoff, and other site specific factors could cause ground water conditions at the time of construction to vary from that observed during our field exploration.

Toansion of Wastewater Facilities CJPCI, Inc. Law Eng. Proj. No. 392-01406-01

#### 5:4:3 Settlement

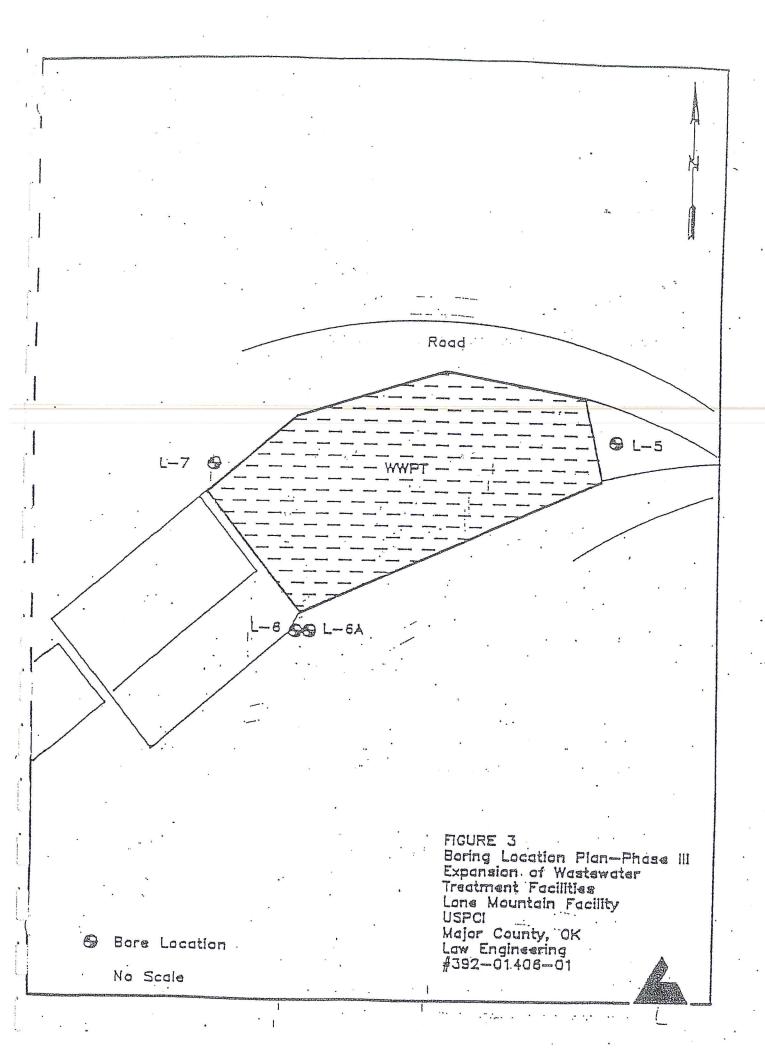
redicted settlements for the drilled piers will be relatively small and are expected to be imited to the elastic compression of the founding claystone formation. The maximum total settlement of any drilled shaft under the anticipated sustained loading conditions is predicted to be less than 0.25 inch.

## 3.5 CONSTRUCTION CONSIDERATIONS

Once a foundation excavation is completed, the setting of reinforcing steel and placement of concrete should proceed expeditiously to reduce exposure of the bearing stratum and possible disturbance of the material. Should the bottom of an excavation become disturbed due to ponding of water or desiccation, the disturbed soils should be removed pefore concrete is placed.

recommend that the geotechnical engineer, or their representative, observe the Loting excavations immediately prior to placing concrete. The engineer should compare the soils exposed with those encountered in the soil test borings and document the esults. Any significant differences should be brought to the attention of the Owner's epresentatives along with appropriate recommendations. The foundation bearing area should be level or suitably benched. It should also be free of loose soil, ponded water and debris prior to the inspection.

## 5.6 WASTEWATER PRETREATMENT BUILDING STRATIGRAPHY


We understand that two existing on-line 300,000 storage tanks structures within the Nastewater Pretreatment (WWPT) Building are experiencing foundation distress. We urther understand that these two tanks and the containment area are supported on shallow footings, which are currently bearing in fill soils consisting of soft to hard, reddish prown with gray, silty CLAY with gypsum fragments and gravel (Stratum IIC).

Expansion of Wastewater Facilities PCI, Inc.
Law Eng. Proj. No. 392-01406-01

is discussed previously in this report, the soil stratigraphy encountered in the WWPT area generally consists of silty fill soils to a maximum depth of 22.5 feet underlain by silty play soils which grade into claystone. Law personnel performed continuous sampling in lorings L-5, L-6, and L-7 and utilized shelby tubes and on-site extruding techniques to better identify the extent of this fill stratum.

he properties of the soils, deemed significant in the evaluation of distress of the structures, are the following:

- (a) the moist condition of the silty clay fill soils (Stratum IIC) at the site;
- (b) the medium shrink-swell potential of the silty clay matrix within the zone of major seasonal moisture change;
- (c) the erratic variation in consistency of the fill soils encountered in Boring L-5;
- (d) the similar uniform decrease in shear strength in Borings L-6 and L-7 to a minimum at approximately 13 feet from existing ground level;
- the presence of wet seams, organics, and organic odor in the fill soils
   of Boring L-6 and Boring L-5;
- (f) the presence of ground water in Boring L-5 at a depth of 24.5 feet;



|                                        |                                                                      |       |             |                |      |            |                         |            |      | 40    |              |             |           |              |                                               |                |       |          |
|----------------------------------------|----------------------------------------------------------------------|-------|-------------|----------------|------|------------|-------------------------|------------|------|-------|--------------|-------------|-----------|--------------|-----------------------------------------------|----------------|-------|----------|
| CECRIPTION OF MATERIAL                 | T.                                                                   |       | E           | 1              | MPI  | LES        | /. TEST                 | rs         | Plas | uic L | imit(        | %)          | ММ        | (%)          | Li                                            | quid I         | Limiu | (%)      |
| EXPRIOR OF MATERIAL                    | THOHE                                                                | DEPTH | ELEVATIO    | DEPTH(ft)      | SATI | nple       | Te                      | est        |      | Δ     | .⊗€          | ⊕,C<br>⊚,PI | OHE       | SION<br>TRAT | (10x                                          | (pst)<br>(pst) |       | •        |
| SURF. EL: 1430.23 ft. MSL              | מא                                                                   | (ft)  | 1<br>0<br>1 | T<br>H<br>(ft) | Typ  | Νο.        | Dry<br>density<br>(pct) | %<br>Fines | ١,   | 10 3  | 20 3         | BO 4        | .o ·      | 10 6         |                                               | 70 81          | n ex  | a        |
| ii .VEL                                | \$ 50<br>\$ 50<br>\$ 50<br>\$ 50<br>\$ 50<br>\$ 50<br>\$ 50<br>\$ 50 |       |             |                |      |            | 9.5                     |            |      |       | T            |             | Ī         | T            | <u>, , , , , , , , , , , , , , , , , , , </u> |                |       | Ī        |
|                                        | - E31                                                                | _     |             |                |      |            |                         |            |      |       |              |             |           |              |                                               |                |       |          |
| to hard, reddish-brown with some       |                                                                      | -     |             |                |      |            |                         |            |      |       |              |             |           |              |                                               |                | 1     |          |
| y LAY with gypsum fragments and        |                                                                      | -     |             | 3.0            |      | I          |                         |            |      |       |              |             | $\otimes$ |              |                                               |                |       |          |
| •                                      |                                                                      | _     |             |                |      |            | ·                       |            | ,    |       |              |             |           |              |                                               | -              |       |          |
| ,                                      |                                                                      | 5     | 1425.2-     | 5.0            |      | - <u>:</u> |                         |            |      |       |              |             | 8         |              |                                               | ·              |       |          |
| l'                                     |                                                                      |       |             |                |      |            |                         | ,          |      |       |              |             | 0         |              |                                               |                |       |          |
| 1                                      |                                                                      |       |             |                |      |            | - 100                   | *          |      |       |              |             |           |              |                                               |                |       |          |
|                                        |                                                                      | -     |             | 7.0            |      | 3.         |                         |            |      |       | Ć            | 3           |           |              |                                               |                |       |          |
|                                        |                                                                      | -     |             |                |      |            |                         |            |      |       |              |             | ١         |              |                                               |                |       |          |
| ·<br>                                  |                                                                      | -     |             | 9.0            |      | 4          | 102.9                   |            |      | Ø:    | <del>0</del> |             | +         |              |                                               |                | .     |          |
| •                                      |                                                                      | 10    | 1420.2-     |                |      |            | 102,9                   |            |      |       |              |             |           |              | -                                             |                |       |          |
|                                        |                                                                      | •     | ١.          | 11.0           |      | ٠          |                         | ě          |      | 8     |              |             |           |              |                                               |                |       |          |
| · .                                    |                                                                      |       | 1           | 11.0           |      | 5          | D.                      | ı          | ,    |       |              |             | $\otimes$ |              |                                               |                |       |          |
| ! .                                    |                                                                      |       |             | •              |      |            | ,                       | 1          | 8    |       |              |             | J         |              |                                               |                |       |          |
| 2                                      |                                                                      |       | •           | 13.0           |      | 6          | į)                      |            |      |       |              |             |           |              |                                               |                |       |          |
|                                        |                                                                      |       |             |                |      |            | ;'                      |            |      |       | 8            | 1.          |           |              |                                               |                |       |          |
|                                        |                                                                      | - 15  | 1415.2-     | 15.0           |      | .7         |                         |            | -    |       |              |             |           |              |                                               |                |       |          |
|                                        |                                                                      |       |             |                |      |            |                         |            |      |       | Α.           |             |           |              |                                               |                |       |          |
|                                        |                                                                      |       |             |                |      |            | :                       | i.         |      |       |              |             |           |              |                                               |                |       |          |
| o hard, reddish-brown with gray, silty |                                                                      |       |             | 17.0           |      | 8          |                         |            |      |       |              |             | $\otimes$ |              |                                               |                |       |          |
| gray silty CLAY with gypsum            |                                                                      | ' -   |             |                |      |            |                         |            |      |       |              |             |           |              |                                               |                |       |          |
| very moist !;                          |                                                                      | -     |             | 19.0           |      | 9          |                         |            |      | +     | ο.           | +           | :         |              |                                               |                |       |          |
| · · · ·                                |                                                                      | .20   | 1410.2-     | •              |      |            |                         |            |      |       |              |             |           |              |                                               |                |       |          |
| ·· CLAYSTONE                           | K/X                                                                  |       |             | 21.0           | 器    | 10         |                         |            |      |       |              |             |           |              |                                               |                |       |          |
| own silty CLAYSTONE                    |                                                                      |       |             |                | 翠    | 10         |                         |            |      |       |              |             | •         | 1            | °150                                          |                |       |          |
| · · . /                                | 目                                                                    | -     |             |                |      |            |                         |            |      |       | ,            |             |           |              |                                               |                |       |          |
|                                        |                                                                      | -     |             |                |      |            | ,                       |            |      |       |              |             |           | •            |                                               |                |       |          |
|                                        |                                                                      |       |             |                |      |            |                         |            | 7000 |       |              |             |           |              |                                               |                |       |          |
| Boring terminated at 23 feet           |                                                                      | 25 —  | 1405.2-     | <b>.</b>       |      | 11         |                         |            |      |       |              |             |           | . 4          | .5 " /5                                       | 0              |       |          |
| Formy reminated at 12 18et             | .                                                                    | _     |             |                |      |            |                         |            |      |       |              |             |           |              |                                               |                |       |          |
|                                        |                                                                      | ٦     |             | •              |      |            |                         |            |      |       |              |             |           | 1            |                                               |                |       |          |
| S:                                     | L                                                                    |       |             |                |      |            |                         |            |      |       |              |             |           |              |                                               |                |       | <u>.</u> |

TES: N10920.34 E9182.90. Borehole advanced 5 truck-mounted drill rig using 3 1/4" I.D. hollow

mold Caeser

ndo Pons

SEE KEY SHEET FOR EXPLANATION OF YMBOLS AND ABBREVATIONS USED ABOVE

#### TEST BORING RECORD

BORING NUMBER DATES DRILLED

L-7

Start: Complete:

October 1, 1993 October 1, 1993

PROJECT NUMBER

. 392-01406-01

PROJECT PAGE 1 OF 1

Expansion of WWT Facilities

LAW ENGINEERING

| CRIPTION OF MATERIAL    D                                                                                                                                                                                                                          | r                                                                  | <del></del>    |             |         |           |     |      | •       |       |                   |          |      |              |              |       |                      | • • |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|-------------|---------|-----------|-----|------|---------|-------|-------------------|----------|------|--------------|--------------|-------|----------------------|-----|------|
| SURF. EL: 1428.48 ft. MSL  VEL  VEL  10 — 1418.5-  11.0                                                                                                                                                                                            | CRIPTION OF MATERIAL                                               | L              | D           | E       | SA        | /WI | PLE: | S / TES | TS    | Plasti            | : Lim    | i(%) | ·и           | M (%         | ] (;  | Liquid               | Lim | i( ; |
| SURF. EL: 1428.48 ft. MSL  VEI.  VEI.  (ft) 0 (ft) 2 No. density Fines  10 20 30 40 50 60 70 80 90  (stiff to soft, reddish brown, silty gypsum firgments and grave)  5 — 1423.5-  10 — 1418.5-  11 — 1418.5-  17.0 2 1  AYSTONE  19.0 2 5 .5 7/50 | · ·                                                                | EGE            | E<br>P<br>T | V<br>A  | DE        | 62  | mple | T       | est   | 1                 | △€       |      | COH          | ESIO<br>ETRA | N (II | ÷<br>00 psi<br>N (hp | )   |      |
| VEL  Stiff to soft, reddish brown, silty gypsum fragments and gravel  10 — 1418.5-  11 — 1413.5-  17.0                                                                                                                                             | SURF. EL: 1428.48 ft. MSL                                          | א D            | H<br>(ft)   | 401     | H<br>(ft) | Ty  | No.  | Dry     | Fines | 1                 |          |      |              |              |       |                      |     |      |
| 10 — 1418.5-  10 — 1418.5-  17.0 ## 1  17.0 ## 1  19.0 ## 5.5*750                                                                                                                                                                                  | VEL .                                                              | - <del>G</del> |             | + 1     |           | +   | e    | (pcf)   | -     | 10                | 20       | 30   | 40           | 50           | 60    | 70                   | 30  | 90   |
| 10 — 14[8.5-  10 — 14[8.5-  17.0                                                                                                                                                                                                                   | Stiff to soft, reddish brown, silty<br>gypsum fragments and gravel |                | -           |         |           |     |      |         |       |                   |          |      |              |              |       |                      |     |      |
| 10 — 1418.5-  15 — 1413.5-  17.0                                                                                                                                                                                                                   | .*                                                                 |                |             |         | . ,       |     |      |         |       |                   |          |      | l            |              |       |                      | -   |      |
| 10—1418.5- 1413.5- 1413.5- 17.0                                                                                                                                                                                                                    |                                                                    |                | . 5         | 1423.5- |           | ·   | ļ    |         |       |                   |          |      |              |              |       |                      |     |      |
| 15                                                                                                                                                                                                                                                 |                                                                    |                | -           |         |           |     |      |         |       |                   |          |      | T            | 1            |       | 1                    |     | r    |
| 17.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                         |                                                                    |                |             | ·       |           |     |      |         |       |                   |          |      |              |              |       |                      |     |      |
| a with some gray, silty CLAY with streaks  17.0 1  19.0 2  5.5*/50                                                                                                                                                                                 | ·                                                                  |                |             |         |           |     |      |         |       |                   |          |      |              |              |       |                      |     |      |
| a with some gray, silty CLAY with streaks  17.0  1  AYSTONE  20  1408.5-  17.0  21  20  3.5*/50                                                                                                                                                    |                                                                    |                | 10 -        | 1418.5- |           |     |      |         |       |                   |          | 1    |              |              |       |                      |     |      |
| a with some gray, silty CLAY with  Streaks  17.0  1  19.0  20  1408.5-                                                                                                                                                                             | į                                                                  |                | , =         | . "     |           |     |      |         |       |                   |          |      |              |              |       |                      |     |      |
| a with some gray, silty CLAY with  17.0  1 1  AYSTONE  20 1408.5-  1408.5-                                                                                                                                                                         |                                                                    |                | :           |         | :         |     |      | .!      | i     | 1                 |          |      |              |              |       |                      |     |      |
| a with some gray, silty CLAY with  17.0  1 1  AYSTONE  20 1408.5-  1408.5-                                                                                                                                                                         |                                                                    |                | -15         | iin e   |           |     |      | ! ]     |       |                   |          |      |              |              |       |                      |     |      |
| AYSTONE  17.0 27  19.0 27  20 — 1408.5-                                                                                                                                                                                                            |                                                                    |                | 13          | 1413.3- |           |     | .    |         | ľ     | <del>-  :</del> - | +-       |      |              | -            |       |                      |     | _    |
| AYSTONE 19.0 2 2 5.5*/50                                                                                                                                                                                                                           | n with some gray, silty CLAY with                                  |                | . ]         |         | 17.0      |     | 1    | :       |       |                   |          |      |              | -            |       |                      |     |      |
| 20—1408.5- 19.0 22 S 5.5*/5C                                                                                                                                                                                                                       |                                                                    |                |             |         |           |     |      |         |       |                   |          |      | <b>3</b> (∑) | -            |       |                      | .   |      |
| 20—1408.5-                                                                                                                                                                                                                                         |                                                                    | -//.           | 4           |         | 19.0      |     | 2    |         |       |                   |          |      |              |              |       |                      |     |      |
| 25—1403.5- 25 feel 25 feel 3                                                                                                                                                                                                                       | r silly CLAYSTONE                                                  |                | 20-1        | 408.5-  | .,        |     |      |         |       |                   |          | . 🛇  | Ē            | 5.           | 5*/5d |                      |     |      |
| 25 — 1403.5- 3 6-750                                                                                                                                                                                                                               |                                                                    |                | 4           |         |           | -   | -    |         |       |                   |          |      |              |              |       |                      |     |      |
| ring terminated at 25 feet 25 – 1403.5- 3                                                                                                                                                                                                          |                                                                    |                | 4           |         |           |     |      | .       |       |                   |          |      |              |              |       |                      |     |      |
| 25 — 1403.5- 3 3 6-750                                                                                                                                                                                                                             |                                                                    |                | . 🚽         |         |           |     |      |         |       |                   |          |      |              |              |       |                      | -   |      |
| 3   6750   3   6750                                                                                                                                                                                                                                |                                                                    |                | 25          | 102 .   |           |     |      | ŀ       |       |                   |          |      |              |              |       | .                    | -   |      |
|                                                                                                                                                                                                                                                    | oring terminated at 25 feet                                        |                |             | -0.20   |           |     | 3    |         | .     | -                 | <u> </u> | -    |              | 67           | 50    | +                    | +   |      |
|                                                                                                                                                                                                                                                    |                                                                    |                | 7           |         |           |     |      |         |       |                   |          |      | .            |              |       |                      |     |      |

ES: N10829.08 E9253.23. Borehole advanced truck-mounted drill rig using 3 1/4° I.D. hollow Soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on soil classification from 0 to 16 feet is based on the soil classification from 0 to 16 feet is based on t

mando Pons.

E KEY SHEET FOR EXPLANATION OF MBOLS AND ABBREVATIONS USED ABOVE

#### TEST BORING RECORD

BORING NUMBER

DATES DRILLED

L-6A

October 1, 1993 October 1, 1993

PROJECT NUMBER

392-01406-01

PROJECT PAGE 1 OF 1

Expansion of WWT Facilities

LAW ENGINEERING Thiss, Oxform

| (c)                                                             | T     | T .         | TĖ      | T     |      |     | <del></del>             | <u> </u> | 1pt- |         |                      |             |             |       |        |     |    |
|-----------------------------------------------------------------|-------|-------------|---------|-------|------|-----|-------------------------|----------|------|---------|----------------------|-------------|-------------|-------|--------|-----|----|
| SCRIPTION OF MATERIAL                                           | Ľ     | . b         | ELEY    |       | MPI  | ES  | / TES                   | TS       | Pia. | stic Li | +-                   |             | 2           |       | iquid  |     | (% |
| Ì                                                               | HEGEZ | DEPTH       | Y<br>A  | H-j-H | Dan. | ple | Т                       | est      | :    | Δ       | $\otimes \mathbb{Q}$ | COH<br>PÉMI | ESIO        | N (10 | 00 psf | )   |    |
|                                                                 | 120   | H<br>(ft)   | T O I   | 1.7   | 1    |     |                         |          | 4    |         |                      |             |             |       | i (où  | ,   |    |
| SURF. EL: 1428.62 ft. MSL '                                     |       |             | 70      | (ft)  | y Pc | No. | Dry<br>density<br>(pcf) | Fines    |      | 10 70   | ) 30                 | 40          | SO          | 60    | 70 0   |     |    |
| LAVEL                                                           | -810  |             |         |       | T    | *   | -                       | <u> </u> | †    |         |                      | , 10<br>T   | <del></del> | T     | 70 8   | 1 9 |    |
| Soft to hard, reddish brown, silty CLAY um fragments and gravel |       | -           | 1       |       |      |     |                         |          |      |         |                      |             |             |       |        |     |    |
| did hagisents and gravet                                        |       | -           |         | 1     |      | 1   |                         |          |      |         |                      | 8           | )           |       |        |     |    |
|                                                                 |       |             |         | -3.0  |      | 2   |                         |          |      |         |                      | 8           | ,           |       |        | •   |    |
| inne gray at 4'- 6'                                             |       | _           |         |       |      |     |                         |          |      |         | l                    | 10          |             |       |        |     |    |
|                                                                 |       | 5           | 1423.6- | 5.0   |      | 3   |                         |          |      |         |                      | Ţ           |             |       |        |     | ٠  |
|                                                                 |       |             |         |       |      |     |                         |          |      |         |                      | -           | +           | 1     | 1.     |     | _  |
|                                                                 |       |             |         |       |      |     |                         |          |      |         |                      | -           |             |       |        |     |    |
| ] .                                                             |       |             |         | 7.0   |      | 4   | 99.0                    |          |      | 8       | 0                    | l           |             |       |        |     |    |
| wet seams at 8'-10'                                             |       | -           |         |       | 7    |     |                         |          |      |         |                      | į.          | .           |       |        |     |    |
| moist at 8                                                      |       | -           |         | 9.0   | -    | 5   |                         |          |      | 8       | _                    |             | -           | -     |        |     |    |
| wer seams and organics at 10° - 12'                             |       | 10 —        | 1418.6- |       |      | - 1 |                         |          |      |         |                      |             |             |       |        |     |    |
|                                                                 |       | . ]         |         | 11.0  |      | 6   |                         |          |      | I       | - 1                  |             |             | İ     |        |     |    |
| j' .                                                            |       |             |         | 11.0  |      | ١   |                         |          |      | -⊗      | C <del>K</del>       | +           |             |       |        |     |    |
|                                                                 |       | . 7         |         |       |      |     | :                       | i        | 8    |         |                      |             |             |       |        |     |    |
| organic odor and 1° to 2° thick wet seam                        |       | . 1         | a.      | 13.0  |      | 7   | į.                      |          | 0    |         |                      | 1           |             |       |        |     |    |
| lotches, wet seams and organic                                  |       | -           |         | ٠.    |      | .   | ;                       |          |      |         |                      |             |             |       | ŀ      | 1   |    |
|                                                                 |       | 15-         | 1413.6- | 1.5.0 |      | 8   |                         |          |      | - ]     | 8                    |             |             |       |        |     |    |
| h-brown with some gray, silty CLAY with y silt streaks          |       | : 4         |         |       |      |     |                         |          |      |         | .                    |             |             |       |        |     |    |
| by tube from 16' to 18'                                         |       | '. <u> </u> |         |       |      |     |                         |          |      | -       |                      |             |             |       |        |     |    |
|                                                                 |       |             |         |       |      |     | I                       |          |      |         |                      |             |             |       |        |     | •  |
| Boring terminated at 18 feet                                    |       |             |         |       |      |     |                         |          |      |         |                      | 1.          |             |       |        |     |    |
|                                                                 |       | . 7         |         | •     |      |     | 1                       | •        |      |         |                      |             |             |       |        | 1   |    |
|                                                                 | 1     | ``20-       | 1408.6- |       |      | .   | 1                       |          |      |         | -                    |             | _           |       |        | _   |    |
| 7<br>1                                                          |       | 4           |         |       |      |     |                         |          |      |         |                      |             |             |       |        | ļ   |    |
| · /                                                             |       | . 4         |         |       | 1    | 1   | 1                       | •        |      |         |                      |             | ·           | 1     |        |     |    |
|                                                                 |       |             |         |       |      |     |                         |          | .    |         |                      |             |             |       |        |     |    |
|                                                                 |       | .]          |         |       |      |     |                         | •        |      |         |                      |             |             |       |        | •   |    |
|                                                                 |       |             | . }     |       |      |     |                         |          |      |         |                      |             |             |       |        |     |    |
|                                                                 |       | 25-1        | 403.6-  |       |      |     | .                       |          |      | +       | +                    | +           |             |       | _      | _   |    |
|                                                                 | .     | 4           |         |       |      |     |                         |          |      |         |                      | •           |             |       |        |     |    |
| KS:                                                             |       |             | •       |       |      |     |                         |          |      |         |                      |             |             |       |        |     |    |

ATES: N10826.86 E9250.81. Borehole advanced 75 truck-mounted drill rig using 3 1/4" I.D. hollow ters. Borehole dry 24 hours after drilling.

Imold Caeser

odo Pons

SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVATIONS USED ABOVE

## TEST BORING RECORD

BORING NUMBER

L-6

October 1, 1993 October 1, 1993

DATES DRILLED PROJECT NUMBER Start: Complete: 392-01406-01

PROJECT PAGE 1 OF 1

Expansion of WWT Facilities

LAW ENGINEERING

| SCRIPTION OF MATERIAL                                      | Ē     | ,<br>D    | ELEY        | 1              | MPLE.  | S / TES | TS    | Plast    | ic Limiu            |      |           | O                |                  | Limit(       |
|------------------------------------------------------------|-------|-----------|-------------|----------------|--------|---------|-------|----------|---------------------|------|-----------|------------------|------------------|--------------|
|                                                            | LEGEZ | DEPTH(ft) | Y A T L O X | D<br>E<br>P    | Sample |         | est   |          | $\triangle \otimes$ | ⊕ C  | ENE       | SION (<br>FRATIC | 100 ps<br>DN (bp | f)<br>f)     |
| SURF. EL: 1418.35 ft. MSL                                  | D     | (ft)      | 202         | T<br>H<br>(ft) | y No   | (bct)   | Fines | . ,      | 1 20                | 40   |           |                  |                  |              |
| :AVEL .                                                    | - 25s |           | •           |                | ·e     | 1 (bet) |       |          | 20                  | 30 4 | ¥0 5      | 0 60             | 70               | 80 90<br>T T |
| Soft to hard, reddish brown with gray, siltyth some gravel |       | -         |             | 3.0.           | 1 2    |         |       |          | 8                   |      |           |                  | 2                |              |
|                                                            |       | 5         | 1413.4-     | . 5.0          | -73    |         |       |          | 0                   | ⊗ .  | $\otimes$ |                  |                  |              |
|                                                            |       | -         |             | 7.0            | 4      | 96.7    |       | . ⊗      |                     | £    | +         |                  |                  |              |
|                                                            |       | 10        | 1408.4-     | 9.0            | 5      |         |       | 8        |                     |      |           |                  |                  |              |
|                                                            |       | · _       |             | 11.0           | 6      |         | 1     | -        | ⊗ .                 |      |           |                  | -                |              |
|                                                            |       | . 15—1    | 403.4       | 13.0           | 7      | . !!    | ,     | <u>.</u> | 8                   |      |           | -                |                  | .            |
|                                                            |       |           |             | 17.0           | . 9    | ·:      |       | .0       |                     | . :  |           |                  |                  |              |
|                                                            |       | .20 — 1   | 708 4       | 19.0           | 10     |         |       |          | ⊗                   |      |           |                  | -                |              |
| with organics and organic odor at 22                       |       |           | 370.4-      | 21.0           | 11     |         |       |          |                     |      | 8         |                  |                  |              |
| wet seam with some gravel /                                |       |           |             |                | 12     |         |       | 8        | 0                   |      | ⊗ .       | ,                |                  | .            |
| uibe refusal at 23 feet Boring terminated at 23 feet       |       | 25 — 1:   | 393.4-      | 11:13          | 13     |         |       | -        | :                   | +    |           |                  | 0/6"             |              |

iTES: N10939.63 E9409.49. Borehole advanced 5 truck-mounted drill rig using 3 1/4° I.D. HSAs. ired immediately following drilling operations. hole at 15.8' identified on 10/2/93.

mold Caeser

ando Pons

SEE KEY SHEET FOR EXPLANATION OF IYMBOLS AND ABBREVATIONS USED ABOVE

#### TEST BORING RECORD

BORING NUMBER

.L-5

October 1, 1993 October 1, 1993

DATES DRILLED PROJECT NUMBER Start: Complete:

392-01406-01

PROJECT PAGE 1 OF 1 Expansion of WWT Facilities

LAW ENGINEERING



APRIL 2016 015493

## APPENDIX G.

## FOUNDATION DESIGN ANALYSIS

## EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT Lone Mountain Facility Waynoka, Oklahoma

APRIL 2016 015493

## FOUNDATION DESIGN ANALYSIS

| DIMENSIONS                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diameter       60.00-ft.         Height       16.90-ft.         Weight of Tank (Steel)       60,230.32-lb.         Weight of Max. Contents       3,876,340.00-lb.         Tank Shell Thickness       0.25-in.         Tank Bottom Thickness       0.240-in. |
| CONCRETE FOUNDATION DESIGN                                                                                                                                                                                                                                  |
| Assumed Footing Depth                                                                                                                                                                                                                                       |

## EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT LONE MOUNTAIN FACILITY WAYNOKA, OKLAHOMA

APRIL 2016 015493

## APPENDIX H.

# CHEMPROOF, PERMACOAT 3000 DOCUMENTATION





Home

Heavy Duty

#### Medium Duty

PermaCoat 2000 PermaCoat 2000 SL PermaCoat 3000

PermaCoat 4000

PermaCoat 5000 PermaCoat

6000 PermaCoat 6500

Construction Details

Application Guidelines

System Specifications

About Us

Contact Us

## PERMACOAT 3000 Epoxy Floor Coating

#### DESCRIPTION

PERMACOAT 3000 is a 100% solids floor coating. PERMACOAT 3000 can be utilized as a glaze coat for the PERMATEC high build floors, or as a two coat floor or containment system (30-80 mils). When applied as a two coat floor or containment system, a silica broadcast is used between coats.

The PERMACOAT 3000 consists of two components, resin and hardener, in both the horizontal and vertical formulations. Its application is accomplished with rubber squeegees and short nap paint rollers.

#### **FUNCTION**

PERMACOAT 3000 is designed as a medium duty (30-80 mils) floor coating and/or secondary containment system where moderate mechanical abuse and chemical exposure are anticipated, so you may use the Chemical Resistant Flooring. PERMACOAT 3000 can be installed over most sound floors, including new or old concrete, steel and wood, providing a cost effective alternative to highbuild floor toppings.

#### TYPICAL APPLICATIONS

- Food processing plants
- Chemical processing plants
- Breweries
- Laboratories
- Pulp and paper mills

#### TYPICAL PROPERTIES

| Solids, by<br>Volume                         | 100%                                                               |
|----------------------------------------------|--------------------------------------------------------------------|
| Hardness Shore<br>D<br>ASTM D2240            | 82-85                                                              |
| Taber Abrasion<br>ASTM D4060<br>CS 17 Wheels | Loss/1000<br>cycles = 25mg                                         |
| Compressive<br>Strength<br>ASTM C579         | 14,400 psi                                                         |
| Flexural Strength<br>ASTM D790               | 16,500 psi                                                         |
| Tensile Strength<br>ASTM D307                | 11,000 psi                                                         |
| Bond Strength to<br>Concrete<br>ASTM D4541   | Exceeds tensile<br>strength of<br>concrete. Failure<br>in concrete |

#### **PACKAGING & COVERAGE**

PERMACOAT 3000 is packaged in one and three gallon units. Each unit consists of premeasured components, Part A (Resin) and Part B (Hardener).

Application thickness may vary from 30 to 80 mils, depending on the expected service conditions. Factors to consider are 1) length of chemical exposure; 2)mechanical abuses; and 3) substrate texture.

- Processing area in general where chemicals are used
- Any area that requires a safe, non-slip floor

#### **FEATURES**

PERMACOAT 3000 allows for fast, easy application. It also offers chemical resistance and physical performance much higher than those found in paints and other thin mil coatings.

Note: At 30-50 mils, PERMACOAT 3000 provides excellent chemical resistance for splash and spill exposures. In addition, when applied at 50-80 mils, it can often be recommended for containment service. (For specific recommendations refer to PERMATEC 3000 "Chemical Resistance Guide" and your local distributor.)

#### **OTHER FEATURES INCLUDE:**

- Rapid cure resulting in minimal "downtime"
- Odor-free
- Nonskid safety finish optional

#### MIXING

Prior to application, the PERMACOAT 3000 (Resin, Hardener, and Silica) and the substrate should be between 70 degrees and 95 degrees F.

Premix the Resin (Part A) for 30 seconds using a Jiffler mixer blade attached to a 500-750 RPM drill. Add the Hardener (Part B) only when the batch is ready to be applied. Mix for approx. 90-120 seconds. After mixing pour immediately onto floor.

#### **APPLICATION**

Use a rubber squeegee to spread

#### **CURE TIME**

The cure time of PERMACOAT 3000 and other resinous systems are very dependent upon the temperature of the substrate. The chart below represents the approximate times for the respective service conditions, following the last coat:

| Service (hours) | 70°F | 80°F | 90°F |
|-----------------|------|------|------|
| Foot traffic    | 10   | 8    | 6    |
| Light Chemical  | 14   | 12   | 10   |
| Fork Lift       | 20   | 16   | 12   |

#### CLEAN-UP

All mixing and application equipment should be cleaned immediately after use. If this is done, soap and water, or biodegradable cleaners can be used. If the material has begun to set, more aggressive solvents may be necessary. Before using solvents, refer to their respective MSDS for handling considerations.

#### MAINTENANCE

For systems designed for splash and spill exposures, routine washdowns are recommended to reduce the length of chemical exposure. This step is not necessary where the product is recommended for containment service.

#### WARRANTY

For product warranty see ChemProof Polymers, Inc. "Standard Limited Warranty." If one is not included with this literature contact your local distributor or ChemProof Polymers, Inc. for a copy.

#### STORAGE & SHELF LIFE

PERMACOAT 3000 should be stored at 50-90°F out of direct sunlight. All containers should

the resin over the pre-measured area to be covered. Immediately back roll the PERMACOAT 3000 with a short nap (1/8 inches) wool or mohair roller. At this point several pre-specified readings should be made with a wet mil gauge to assure uniform coverage. After the coating has been back rolled and uniform thickness verified, the surface should be saturated with a silica broadcast.

After the first coat supports foot traffic, the excess silica can be removed. Within 24 hours a second coat of PERMACOAT 3000 should be applied using the same procedure, minus the silica broadcast.

Note: Additional broadcasts and roll coats can be utilized to increase floor thickness.

#### SAFETY

PERMACOAT 3000 contains blended Epoxies as the resin and blended Amines as the hardener. Protective clothing and gloves are recommended to prevent sensitization to these materials. In case of ingestion or eye contact, contact a physician immediately. MSDS are available for this product upon request.

remain unopened until ready for use. If stored as set out above, PERMACOAT 3000 has a minimum shelf life of one year.

#### WHERE PERMACOAT 3000 SHOULD NOT BE INSTALLED PERMACOAT 3000 should not be applied over substrates:

- which are wet during the application
- subject to hydrostatic pressure
- which are unsound
- which are contaminated and cannot be cleaned
- at temperatures below 70°F
   (consult ChemProof Polymers)

Home | About Us | Contact Us

©2001 ChemProof. All rights reserved.

Tulsa Web Design by Ambitious Web



# EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT LONE MOUNTAIN FACILITY WAYNOKA, OKLAHOMA

APRIL 2016 015493

## APPENDIX I.

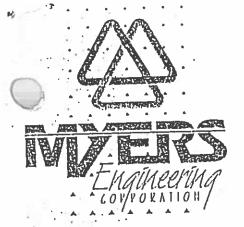
## SECONDARY CONTAINMENT CALCULATIONS





# EVAPORATOR FEED TANK NO. 2 (EF2) ASSESSMENT LONE MOUNTAIN FACILITY WAYNOKA, OKLAHOMA

APRIL 2016 015493


## SECONDARY CONTAINMENT CALCULATIONS

| DIMENSIONS                                                                        |
|-----------------------------------------------------------------------------------|
| EF Tank Diameter                                                                  |
| DISPLACEMENT VOLUMES                                                              |
| EF Tank Base (PI*D^2/4*Hsc)                                                       |
| Displacement Volume                                                               |
| RAINFALL VOLUMES                                                                  |
| Depth of Rainfall 6.150-in. Impacted Area 8,934.00-sf Rainfall Volume 4,578.68-cf |
| CONTAINMENT CAPACITY AVAILABLE                                                    |
| CCA                                                                               |
| CCA                                                                               |
| Volume of Largest Tank (EF1)                                                      |
| Excess Containment Volume                                                         |
| Safety Factor                                                                     |



## **SECTION EF3**







June 14, 1993

MAY 23 1994

LARRY J. ODEN

ENGINEERING

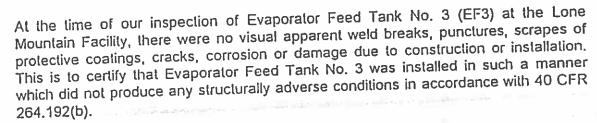
Mr. Don Dillie Project Engineer

TOPAY'2

USPCI, Inc. Lone Mountain Facility

CHANGING

Route 2, Box 180A Waynoka, Oklahoma 73860


WORLE

Re:

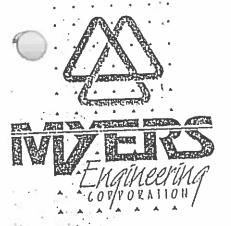
Evaporator Feed Tank No. 3 (EF3)

Tank Installation

Dear Mr. Dillie:



I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment of knowing violations.


y questions please feel free to call us at 405-755-5325.

cerbly. Myers

cc: Larry Oden → Jim Williams Dennis Dodd

| Unit FANT N    | TRUCTIONS      |
|----------------|----------------|
|                |                |
| Project STA    | tal Assessment |
| Section Tank ( | entratur-      |
| Rovd. by:      | L. J. ODEN     |
| ROUTE          | COPY           |
| FILE           | The Control    |
|                | D.D.DO         |
| /              |                |
|                | 1 3            |
|                |                |
|                |                |

11102 NORTH STRATFORD PRIVE . SUITE P400 . OKLAHOMA CITY OKLAHOMA . 75120 - 405/755.5325 . FAX 405/755.5





June 14, 1993

RECEIVED

HAY 23 1994

LARRY J. ODEN

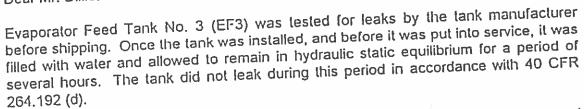
ENGINEERING

FOR

TOPAY'S

CHANGING

WORLP.


Mr. Don Dillie Project Engineer USPCI, Inc. Lone Mountain Facility Route 2, Box 180A Waynoka, Oklahoma 73860

Re:

Evaporator Feed Tank No. 3 (EF3)

Tank Leak Test

Dear Mr. Dillie:



I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment of knowing violations.

f you have any questions please feel free to call us at 405-755-5325.

Sincerely, E. E. Myers 4126

cc: Larry Oden

> Jim Williams
Dennis Dodd

|                | TRUCTIONS   |
|----------------|-------------|
| Unit Final TA  | Assessment  |
| Section Tank ( | L. J. ODEN  |
| ROUTE          | COPY        |
| F.LE           | 1 B. Corres |
|                |             |
|                |             |

( LEAK) TEST)

# SECTION 301 ASSESSMENT OF EVAPORATOR FEED STORAGE TANK No. 3 (EF3) LONE MOUNTAIN HAZARDOUS WASTE FACILITY U.S.P.C.I. WAYNOKA, OKLAHOMA

## A. TANK SYSTEM DESCRIPTION

The Evaporator Feed Storage Tank No. 3 (EF3) is a new cylindrical carbon steel aboveground vertical tank located in the wastewater treatment building of the Lone Mountain Hazardous Waste Facility. The Evaporator Feed Storage Tank No. 3 and its ancillary equipment are located together in a concrete curbed containment area.

## B. PRIMARY TANK VESSEL

## 1. General Description

The Evaporator Feed Storage Tank No. 3 is being assessed to determine if the unit is adequately designed with sufficient structural strength, and compatibility with the waste to be treated. The Evaporator Feed Storage Tank No. 3 will be used to store treated wastes prior to entrance into the exchanger units. The tank is vertical in position, aboveground and cylindrical in shape. The tank is supported by a skirted base. The Feed Tank has a slightly elevated temperature due to the return waste line from the Flash Tank.

## 2. Design Standards.

Structure calculations were performed to compare the existing tank and supports to those sections that are applicable in the American Petroleum Institute Standard 650 - 1988 edition (API-650) and the American Institute of Steel Construction (AISC) Manual of Steel Construction (8th Edition). These calculations can be found in the Appendix of this report. The tank was built to API-650 Standards and the steel specifications and mill test reports will be located in Appendix F. Appendix A and M were utilized from API-650 due to the small diameter and elevated temperature.

## 3. Hazardous Characteristics of Wastes Treated

The wastes which are treated in this tank have the following characteristics:

Treated wastes
pH (4-12)
N < 6
Temperature = < 245°F

The hazardous characteristics of the waste treated in this tank were examined. It was determined that the pH and normality levels of the waste are the primary areas of concern. This was to determine the applicability of a corrosion allowance for the tank material type and thickness.

## 4. Existing Corrosion Protection

The tank is coated on the inside with Sherwin Williams Hi-Mil Sher Tar Epoxy. The exterior is painted with Glidden Epoxy Primer No. 5466. It should be noted that when thickness calculations were compared, a 1/8" corrosion allowance was used.

## 5. Documented Age of Tank

The tank was manufactured by Delta Tanks of Houston Texas in March of 1993. The tank was installed in April, 1993.

## 6. Result of Leak Tests

A leak test was performed by the manufacturer and witnessed by an inspector prior to shipment. An inplace leak was performed and no leaks were found.

## 7. Existing Data Obtained

| Diameter of Tank Height (Normal Operating Level) Material Wall Thickness Specific Gravity Operating Temperature Maximum Volume Normal Operating Volume | 6'-4" 12' 11' Carbon Steel (ASTM A-36) 0.375" 1.5 245° 1625 Gal. 1389 Gal. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Normal Operating Volume Seismic Zone                                                                                                                   | 1389 Gal.<br>1                                                             |

## 8. Calculation of Foundation Loading

Total Weight of Tank and Contents =

11.42 tons

Detailed calculations reflecting the volume and weight of the tank are found in appendix A. The minimum required foundation thickness and steel reinforcement are included in appendix E of this assessment.

## 9. Required Structural Calculation

The calculated required wall thickness for this tank is 0.1448 inches. 0.125 inches is added for corrosion allowance. This corrosion allowance is based on a best engineering estimate taking into account the materials being treated and a 20 year design life. (See appendix B of this assessment for detailed calculations or required wall thickness and structural analysis of the tank support system.) The API-650 standard and Appendix A and M were used in determining the maximum allowable stress. The maximum allowable stress for this tank will be 17,600 psi.

## 10. Comparison of Actual Structure to Theoretical Values

## Wall Thickness Comparison

| Calculated Required Wall Thickness Minimum Required Wall Thickness By API 650-88 | 0.1448"<br>0.1875"<br>0.375" |
|----------------------------------------------------------------------------------|------------------------------|
| Measured Wall Thickness                                                          | 0.575                        |

## C. SECONDARY CONTAINMENT SYSTEM

## 1. General Description of Secondary Containment

The secondary containment system is designed and operated to prevent any migration of wastes or liquids out of the system. (See appendix G for layout of secondary containment area.) The Evaporator Feed Storage Tank No. 3 is located inside the wastewater final treatment building within a concrete containment area. All associated piping is aboveground and a portion of the associated piping is contained in this area. The area is inspected on a daily basis.

Design or construction details were not available for detailed structural analysis of the concrete curb and floor. The minimum required foundation thickness and steel reinforcement were calculated and are included in the appendix E of this assessment. See appendix G for detailed drawings of the containment area. The section through the containment area is based on concrete cores taken in this area. The size and spacing of the steel reinforcement is not known, however, it would be acceptable to assume No. 3 bars spaced at 12" center to center in each direction. The concrete slab is resting on a sand base. The thickness of the slab in this area is no less than 6". The compressive strength determined from the concrete removed in the coring procedure was found to be approximately 7000 psi. For calculation purposes a compressive strength of 4000 psi was used.

The containment area and tanks are routinely visually monitored on a daily basis for leaks. A sump pump and drain are located in the containment area. The floor is sloped to the low area to collect any drainage or spills. Any released tank contents or surface runoff will drain on top of the sloped concrete to the sump area. The accumulated liquids are then removed and pumped to the wastewater pretreatment area within a maximum of 24 hours, as a permit condition.

## 2. Design Standards

The structural capacity of the foundation and walls were compared to those sections that are applicable in the API 650-88 and the American Concrete Institute (ACI 318-89/318r-89) and these calculations were used as a guide in verifying the ability of the system to contain hazardous waste. No design drawings or standards were found.

## 3. Hazardous Characteristics of Wastes Treated

The wastes which are treated in the primary tank have the following characteristics:

Treated Wastes pH Level (4-12) N < 6 Temperature < 245°

The hazardous characteristics of the waste treated in the primary tank were examined. It was determined that the pH and normality levels of the waste were the primary areas of concern. This was to determine the applicability of a corrosion allowance for the containment system material type and thickness.

## 4. Existing Corrosion Protection

The entire secondary containment area floor and walls have been coated with an impermeable coating (Overcrete Plus by Concrete Protection Systems, Inc. and Sentry Polymers, Semstone 805). The coating is compatible with the present waste stream as verified by USPCI.

## 5. Documented Age of the Containment Area

The secondary containment system was constructed and installed in 1987 thus making the containment system 5 years old.

## 6. Result of Leak Tests

A visual inspection of the containment area was performed and from this inspection there were no cracks or breaks in the impermeable coating, therefore it would be adequate to contain any leaks or spills. The area is inspected daily on a routine basis checking for leaks from the primary tank.

## 7. Existing Data Obtained

Агеа

2396 s.f.

Wall Height

0.46 ft. (Lowest point)

Concrete Material

See Appendix G of this assessment for detailed drawings of the containment area.

## 8. Calculation of Existing Capacity

## Containment Capacity Available (CCA)

CCA = Gross Volume - Volume of items in the containment - Volume of rainfall.

See Appendix D of this assessment for detailed calculations of the available containment volume. The containment capacity available = 1186.60 c.f.

## 9. Required Volume

Containment Capacity Required (CCR)

CCR = Volume of Largest Tank in the secondary containment

Volume of Largest Tank = 315.24 c.f. (FT3 Section 303)

## 10. Comparison of Available Volume to Required Volume

## Containment Capacity Comparison

Containment Capacity Required =

315.24 c.f.

Secondary Containment Volume Available =

1186.60 c.f.

Excess Containment Volume

871.36 c.f.

CCA>CCR Adequate Capacity (under normal operating conditions) is available.

#### D. CONCLUSIONS

#### 1. Primary Tank System

The tank vessel at the time of inspection was fit for use with the present waste stream at given densities, chemical and physical characteristics as verified by USPCI. The useful life of the steel tank would be estimated at 20 years if the current waste stream is maintained. This useful life was determined by using a design life of 20 years less the period that the tank has been in use at the USPCI Lone Mountain Facility.

## 2. Secondary Containment System

The secondary containment area at the time of inspection was fit for use, if the present waste stream at given densities and chemical and physical characteristics as verified by USPCI were released from the primary tank. The useful life of the concrete containment area is estimated at 15 years. This useful life was determined by using a design life of 20 years less the period that the tank has been in use at the USPCI Lone Mountain Facility. There did not seem to be any extensive corrosion or deterioration of the secondary containment area.

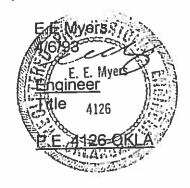
## E. RECOMMENDATIONS

The following repairs or modifications should be made:

## 1 Primary Tank

The tank should be cleaned and internally inspected periodically for corrosion. The tank should be checked periodically with ultrasonic testing procedures to establish a verified limit of corrosion. USPCI should continually insure compatibility with the waste and densities stored. Daily inspections should be continued to detect any visual corrosion or defects.

## 2 Secondary Containment System


The secondary containment should be checked periodically for any deterioration and structural integrity.

## 3 Routine Inspections

When routine and preventative measures are to be completed, the tank should be cleaned and internally inspected to determine any interior defects or corrosion. Continued routine painting and coating of tanks on the interior and exterior, and routine inspection is recommended.

#### F. CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.



#### **SECTION 301 - APPENDIX A**

#### EF3, Evaporator Feed Tank No.3

#### PRIMARY TANK VOLUME

| DIMENSION: | Š; |
|------------|----|
|------------|----|

Geometry: CYLINDRICAL

Diameter: 6.33 FEET
Max Height: 6.00 FEET
Normal Operating Height: 5.00 FEET
Cone Height: 2.50 FEET
Bottom Cone Diameter 0.50 FEET
Cone Length 4.03 FEET

Cone Volume: 28.46 C.F. or 212.88 Gal.

**VOLUME CALCULATIONS** 

 Max. Volume :
 217.28
 C.F. or
 1625.26
 Gal.

 Normal Operating Volume
 185.81
 C.F. or
 1389.86
 Gal.

MAXIMUM OPERATING TANK VOLUME = 217.28 C.F.
OR 1,625.26 GAL

#### WEIGHT ON FOUNDATION

CONTENTS S.G.: 1.50

DENSITY: 93.60 LB/C.F.

SURFACE AREA CALCULATION

 Tank Top =
 31.47 S.F.

 Tank Bottom Cone =
 68.66 S.F.

 Tank Wall= Cir\*h
 119.32 S.F.

TOTAL SURFACE AREA WALL AND TOP 219.44 S.F.

Steel Thickness=

Sidewalls and Top 0.25 INCHES
Cone 0.31 INCHES

Volume of Steel =

 Sidewalls
 2.49
 C.F.

 Top and bottom
 2.61
 C.F.

 Density of Steel =
 490.00
 LB/C.F.

 Weight of Steel =
 1.25
 TONS

WEIGHT OF TANK CONTENTS = 10.17 TONS

TOTAL WEIGHT OF TANK AND CONTENTS = 11.42 TONS

#### **SECTION 301 - APPENDIX B**

#### EF3, Evaporator Feed Tank No.3

#### PRIMARY TANK WALL THICKNESS

**DIMENSIONS:** 

Geometry:

**CYLINDRICAL** 

Diameter:

6.33 FEET

Height:

12.00 FEET

Specific Gravity:

1.50

Normal Operating Temperature =

ambient

## STEEL THICKNESS CALCULATIONS @ BOTTOM RING

Thickness (t) = (2.6 \* H \* D \* S.G.) / (s \* E) + CA

s = Allowable Design Stress =

17600.00 PSI \*\*\*

E = Joint Efficiency =

85.00%

Thickness (t) =

0.0198 INCHES

Corrosion Allowance =

0.1250 INCHES

Calculated Req'd Wall thk. =

0.1448 INCHES

\*\*\* THIS DESIGN STRESS IS OBTAINED FROM API-650-88 WITH THE USE OF APPENDIX A.

#### CONE WALL THICKNESS CALCULATION

0.3801 Cosine Alpha = cos(67.6594)

P1 = Internal Pressure= 3263.83 psi =Density\*s.g.\*(x+D/6\*cot(alpha) 3182.40 psi P2= H\*density\*s.g.=33\*62.4\*1.5 = 6.36 inches Tc= top cone radius = 17600 psi Fb = Allowable stress

The required wall thickness of the cone will be the greater of the following Formulas.

0.098 +1/8°C.A.= 0.223 in. 1. Ts=P1\*Tc/2\*cos(alpha)\*fb =

0.250 in. 0.125 +1/8°C.A.= 2. Ts=P2\*D/cos(alpha)\*Fb =

#### SECTION 301 - APPENDIX C

#### EF3, Evaporator Feed Tank

## STRUCTURAL SUPPORT CALCULATIONS

|   | í٨ | /=  | N   |  |
|---|----|-----|-----|--|
| v | ١١ | / C | :17 |  |

Tank Diameter = 6.33 feet
Total Height = 12.00 feet
Weight of Tank = 2500.00 lbs
Weight of Max. Contents = 22840.00 lbs
Tank Nominal Thickness = 0.375 in

#### ----SEISMIC DESIGN CHECK----

0.1875 ZONE COEFFICIENT (Z): 1.000 ESSENTIAL FACILITIES FACTOR (I): LATERAL EARTHQUAKE FORCE COEFF. (C1): 0.240 0.528 D/H: 0.590 k factor: 1.500 SITE AMPLIFICATION FACTOR (S): NATURAL PERIOD OF FIRST SLOSHING (T): 1.485 LATERAL EARTHQUAKE FORCE COEFF. (C2): 0.311 2500,000 LBS WEIGHT OF TANK SHELL (Ws): 22840.000 LBS TOTAL WEIGHT OF TANK CONTENTS (WI): 0.950 W1/Wt: 0.100 W2/Wt: WEIGHT OF EFFECTIVE MASS OF CONTENTS MOVES IN UNISON WITH THE TANK SHELL (W 21698,000 LBS

WEIGHT OF EFFECTIVE MASS IN FIRST SLOS

HT FROM BTM OF SHELL TO CENT. OF SHELL



2284.000 LBS

8.000 FEET

0.500 X1/H:

HT FROM BTM TO CENT. OF LAT. SEISMIC FO 8.000 FEET

0.900 X2/H:

HT FROM BTM TO CENT. OF LAT. SEISMIC FO 10.800 FEET

OVERTURNING MOMENT (M) = Z\*1\*(C1\*Ws\*Xs + C1\*W1\*X1 + C2\*W2\*X2)

10149.686 FT-LBS

OVERTURNING MOMENT (M):

Note: All of the above calculations are based on API-650-88 Seismic Design Procedure (Appendix E).

CHECK STRESS IN TANK SHELL FROM SEISMIC FORCES:

WI = MAXIMUM WEIGHT OF TANK CONTENTS THAT MAY BE USED TO RESIST THE SHELL OVERTURNING MOMENT

 $WI = 7.9*tb*(Fby*G*H)^{.5}$ 

**BOTTOM PLATE:** 

0.375 IN tb = THK. OF BTM. PLATE UNDER SHELL:

Fby = MINIMUM YIELD STRENGTH OF 9000.000 PSI

1.50 G = DESIGN SPECIFIC GRAV. OF LIQUID:

1192.38 LBS/FT OF SHELL WI =

CIRCUMFRENCE

490.00 LBS/CF DENSITY OF TANK SHELL MATERIAL:

WT = WEIGHT OF TANK SHELL AND THE PORTION OF FIXED ROOF SUPPORTED

183.75 LBS/FT OF SHELL BY TANK SHELL: **CIRCUMFRENCE** 

0.1839  $M/[D^2(WT+WI)]$ :

b = MAXIMUM LONGITUDINAL COMPRESSIVE FORCE AT THE BTM. OF TANK SHELL

 $b = WT + 1.273*M/D^2$ 

505.90 LBS/FT OF SHELL b:

G\*H\*D^2/l^2:

5133.68

Fa = MINIMUM OF 10^6\*t/D or Fty/2:

4500.00 PSI

Fly = MINIMUM YIELD STRENGTH OF BTM.

PLATE:

9000.00 PSI

MAX. LONGITUDINAL COMPRESSIVE STRESS

IN THE TANK SHELL =

b/12t =

112.42 PSI

## CHECK OVERTURNING MOMENT FROM WIND PRESSURE

M must be Less Than or Equal To .66\*(WD)/2 If M is Greater Than .66\*(WD)/2 Anchor Bolts Would Be Required

Where:

W = Shell Weight Available To Resist Uplift (lbs)

D = Tank Diameter (feet)

M = Overturning Moment

M = Pw\*Projected Area\*H1

H1 = Height from ground to centroid of tank shell

Pw = Wind Pressure (18 psf for 100 MPH Wind on cylinders)

.66\*(WD)/2:

5224.73 FT-LBS

M:

8207.57 FT-LBS

M > .66\*(WD)/2 therefore anchor bolts are required

Number of Anchors:

8.00

Anchor Diameter:

0.75 inches

Dia. of Anchor Circle:

6.66 feet

tB = design tension load per anchor

tB:

303.41 pounds

Allowable Load/ Anchor:

8835.73 pounds

## SECTION 301 - APPENDIX D

## **Wastewater Final Treatment**

## SECONDARY CONTAINMENT VOLUME CALCULATIONS

#### **AREA 13-1**

| Area No.13-1-1 Length = Width = Height = Surface Area = Volume =                  | 50.33 feet<br>29.00 feet<br>0.46 feet<br>1459.66 S.F.<br>671.44 C.F. |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Area No.13-1-2 Length = Width = Height = Surface Area = Volume =                  | 15.00 feet<br>13.25 feet<br>0.41 feet<br>198.75 S.F.<br>81.49 C.F.   |
| Area No.13-1 Sump (Trench) Length = Width = Height = Surface Area = Volume =      | 49.17 feet 1.25 feet 0.83 feet 61.46 S.F. 51.22 C.F.                 |
| Area No.13-1 Sump (Trench)  Length =  Width =  Height =  Surface Area =  Volume = | 22.00 feet<br>1.25 feet<br>0.33 feet<br>27.50 S.F.<br>9.17 C.F.      |

Gross Area = Gross Volume = Summ of Area 1 and 2 Area \* Height + Sumps 813.31 C.F.

1658.41 S.F



| Volumes of Items of Displacement ** Area                                                                                                                                                                              | 13-1                                              |                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--|--|
| 1. DU Tank pad =                                                                                                                                                                                                      | 19*12*2/12 =                                      | 38.00 C.F.                                          |  |  |
| 2. BB1 Tank Skirt =                                                                                                                                                                                                   | 2*pi*r*thk.*0.46 =                                | 0.24 C.F.                                           |  |  |
| 3. BB1 pump base =                                                                                                                                                                                                    | 4*1.333*0.46 =                                    | 2.45 C.F.                                           |  |  |
| 4. Filter Base =                                                                                                                                                                                                      | 0.15 c.f.                                         | 0.15 C.F.                                           |  |  |
| 5. Channel supports for LF2 =                                                                                                                                                                                         | 5*.46*3.83/144 =                                  | 0.06 C.F.                                           |  |  |
| 6. Walkway support legs =                                                                                                                                                                                             | 4*0.0875*0.46 =                                   | 0.16 C.F.                                           |  |  |
| 7. Building supports =                                                                                                                                                                                                | 8*(19.7/144)*0.46 =                               | 0.50 C.F.                                           |  |  |
| 8. DU Pumps =                                                                                                                                                                                                         | 8*1.333*0.5*0.25 =                                | 1.33 C.F.                                           |  |  |
|                                                                                                                                                                                                                       | 4*0.46*7.34/144 =                                 | 0.09 C.F.                                           |  |  |
|                                                                                                                                                                                                                       | 4*2*19.7/144 =                                    | 1.09 C.F.                                           |  |  |
| 11. Sump for pipes =                                                                                                                                                                                                  | 6*4*.46 =                                         | 11.04 C.F.                                          |  |  |
| 12. Small Base DU units                                                                                                                                                                                               | Pi*D*(.5/12)*.46                                  | 0.15 C.F.                                           |  |  |
| 13. Large Base DU units                                                                                                                                                                                               | Pi*D*(.5/12)*.46                                  | 0.10 C.F.                                           |  |  |
| Total volume to deduct for item  Subtraction for volume of rainfall  This entire area is covered and  TOTAL AVAILABLE VOLUME = Gross Vol  Items of displacement  Volume of rainfall  TOTAL AVAILABLE VOLUME AREA 13-1 | will not receive any rain<br>ume - Subtractions = | 55.38 C.F.<br>813.31 C.F.<br>-55.38 C.F<br>0.00 C.F |  |  |
| AREA 13-2                                                                                                                                                                                                             |                                                   |                                                     |  |  |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                               | -                                                 |                                                     |  |  |
| Area No.13-2                                                                                                                                                                                                          | 41.00                                             | feet                                                |  |  |
| Length =                                                                                                                                                                                                              | 18.00                                             |                                                     |  |  |
| Width =                                                                                                                                                                                                               | 0.46                                              |                                                     |  |  |
| Height =                                                                                                                                                                                                              | 738.00                                            |                                                     |  |  |
| Surface Area =                                                                                                                                                                                                        | 339.48                                            |                                                     |  |  |
| Volume =                                                                                                                                                                                                              | 000.40                                            | V.II •                                              |  |  |
| A No. 40 0 0 0                                                                                                                                                                                                        |                                                   |                                                     |  |  |
| Area No.13-2 Sump                                                                                                                                                                                                     | 2.00                                              | feet                                                |  |  |

2.00 feet

Length =

| 18 C dala —                         | 3.00 f                    | feet        |
|-------------------------------------|---------------------------|-------------|
| Width =                             | 2.54 1                    | feet        |
| Height =                            | 6.00                      | S.F.        |
| Surface Area =                      | 15.25                     | C.F.        |
| Volume =                            |                           |             |
| Area No.13-2 Sump (Cont.)           |                           |             |
| Length =                            | 4.00                      |             |
| Width =                             | 4.00                      |             |
| Height =                            | 4.92                      | feet        |
| Surface Area =                      | 16.00                     | S.F.        |
| Volume =                            | 78.67                     | C.F.        |
| Volume –                            |                           |             |
| A                                   | Area 1                    | 738.00 S.F  |
| Gross Area =                        | Area * Height + Sumps     | 433.40 C.F. |
| Gross Volume =                      |                           |             |
| Volumes of Items of Displacement ** |                           |             |
| 1. Bearing Pads                     | 12*(1.5*1*2/12) =         | 3.00 C.F.   |
| 2. Pump Base (5" high steel) =      | 5"*1.5'*3.5' =            | 0.30 C.F.   |
| Hydraulic unit support legs         | 4*0.0064*.64 =            | 0.02 C.F.   |
| Steps and supports, ladder sup      | ports =                   | 0.50 C.F.   |
| 5. 8" Tank support legs =           | 12*(17.2/144)*0.64 =      | 0,92 C.F.   |
|                                     | ·                         |             |
| Total volume to deduct for item     | s in containment area =   | 4.73 C.F.   |
|                                     |                           |             |
| Subtraction for volume of rainfall  |                           |             |
| This entire area is covered and     | will not receive any rain |             |
|                                     | Subtractions =            | 433.40 C.F. |
| TOTAL AVAILABLE VOLUME = Gross Vol  | ume - Subtractions -      | -4.73 C.F   |
| Items of displacement               |                           | 0.00 C.F    |
| Volume of rainfall                  |                           | , 0.00      |
| ADEA 42.2                           |                           | 428.67 C.F  |
| TOTAL AVAILABLE VOLUME AREA 13-2    |                           |             |
|                                     |                           |             |
|                                     | 1186.6                    | 0 C.F.      |
| N                                   |                           |             |



OR

8875.77 GAL

TOTAL AVAILABLE VOLUME AREA 13

#### **SECTION 301 - APPENDIX E**

#### EF3, Evaporator Feed Tank No.3

#### FOUNDATION DESIGN ANALYSIS

#### **ASSUMPTIONS:**

f'c = 4.00 KSI fy = 60.00 KSI Allowable Soil Press. = 2.20 KSI

Structural Steel = A36

**GIVEN:** 

Tank Diameter = 6.33 feet
Sidewall Height = 12.00 feet
Weight of Tank (Shell) 2500.00 lbs
Weight of Max. Contents = 20340.00 lbs

Tank is Resting on a concrete foundation.

### CHECK CONCRETE FOUNDATION DESIGN:

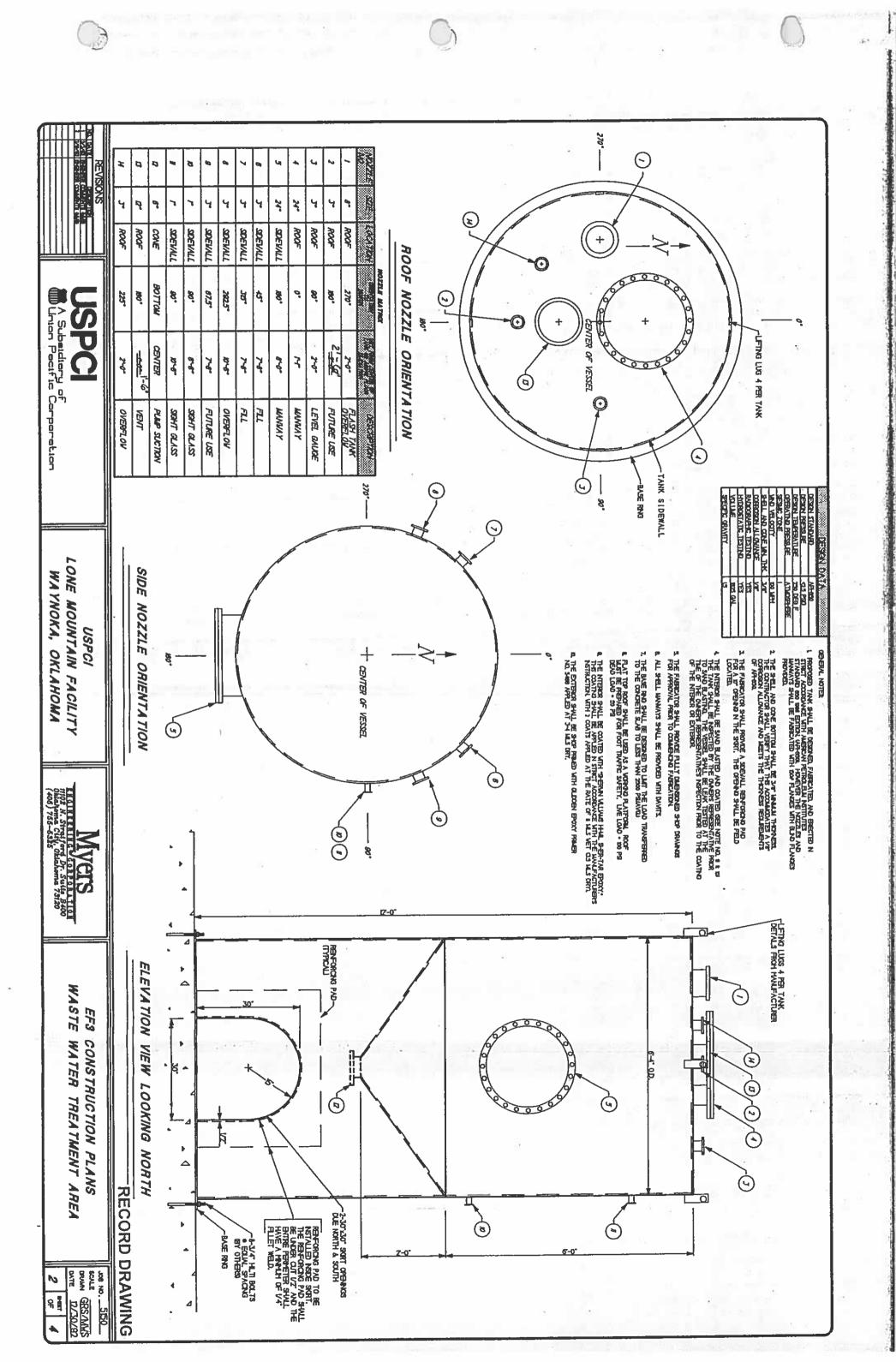
Assume Footing Depth = 6.00 inches
Assume Footing Width = 12.00 inches
Assumed Effective Soil Press. = 1925.00 psf

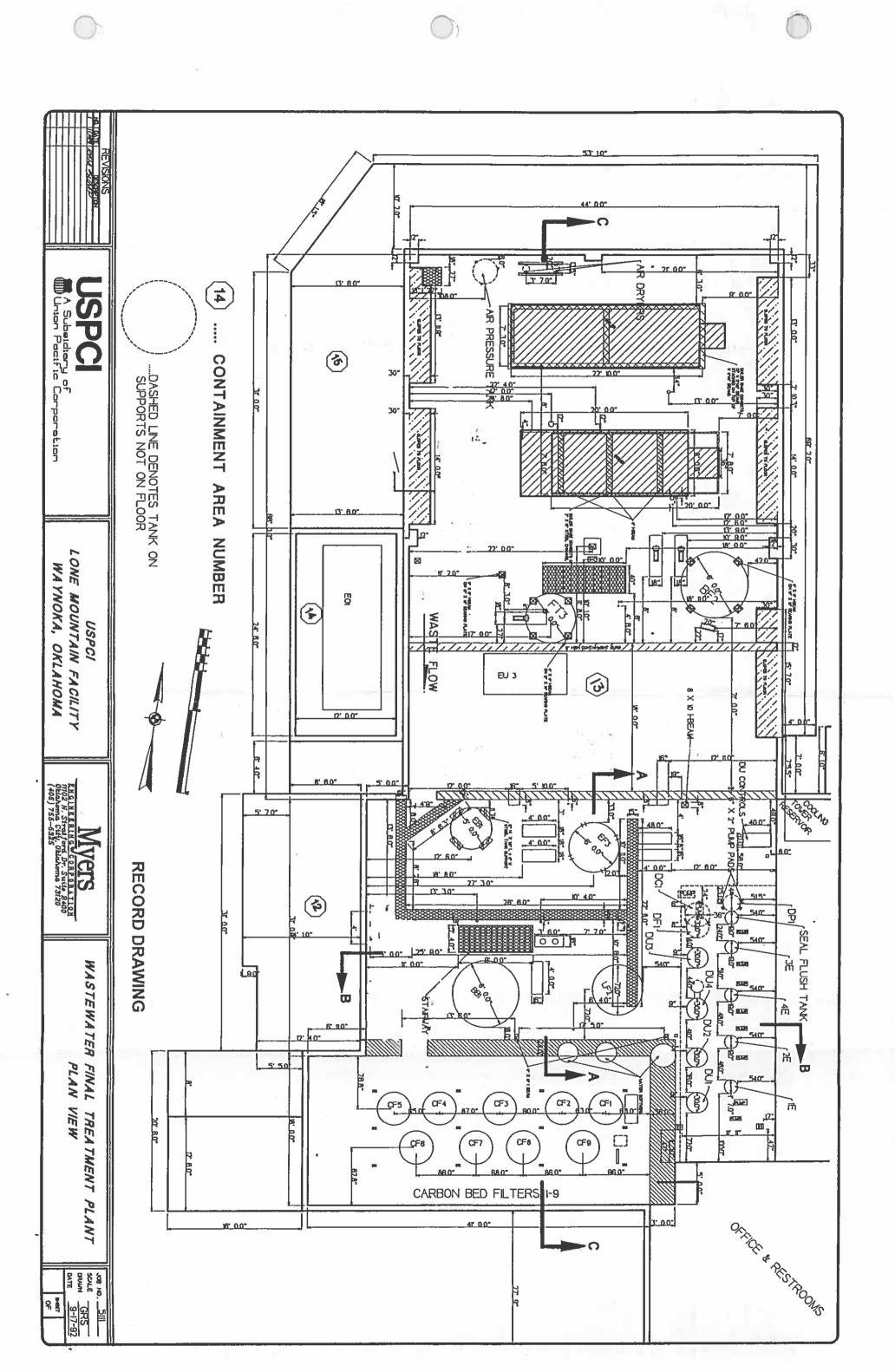
psf

Look at what is resisiting overturning moment from seismic load:

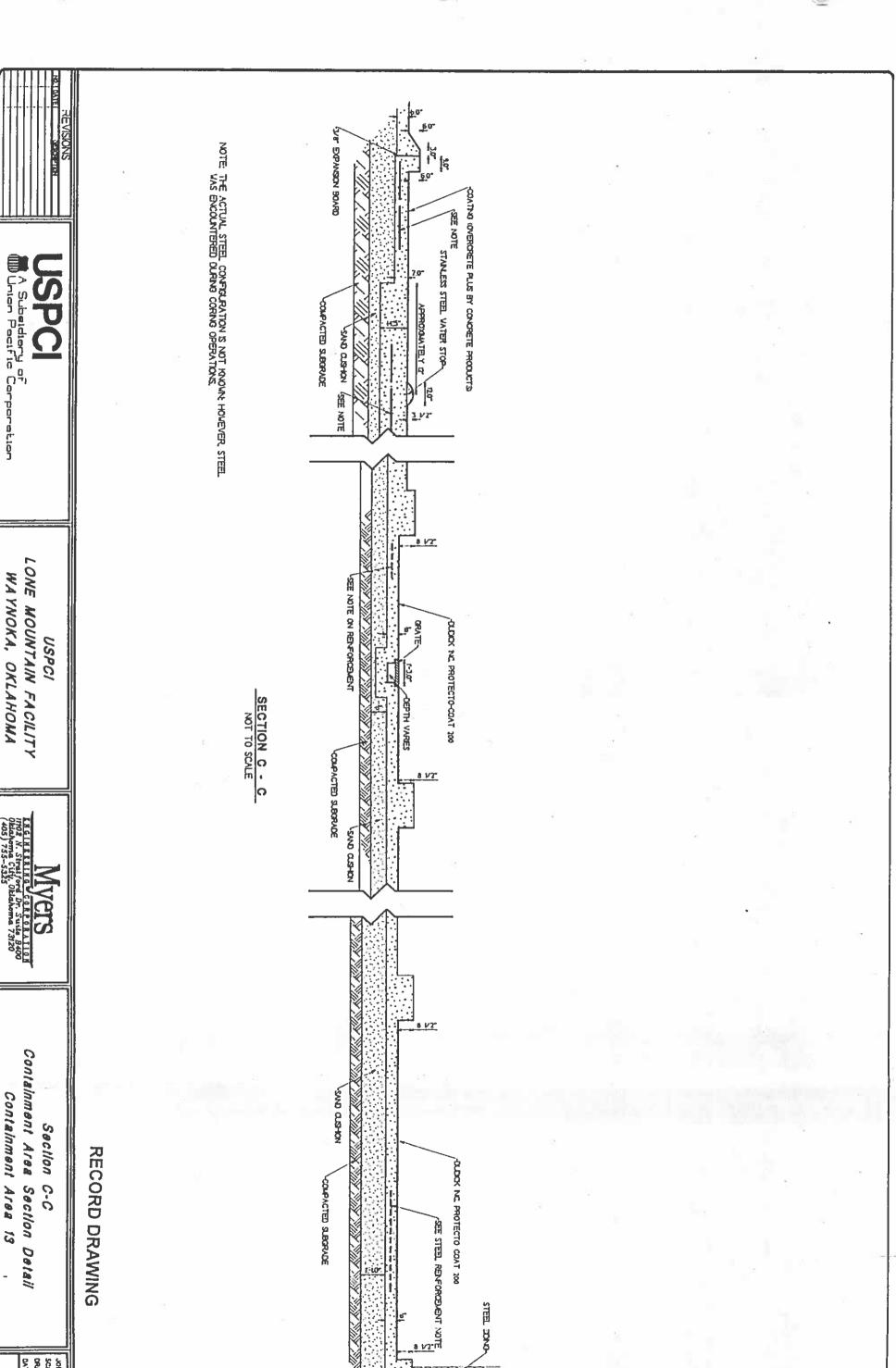
b = 506.00 lb/ft of

circ.


Where b is the maximum shell compression at the bottom of the shell.

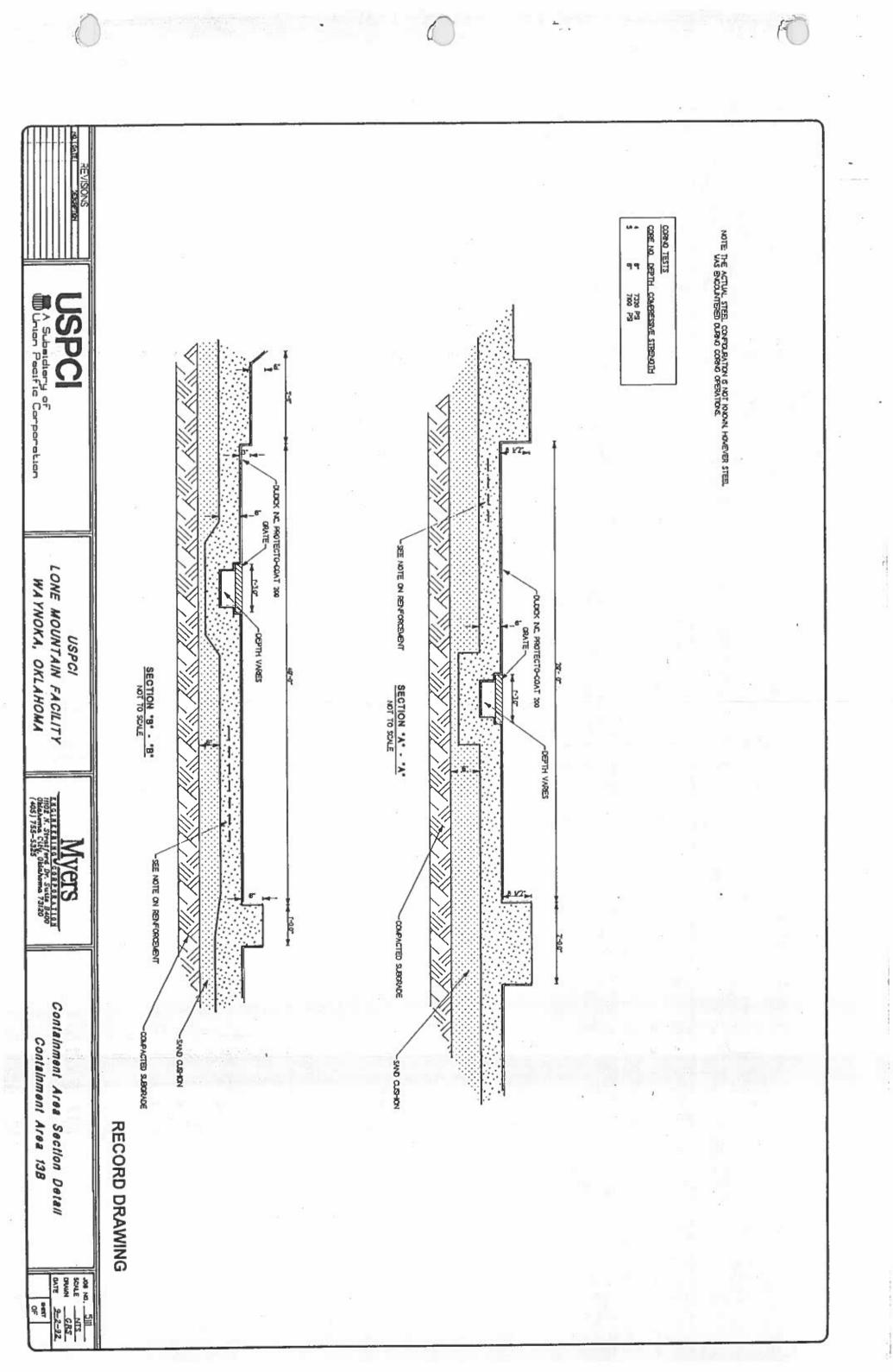

If the footing is 12.00 inches wide

then the actual applied pressure to the


subgrade is 506.00 lb/sf

This is less than the effective soil pressure.










Containment Area 13

SCALE -





# **SECTION EF4**

(OUT OF SERVICE)



# ASSESSMENT OF EVAPORATOR FEED TANK NO. 4 (EF4) LONE MOUNTAIN HAZARDOUS WASTE FACILITY U.S.P.C.I./LAIDLAW WAYNOKA, OKLAHOMA

# A TANK SYSTEM DESCRIPTION

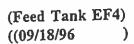
Evaporator Feed Tank No. 4 (EF4) is a new replacement welded above-ground wastewater storage and treatment tank to be installed as a part of the final wastewater treatment plant at the Lone Mountain Facility. Evaporator Feed Tank #4 (EF4) is located within the Wastewater Final Treatment building on the first mezzanine level of the support structure. The tank system consists of Evaporator Feed Tank #4 (EF4), Circulating Pump (P76), Circulating Pump (P79), Heat Exchanger #4 (EU4), and associated piping and instruments.

# B PRIMARY TANK VESSEL

# 1. General Description

Evaporator Feed Tank No. 4 (EF4) is a circular steel tank with an outside diameter of 6'4" and a height of 12'0". The tank proper has a skirt that is anchored to the support structure, and it has a closed flat top that is vented to the atmosphere. The bottom of the tank is cone shaped. Flash Tank No. 4 is being assessed to determine if the unit is adequately designed with sufficient structural strength and compatibility with the waste to be stored.

# 2. Design Standards


The tank is designed and constructed to those sections that are applicable in the American Petroleum Institute Standard 650-1993 edition (API-650).

# 3. Hazardous Characteristics of Wastes Stored

The wastes which are stored in this tank are treated and untreated brine solutions. Representative samples of both the treated and the untreated wastes were sent for analysis. The results of those analyses are included in Appendix G of this assessment. In addition, the following characteristics of the wastes were verified:

Ignitability - Flash Point > 240° F

Corrosiveness 7 < pH < 12 2 < N < 7



Reactivity - None

Temp  $< 300^{\circ} F$ 

From the examination of the hazardous characteristics of the waste to be stored in this tank, it was determined that the pH and normality levels (Corrosiveness) of the waste are the primary areas of concern. This is to determine the applicability of a corrosion allowance for the tank material type and thickness.

#### 4. Corrosion Protection

The interior of the tank is coated with two layers of Sherwin Williams Hi-Mil Sher-Tar Epoxy. Each layer is applied at a dry film thickness of not less than 7.0 mils. The exterior coating consists of one layer of Glid-Guard Corrosion Resistant HS Epoxy No. 5466 series, at a dry film thickness of not less then 3.0 mils. Appendix F contains manufacturer's information on both the interior and the exterior corrosion protection systems.

## 5. Documented Age of Tank

This tank was manufactured by Lide Tank Company of Mexia, Texas in November 1994 and installed in February of 1995.

#### 6. Result of Leak Tests

The manufacturer conducted a hydrostatic leak test of the tank before shipping. A description of that test is included in Appendix D of this assessment. In addition, a visual inspection was performed of the interior and exterior of the tank after installation. This inspection was conducted specifically to detect the presence of any of the following items:

- a) Weld break
- b) Punctures
- c) Scrapes of protective coatings
- d) Cracks
- e) Corrosion
- f) Other structural damage or inadequacies of construction and/or installation

The tank hydrostatic test after installation is included in Appendix D of this Assessment. A description of that procedure is also included in Appendix D of this assessment. From these tests it was determined that the primary tank was not leaking.

### 7. Existing Data Obtained

| a. Diameter of Tank   |                       |           | 6'4''            |  |  |
|-----------------------|-----------------------|-----------|------------------|--|--|
| b. Nominal Height o   | _                     | 12'0"     |                  |  |  |
| c. Maximum Capaci     |                       | 1625 gal. |                  |  |  |
| d. Overflow Liquid    | 11'6''                |           |                  |  |  |
| e. Overflow Volume    | 1504 gal.             |           |                  |  |  |
| f. Design Specific Gi | ravity                | 1.5       |                  |  |  |
| g. Maximum Botton     |                       | 5.9 ps    | si               |  |  |
| h. Maximum Opera      |                       | 250° ]    | F                |  |  |
| i. Material of Const  | <del>-</del>          |           |                  |  |  |
|                       | Root & Bottom         | AST       | M A36            |  |  |
|                       | rcing Pads            | AST       | M A36            |  |  |
| •                     | ural Supports         | AST       | M A36            |  |  |
| iv) Steel I           |                       | ASTI      | M SA106, Grade B |  |  |
| v) Bolts              | *                     | AST       | M SA193, B7      |  |  |
| •                     | es, Blinds, Couplings | ASTI      | M SA105          |  |  |
|                       | lugs                  |           |                  |  |  |
| j. Wall Thickness     | 3                     | 0.375     | **               |  |  |
| k. Operating Pressu   | re                    | Atmo      | spheric          |  |  |
| 1. Seismic Zone       |                       | 1         |                  |  |  |

### 8. Calculation of Existing Foundation Loading

Total Weight of Tank and Contents

27,350 lbs.

Detailed calculations reflecting the volume and weight of the tank are included in Appendix A of this assessment.

# 9. Required Structural Calculation

Calculations for the required wall thickness for this tank are shown in Appendix B. Metallurgical information on the materials used is included in Appendix E of this assessment. The minimum required thickness in accordance with API 650, is 0.148 inches. A corrosion allowance of 0.125 is provided for. The measured wall thickness is 0.375 inches.

Design calculations for the support structure are included in Appendix C of this assessment. These calculations were done in accordance with BOCA National Building Code 1990 Edition.

Structural analysis of the foundation is included in Appendix C of this assessment.

# 10. Comparison of Actual to Theoretical Structural Values

# Wall Thickness Comparison

| Calculated Required Wall Thickness Minimum Required Wall Thickness By API 650 Measured Wall Thickness | 0.148''<br>0.375'' |
|-------------------------------------------------------------------------------------------------------|--------------------|
| Measured Wall Thickness                                                                               | 0.3                |

# **Bottom Thickness Comparison**

| Calculated Required Bottom Thickness Minimum required Bottom Thickness by API 650 Measured Bottom Thickness | 0.150"<br>0.250"<br>0.375" |
|-------------------------------------------------------------------------------------------------------------|----------------------------|
|-------------------------------------------------------------------------------------------------------------|----------------------------|

# Support Structure Comparison

See Appendix C of this assessment for complete comparison of the loads and support information for vertical columns, horizontal beams and diagonal bracing.

# Foundation Integrity Comparison

| Maximum Calculated Load (6" Slab) Calculated Foundation Support (6" Slab)   | 17.6 Kips<br>26.7 Kips  |
|-----------------------------------------------------------------------------|-------------------------|
| Maximum Calculated Load (17" Slab) Calculated Foundation Support (17" Slab) | 62.9 Kips<br>127.7 Kips |

# C ANCILLARY EQUIPMENT

# 1. General Description

The ancillary equipment for the Evaporator Feed Tank No. 4 (EF4) system includes the following:

- a) Circulating Pump (P76) a centrifugal pump designed to pump 80 GPM at 50 feet of discharge head with a suction head of 5 feet.
- b) Circulation Pump (P79) -- a centrifugal pump designed to pump 80 gpm at 50 ft. discharge head with a suction head of 5 ft.
- c) Heat Exchanger (EU4) a plate and frame unit of stainless steel construction designed to operate at a pressure of 150 PSIG and a temperature of 300°F. Manufacturer's design information is included in Appendix B of this assessment.
- d) Associated piping, valves and instruments all piping is Schedule 40 carbon steel fitted with 150 psi flanges. All piping with an inside

(Feed Tank EF4) ((09/18/96 ) diameter of 2" or smaller is socket-welded using, at a minimum, 3000# connections. All piping with an inside diameter greater than 2" is butt-welded. All valves, fittings & instruments are rated for 150 psi or higher.

#### 2. Design Standards

All piping is to be installed according to ASME/ANSI Code section B31.3. Metallurgical information on the materials used is included in Appendix E of this assessment.

#### 3. Corrosion Protection

The exterior of all waste piping will be coated with two layers of Kem-Kromik Universal Metal Primer - B50Z Series. Each layer is applied at a dry film thickness of not less than 5 mils. Detailed information on the coating is included in Appendix F of this assessment.

#### 4. Documented Age of Piping System

The piping and other ancillary equipment was purchased during a period of time between December 1994 and January 1995. It will be installed in April 1995.

#### 5. Result of Leak Tests

A Hydrostatic leak test was performed in accordance with ASME/ANSI. B31.3 Chapter VI paragraph 345.5 using paragraph 345.4.2 to determine the pressure requirements of the test. A description of this testing procedure, along with the results of that test, are inserted in Appendix D of this assessment.

#### 6. Data Obtained

Included in Appendix H of this assessment is a Piping and Flow Diagram of the treatment process. This Piping and Flow Diagram reflects data such as valves, blowoffs, vents, level controls and the overall flow pattern of the treatment process.

#### 7. Piping Support System

A visual inspection of the pipe support system will be conducted. This inspection will include a look at such things as materials of construction, welds, and construction methods. From this inspection a determination will

(Feed Tank EF4) ((09/18/96 ) be made as to the adequacy of the piping support system.

## D SECONDARY CONTAINMENT SYSTEM

# 1. General Description of Secondary Containment

The secondary containment system was originally designed and operated to prevent any migration of wastes or liquids out of the system. Evaporator Flash Tank No. 1, Evaporator Flash Tank No. 2, Evaporator Flash Tank No. 3, Evaporator Blowdown Tank No. 2, and Evaporator Feed Tank No. 4 are located on a reinforced concrete base floor area with vertical concrete sidewalls. All associated piping is above ground and located within the secondary containment system. The area is inspected daily on a routine basis.

At the time of inspection the concrete area was withstanding daily operations, and routine climatic conditions. No cracks from compression or uplift were visually apparent.

Any released tank contents are removed and pumped to an appropriate storage area within the maximum time allowed as a permit condition.

### 2. Design Standards

Corings of the concrete in the existing containment area were taken and tested for comprehensive strength. A copy of the report generated from those tests is included in Appendix C of this assessment. The structural capacity of the foundation was compared to those sections that are applicable in the API-650 and the ACI-318, and these calculations were used as a guide in verifying the ability of the system to contain hazardous waste.

#### 3. Corrosion Protection

There is an impermeable coating applied to the entire concrete floor and curbs. Appendix F of this assessment contains detailed information on the coating(s) employed.

# 4. Documented Age of the Containment Area

The secondary containment system was constructed and installed in 1987.

#### 5. Result of Leak Tests

A visual inspection of the containment area was performed and from this inspection there were no cracks or breaks in the impermeable coating, therefore it appears to be adequate to contain any leaks or spills.

# 6. Calculation of Capacity Available (CCA)

Area 2738 s.f.
Curb Height 0.25 ft.
Material Concrete
Gross Volume 685 c.f.

See Appendix H for detailed drawings of this containment area. Appendix A of this assessment contains detailed calculations of the available containment volume. The containment capacity available = 685 c.f.

# 7. Required Volume

# Containment Capacity Required (CCR)

CCR=Volume of Largest Tank in the secondary containment

Volume of Largest Tank = (FT1)=

401 c.f.

# 8. Comparison of Available Volume to Required Volume

# Containment Capacity

Containment Capacity Required = 401 c.f.
Secondary Containment Volume Available = 685 c.f
Excess Containment Volume = 284 c.f.

CCA>CCR Adequate Capacity (under normal operating conditions is available)

#### E CONCLUSIONS

- 1. The foundation, structural support beams, connections, and controls for the Evaporator Feed Tank No. 4 (EF4) System have been adequately designed.
- 2. The Evaporator Feed Tank No. 4 (EF4) system has sufficient structural strength, is compatible with the wastes to be stored and treated, and has adequate corrosion protection to ensure that it will not collapse, rupture or fail.
- 3. The Evaporator Feed Tank No. 4 (EF4) system was inspected on 3/1/95 for weld breaks, punctures scrapes of protective coating, cracks, leaks, corrosion, and other structural damage or inadequacies of construction/installation.
- 4. The Evaporator Feed Tank No. 4 (EF4) was tightness tested on 3/1/95, and it was found that the tank test positive for tightness.
- 5. The Secondary Containment for the Evaporator Feed Tank No. 4 (EF4) system is

(Feed Tank EF4) ((09/18/96 ) of sufficient structural strength and of sufficient volume to meet the requirements set forth in 40 CFR 264.193.

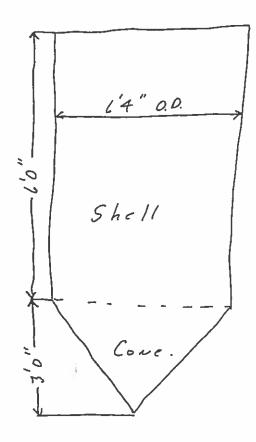
- 6. All ancillary equipment associated with the Evaporator Feed Tank No. 4 (EF4) system is properly supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.
- 7. The Evaporator Feed Tank No. 4 (EF4) system associated ancillary equipment have been tightness tested in accordance with ASME/ANSI B31.

#### F CERTIFICATION

WWOKLAHO!

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

(Feed Tank EF4) ((09/18/96 )


Primary Tank Volume Calculations

# EFA Volume Calculations

Shell Volume = TTr²L = 3.14 × 3.17ft × 3.17ft × 6ft. ≅ 189,5 ft³

Cone Volume =  $\frac{1}{3} \pi r^2 L$ =0.33 x 3.14 x 3.17ft x 3.17ft x 3.17  $\approx 31.25 \text{ ft}^3$ 

Total Volume = Shell Volume + Come Volume
= 189. 5 ft 3 + 31. 25 ft 3
= 220, 75 ft 3



Secondary Containment Volume Calculations

# SECONDARY CONTAINMENT VOLUME CALCULATIONS

| Α. | DIMENSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 1. Length 2. Width 3. Height 44' 0" 3" min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| в. | VOLUME (Before encroachments) $64.75'x 44'x .25' = 712.25ft^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| c. | ENCROACHMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 1. Posts 2. Posts 3. Posts 4. Posts 5. Posts 6. Posts 7. Posts 8. Ramps 9. Ramps 10. Heat Exchangers 10. Pumps 10. Pumps 11. Pumps 12. Pumps 16. 0 10"x 10"x 3" 9 0 12"x 10"x 3" 1 0 14"x 15"x 3" 1 0 24"x 8"x 3" 2 0 12"x 12"x 3" 2 0 32"x 12"x 3" 1 0 24"x 24"x 3" 1 0 16'x 32"x 3" 2 0 2'x 51"x 3" 4 0 5'x 20"x 3" 4 0 3'x 1'x 3"                                                                                                                                                                                                                                                                                                                                              |
| D. | ENCROACHMENT VOLUME CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 1. 16 x 0.83 ft x 0.83 ft x 0.25 ft = 2:75 ft <sup>3</sup> 2. 9 x 1 ft x 0.83 ft x 0.25 ft = 1.87 ft <sup>3</sup> 3. 1 x 1.17 ft x 1.25 ft x 0.25 ft = 0.37 ft <sup>3</sup> 4. 1 x 2 ft x 0.67 ft x 0.25 ft = 0.34 ft <sup>3</sup> 5. 2 x 1 ft x 1 ft x 0.25 ft = 0.5 ft <sup>3</sup> 6. 2 x 2.67 ft x 1 ft x 0.25 ft = 1.34 ft <sup>3</sup> 7. 1 x 2 ft x 2 ft x 0.25 ft = 1.0 ft <sup>3</sup> 8. 4 x 1.17 ft x 2.5 ft x 0.25 ft = 2.93 ft <sup>3</sup> 9. 1 x 1.33 ft x 2.67 ft x 0.25 ft = 0.89 ft <sup>3</sup> 10. 2 x 2 ft x 4.25 ft x 0.25 ft = 4.25 ft <sup>3</sup> 11. 4 x 5 ft x 1.67 ft x 0.25 ft = 3 ft <sup>3</sup> 12. 4 x 3 ft x 1 ft x 0.25 ft = 3 ft <sup>3</sup> |
|    | TOTAL ENCROACHMENT VOLUME 27.59 FT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | AVAILABLE CONTAINMENT VOLUME 684.66 FT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | LARGEST TANK VOLUME (FT 1) 401 FT <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | EXCESS CONTAINMENT <u>283.66 FT<sup>3</sup></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Manufacturers Design Information

USPCL

# item # EB 2 #EF4 QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATION (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)

|                                   | 1000 011 20                             |                                         |          | EVAN LEMON                            | 6                    |
|-----------------------------------|-----------------------------------------|-----------------------------------------|----------|---------------------------------------|----------------------|
| ompany Name LIDE                  | VESSELS                                 |                                         | By:      |                                       | BB01                 |
| Welding Procedure Specificat      | ion No. BBO                             |                                         | 6-1-82   | Supporting PQR No.(1)_                |                      |
| Revision No. 1                    |                                         | Data 5-1-90                             |          | MANUAL                                |                      |
| Welding Process(es) SM            | AW                                      |                                         | Type(s)  | (Automatic, Manual, Machi             | ne, or Semi-Auto.) - |
| Helding Frocessoss                | 64.575(0 <del>-1</del> 51)              |                                         |          |                                       |                      |
| JOINTS (QW-402)                   |                                         |                                         |          | Detail                                | 1                    |
| Joint Design SEE P                | RODUCTION                               | DRAWINGS                                | •        |                                       |                      |
| Backing (Yes) F4                  | (No)                                    | F3                                      |          |                                       |                      |
| Backing Material (Type)           |                                         | AL OR BASE M                            | JE I AL  |                                       |                      |
| Dayking metalisation              | (Refer to both )                        | acking and retainers.)                  |          |                                       |                      |
| ☐ Metal ☐ Nonfusing               | ı Metal                                 |                                         | ICED     |                                       |                      |
|                                   | NE.                                     | TAINERS NOT L                           | ושבט     |                                       |                      |
| Nonmetallic 0t                    | her                                     |                                         |          |                                       |                      |
| Sketches, Production Drav         | wings Weld Symb                         | ols or Written Descripti                | оп       |                                       |                      |
| should show the general at        | rangement of the                        | parts to be welded. Who                 | ere      |                                       |                      |
| applicable, the root space        | no and the detail                       | is of weld groove may                   | be       |                                       |                      |
|                                   |                                         | •                                       |          |                                       |                      |
| specified.                        |                                         |                                         |          |                                       |                      |
| (At the option of the Mfgr.       | sketches may be                         | attached to illustrate jo               | int      |                                       |                      |
| design, weld layers and bea       | d sequence. 8.0.                        | for notch toughness pro                 | C8-      |                                       |                      |
| dures, for multiple process p     | rocedures, etc.)                        | -                                       |          |                                       |                      |
| GREE' IOI HIGHADIA NICESSA N      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |          | · · · · · · · · · · · · · · · · · · · |                      |
| OR Specification type and gri     | ide                                     | το P-No, <u>1</u> σ                     |          |                                       |                      |
| to Specification type and         | grade                                   |                                         |          |                                       | •                    |
| OR                                |                                         |                                         |          |                                       |                      |
| Chem. Analysis and Mecn           |                                         |                                         |          |                                       |                      |
| to Chem. Analysis and M           | ch. Prop. ——                            |                                         |          |                                       |                      |
| Thickness Range:                  | Gracum . 18                             | 75 - 1.500 *                            | Filler   | ALL                                   |                      |
| Base Metal:                       | ΔΙΙΔ                                    | -                                       | Fillet   | ALL                                   | <u> </u>             |
| Pipe Dia. Range:<br>Other * PROCE | DURE LIMI                               | TED TO 1.500                            | DUE TO   | NO PWHT                               |                      |
| Other # 111000                    |                                         |                                         | _        |                                       |                      |
|                                   |                                         |                                         |          |                                       |                      |
| FILLER METALS (QW-4)              | 043                                     |                                         |          | 1                                     | •                    |
| Spec. No. (SFA)                   | ~~                                      | 5.1                                     |          |                                       |                      |
| AWS No. (Class)                   | E6010                                   | E7018                                   | 3        |                                       |                      |
| F-No                              | 3                                       | 4                                       |          |                                       |                      |
| A-No                              | 1.                                      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | E /208   |                                       |                      |
| Size of Filler Metals             |                                         |                                         | - 5/32"  |                                       |                      |
| Deposited Weld Metal =            | .250                                    | .614                                    |          |                                       |                      |
| Thickness Range:                  |                                         | 4 00                                    | -        |                                       |                      |
| Groove                            | .500                                    | 1.22                                    | <u> </u> |                                       |                      |
| Fillet                            | ALL                                     | ALL                                     |          |                                       |                      |
| Electrode-Flux (Class) .          |                                         |                                         |          |                                       |                      |
| Flux Trade Name                   |                                         |                                         |          |                                       |                      |
| sumable Insert                    |                                         |                                         |          |                                       |                      |
| ner                               |                                         |                                         |          |                                       |                      |
|                                   |                                         |                                         |          |                                       |                      |

each bese metal-filler metal combination should be recorded individually.

ACUE 201 --- Dime Boy 2300 Fairfield, NJ 07007-2300.

QW-482 (Back)

|                                                   |                   |                                                      |                                                       | QW-482 (B    | ack)                | WPS No. BE       | 01           | Rev.1               |
|---------------------------------------------------|-------------------|------------------------------------------------------|-------------------------------------------------------|--------------|---------------------|------------------|--------------|---------------------|
| POSITIONS (Q)                                     | W-4051            |                                                      |                                                       | PC           | STWELD HEA          | TREATMEN         | T (QW-407)   |                     |
| Paristants) of                                    | Groove All        |                                                      |                                                       |              | Temperature Ra      | nga <u>NA</u>    |              |                     |
| Weldien Progr                                     | ession: Up 🚢      |                                                      | _Down_F3                                              |              | Time Range          |                  |              |                     |
| Position(s) of                                    | Fillet ALL        |                                                      |                                                       |              |                     |                  |              |                     |
|                                                   |                   |                                                      |                                                       | G            | AS (QW-408)         |                  | _            | ! . !               |
| PREHEAT (QW                                       | 1-406)            |                                                      |                                                       |              |                     |                  | Percent Comp |                     |
| Smhoot Temp                                       | Min. 50°          | <u>**                                   </u>         |                                                       |              |                     | Gas(es)          | (Mixtur      | er Flow Hate        |
| Interpass Tem                                     | ID. Max. OOO      | . F.                                                 |                                                       |              |                     |                  |              |                     |
| Prehest Maint                                     | anance NA         |                                                      |                                                       |              | Shielding           |                  |              |                     |
| (Continuous o                                     | or special heatin | g where applica                                      | ble should be re                                      | ecorded)     | Trailing<br>Backing |                  |              |                     |
|                                                   |                   |                                                      |                                                       |              | Backing             |                  |              |                     |
| Current AC o Amps (Range (Amps and position, an   | volts range sh    | Pol<br>OW Volts (F<br>ould be record<br>This informa | arity REV lange) SEE led for each eletion may be list | ctrode size, |                     |                  |              |                     |
| _                                                 | ctrode Size and   |                                                      |                                                       | (P           | ure Tungsten, 2     | % Thoristed, at  | 36.)         |                     |
| Mode of Mat                                       | al Transfer for C | MAW                                                  |                                                       | (St          | oray are, short e   | ircuiting arc, e | te.)         |                     |
|                                                   |                   |                                                      |                                                       |              |                     |                  |              |                     |
| Electroda Wi                                      | re feed speed ra  | nge                                                  |                                                       |              |                     | <u> </u>         |              | <del> </del>        |
| Method of 8 Oscillation Contact Tub Multiple or S |                   | AIR AIR nce side) MULT SING                          | ARC OR (                                              | GRIND AS     | NEEDED              | /2" TN 1         | S NEEDEI     |                     |
| 19                                                |                   | ** 2                                                 | THROUGH                                               | 1 5"         | WILEMI E            | <u> </u>         |              |                     |
|                                                   |                   | AND                                                  | TUTOOGU                                               | <u> </u>     |                     |                  |              |                     |
|                                                   |                   | Filler                                               | Metal                                                 | Cur          | rent                |                  |              | Other               |
|                                                   |                   |                                                      |                                                       |              |                     |                  | 1            | e.g., Remarks, Com  |
|                                                   | 317               |                                                      |                                                       |              |                     |                  | Travel       | ments, Hot Wire     |
|                                                   |                   |                                                      |                                                       | Туре         | Amp.                | Volt             | Speed        | Addition, Technique |
| Weld                                              |                   | Class                                                | Dia.                                                  | Polar.       | Range               | Range            | Range        | Torch Angle, Etc.)  |
| Layer(s)                                          | Process           | Cidaz                                                | 5,0.                                                  |              |                     |                  |              |                     |
| 400                                               | CVATZ             | TEO10                                                | 1/8"                                                  | REV          | 75-125              | 18-24            | NA           |                     |
| 1&2                                               | SMAW              | E6010                                                | 5/32"                                                 | T/CZ A       | 110-170             |                  | +4           |                     |
| REM                                               | SMAW              | E7018                                                | 1/8"                                                  | ••           | 115-165             |                  | **           |                     |
| KUM<br>**                                         | "                 |                                                      | 5/32"                                                 | ••           | 150-220             | 21-27            | **           |                     |
| - Shirt                                           |                   |                                                      | 1                                                     |              |                     |                  |              |                     |
| L                                                 |                   |                                                      | 17.                                                   |              | •                   |                  |              |                     |
|                                                   | 595               |                                                      |                                                       |              |                     |                  |              |                     |
|                                                   |                   | 100                                                  |                                                       |              |                     |                  |              |                     |

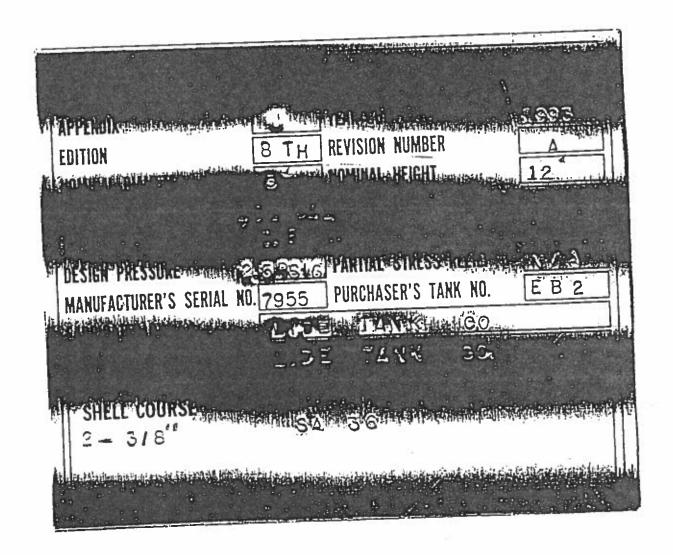
### QW-483 SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORD (PQR) (See QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record Actual Conditions Used to Weld Test Coupon.

| DO .                                                                                                                                                                                                                     | S INC.                                    | Oate 5-26-82                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rocedure Qualification Record No. 89                                                                                                                                                                                     | -7-2                                      | U410                                                                                                                                                                                                                                                                                                                   |
| VPS No. BBO1                                                                                                                                                                                                             | <u> </u>                                  |                                                                                                                                                                                                                                                                                                                        |
| Velding Processes) SMAW  Types (Manual, Automatic, Semi-Auto.)                                                                                                                                                           | MANUAL                                    |                                                                                                                                                                                                                                                                                                                        |
| 'ypes (Manual, Automatic, Semi-Auto.)                                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                        |
| OINTS (QW-402)                                                                                                                                                                                                           |                                           |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                          |                                           | 1                                                                                                                                                                                                                                                                                                                      |
| -                                                                                                                                                                                                                        |                                           | 37 1/2 °                                                                                                                                                                                                                                                                                                               |
| .86                                                                                                                                                                                                                      | 54"                                       | 1/16"                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                          | -                                         | → 1/8" · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                           |
| (For combination quali                                                                                                                                                                                                   | Groove C fications, the deposited weld mi | Design of Test Coupon etal thickness snall be recorded for each filler metal or process used.]                                                                                                                                                                                                                         |
| BASE METALS (QW-403)                                                                                                                                                                                                     |                                           | POSTWELD HEAT TREATMENT (QW-407)                                                                                                                                                                                                                                                                                       |
| Material Spec. SA-106                                                                                                                                                                                                    |                                           | Temperature NA                                                                                                                                                                                                                                                                                                         |
| pe or Grade B                                                                                                                                                                                                            |                                           | _ Time                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                          | to P-No. 1                                | Other                                                                                                                                                                                                                                                                                                                  |
| Thickness of Test Coupon                                                                                                                                                                                                 |                                           | -                                                                                                                                                                                                                                                                                                                      |
| Diameter of Test Coupon 6-5/9                                                                                                                                                                                            | יים ייני                                  | -                                                                                                                                                                                                                                                                                                                      |
| Otner                                                                                                                                                                                                                    |                                           |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                          |                                           | GAS (QW-408) Percent Composition                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                          |                                           | Gastes) (Mixture) Flow Rate                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                          | <del></del>                               |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                          |                                           | Shielding                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                          | 1                                         | Trailing ————————————————————————————————————                                                                                                                                                                                                                                                                          |
| FILLER METALS (CW-404)                                                                                                                                                                                                   |                                           | Backing                                                                                                                                                                                                                                                                                                                |
| E 1                                                                                                                                                                                                                      | 1 5.1                                     |                                                                                                                                                                                                                                                                                                                        |
| SFA Specification 5.1                                                                                                                                                                                                    | 5.1<br>1 F7018                            |                                                                                                                                                                                                                                                                                                                        |
| AWS Classification E6010                                                                                                                                                                                                 | E7018                                     | ELECTRICAL CHARACTERISTICS (QW-409)                                                                                                                                                                                                                                                                                    |
| AWS Classification E6010 Filler Metal F-No. 3                                                                                                                                                                            | E7018                                     | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  REV                                                                                                                                                                                                                                                                   |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1                                                                                                                                              | E7018<br>  4<br>  1                       | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  REV                                                                                                                                                                                                                                                                   |
| AWS Classification <u>E6010</u> Filler Metal F-No. <u>3</u> Weld Metal Analysis A-No. <u>1</u> Size of Filler Metal <u>1/8"</u>                                                                                          | E7018                                     | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amos. F3-120, F4-120 Vol.F3-20, F4-24                                                                                                                                                                                                                   |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1                                                                                                                                              | E7018<br>  4<br>  1                       | ELECTRICAL CHARACTERISTICS (OW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 Vol. F3-20, F4-24  Tungsten Electrode Size NA                                                                                                                                                                                      |
| AWS Classification <u>E6010</u> Filler Metal F-No. <u>3</u> Weld Metal Analysis A-No. <u>1</u> Size of Filler Metal <u>1/8"</u>                                                                                          | E7018<br>  4<br>  1                       | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amos. F3-120, F4-120 Vol.F3-20, F4-24                                                                                                                                                                                                                   |
| AWS Classification <u>E6010</u> Filler Metal F-No. <u>3</u> Weld Metal Analysis A-No. <u>1</u> Size of Filler Metal <u>1/8"</u> Other  Deposited Weld Metal <u>, 250</u>                                                 | E7018<br>  4<br>  1<br>  1/8"             | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 Vol. F3-20, F4-24  Tungsten Electrode Size NA  Other                                                                                                                                                                               |
| AWS Classification <u>E6010</u> Filler Metal F-No. <u>3</u> Weld Metal Analysis A-No. <u>1</u> Size of Filler Metal <u>1/8"</u> Other  Deposited Weld Metal <u>. 250</u> POSITION (QW-405)  Position of Groove <u>66</u> | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amos. F3-120, F4-120 Volta -20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED                                                                                                                                 |
| AWS Classification <u>E6010</u> Filler Metal F-No. <u>3</u> Weld Metal Analysis A-No. <u>1</u> Size of Filler Metal <u>1/8"</u> Other  Deposited Weld Metal <u>. 250</u> POSITION (QW-405)  Position of Groove <u>66</u> | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 Vol. F3-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING                                                                                                   |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Other  Deposited Weld Metal                                                                                      | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 Vol. F3-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE                                                                                 |
| AWS Classification <u>E6010</u> Filler Metal F-No. <u>3</u> Weld Metal Analysis A-No. <u>1</u> Size of Filler Metal <u>1/8"</u> Other  Deposited Weld Metal <u>. 250</u> POSITION (QW-405)  Position of Groove <u>66</u> | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 vol. F3-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE  Multipass or Single Pass (per side) MULTIPLE                                   |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Other  Deposited Weld Metal                                                                                      | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 Volta-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE                                                                                   |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Other                                                                                                            | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 vol. F3-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE  Multiple Single Pass (per side) MULTIPLE  Single or Multiple Electrodes SINGLE |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Other                                                                                                            | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 Volta -20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE  Multipass or Single Pass (per side) MULTIPLE                                    |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Other                                                                                                            | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (OW-409)  Current DC  Polarity REV  Amos. F3-120, F4-120 Volts 3-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (OW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE  Multiple Single Pass (per side) MULTIPLE  Single or Multiple Electrodes SINGLE |
| AWS Classification E6010  Filler Metal F-No. 3  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Other                                                                                                            | E7018<br>  4<br>  1<br>  1/8"<br>  .614   | ELECTRICAL CHARACTERISTICS (QW-409)  Current DC  Polarity REV  Amps. F3-120, F4-120 vol. F3-20, F4-24  Tungsten Electrode Size NA  Other  TECHNIQUE (QW-410)  Travel Speed NOT RECORDED  String or Weave Bead STRING  Oscillation NONE  Multiple Single Pass (per side) MULTIPLE  Single or Multiple Electrodes SINGLE |

# QW-483 SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORD (PQR) (See QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record Actual Conditions Used to Weld Test Coupon.

| LIDE VESSELS                                                                                                                                                                          |                                                    | 6.07.00                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mpany Name BBO: Descrite Qualification Record No. BBO: BBO2                                                                                                                           | 2                                                  | Date 5-25-82                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| 5MAW                                                                                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| pes (Manual, Automatic, Semi-Auto.)                                                                                                                                                   | MANUAL                                             |                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| INTS (QW-102)                                                                                                                                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| -                                                                                                                                                                                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                       |                                                    | - 37 ½ °                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                       |                                                    | 31 /2                                                                                                                                                                                                                                                                                                                                                              |
| •                                                                                                                                                                                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| <u> </u>                                                                                                                                                                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| 762                                                                                                                                                                                   |                                                    | □ 1/8"                                                                                                                                                                                                                                                                                                                                                             |
| .750"                                                                                                                                                                                 | 2                                                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                              |
| ·                                                                                                                                                                                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| Î                                                                                                                                                                                     |                                                    | Ţ                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                    |
| ·                                                                                                                                                                                     |                                                    | 1 1                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                       | •                                                  | Design of Test Coupon                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                       | Groove<br>The decorion wild o                      | netal thickness shall be recorded for each filler metal or process used.)                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                       | Milens, are deposited water                        | I POSTWEID HEAT TREATMENT (COTO)                                                                                                                                                                                                                                                                                                                                   |
| ASE METALS (QW-403)<br>SECTION SPEC. SA-36                                                                                                                                            |                                                    | Temperature NA                                                                                                                                                                                                                                                                                                                                                     |
| ine or Grade                                                                                                                                                                          |                                                    | Time                                                                                                                                                                                                                                                                                                                                                               |
| 1 1                                                                                                                                                                                   | o P-No. 1                                          | Other                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                       | U F -110                                           |                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                       | 5 F-110:                                           |                                                                                                                                                                                                                                                                                                                                                                    |
| sickness of Test Coupon                                                                                                                                                               | 5 - 110.                                           |                                                                                                                                                                                                                                                                                                                                                                    |
| sickness of Test Coupon                                                                                                                                                               | 5 - 10.                                            | C 15 (OW-109)                                                                                                                                                                                                                                                                                                                                                      |
| sickness of Test Coupon                                                                                                                                                               |                                                    | GAS (QW-408)  Percent Composition                                                                                                                                                                                                                                                                                                                                  |
| sickness of Test Coupon                                                                                                                                                               |                                                    | GAS (QW-408)  Percent Composition                                                                                                                                                                                                                                                                                                                                  |
| sickness of Test Coupon                                                                                                                                                               |                                                    | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding                                                                                                                                                                                                                                                                                          |
| sickness of Test Coupon                                                                                                                                                               |                                                    | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — —                                                                                                                                                                                                                                                                                  |
| ickness of Test Coupon750 iameter of Test Coupon ther_PLATE                                                                                                                           |                                                    | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding                                                                                                                                                                                                                                                                                          |
| ickness of Test Coupon                                                                                                                                                                | 5.1                                                | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| ickness of Test Coupon                                                                                                                                                                | 5.1<br>E7024                                       | GAS (CW-108)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| ickness of Test Coupon                                                                                                                                                                | 5.1<br>E7024                                       | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| ILLER METALS (QW-404) FA Specification E6010 WS Classification E6010 Siler Metal F-No.                                                                                                | 5.1<br>  E7024<br>  1                              | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| ickness of Test Coupon                                                                                                                                                                | 5.1<br>E7024                                       | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (CW-409)  Current DC Polarity REV Amps.F3-110, F1-250 Vol653-20, F1-22                                                                                                                                                                      |
| isickness of Test Coupon                                                                                                                                                              | 5.1<br>  E7024<br>  1                              | GAS (QW-108)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (CW-109)  Current DC Potarity REV Amps.F3-110, F1-250 Voxs3-20, F1-22  Tungsten Electrode Size                                                                                                                                              |
| inter METALS (QW-404) FA Specification 5.1 Was Classification E6010 Siller Metal F-No. 3 Veld Metal Analysis A-No. 1 Size of Filler Metal 1/8"                                        | 5.1<br>  E7024<br>  1                              | GAS (QW-108)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (QW-109)  Current DC Potarity REV Amps.F3-110, F1-250 VoR:3-20, F1-22                                                                                                                                                                       |
| ILLER METALS (QW-404) FA Specification 5.1 WS Classification E6010 Siller Metal F-No. 3 Veld Metal Analysis A-No. 1 Velocities of Filler Metal 1/8"                                   | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"            | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (CW-409)  Current DC Potarity REV Amps.F3-110, F1-250 Vox:3-20, F1-22  Tungsten Electrode Size                                                                                                                                              |
| ickness of Test Coupon                                                                                                                                                                | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"            | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding  Trailing  Backing  ELECTRICAL CHARACTERISTICS (CW-409)  Current DC  Polarity REV  Amps.F3-110, F1-250 vox53-20, F1-22  Tungsten Electrode Size  Other  TECHNIQUE (QW-410)                                                                                                               |
| Sickness of Test Coupon                                                                                                                                                               | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (CW-409)  Current DC Polarity REV Amps.F3-110, F1-250 VoÆ3-20, F1-22  Tungsten Electrode Size  Other  TECHNIQUE (QW-410) Trayel Speed NOT RECORDED                                                                                          |
| ickness of Test Coupon                                                                                                                                                                | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-108)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| isinckness of Test Coupon                                                                                                                                                             | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-108)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (QW-109)  Current DC Polarity REV Amps.F3-110, F1-250 VoR:3-20, F1-22  Tungsten Electrode Size  Other  TECHNIQUE (QW-410) Travel Speed NOT RECORDED  String or Weave Bead STRING                                                            |
| isinckness of Test Coupon                                                                                                                                                             | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-108)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (QW-109)  Current DC Polarity REV Amps.F3-110, F1-250 VoRs3-20, F1-22  Tungsten Electrode Size  Other  TECHNIQUE (QW-410) Travel Speed NOT RECORDED  String or Weave Bead STRING Oscillation  Multiple of Sizele Pass (per side) MULTIPLE   |
| FILLER METALS (OW-104) SFA Specification AWS Classification Filler Metal F-No.  Weld Metal Analysis A-No. 1  Size of Filler Metal 1/8"  Deposited Weld Metal -250"  POSITION (OW-405) | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-408)  Percent Composition  Gas(es) [Mixture] Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| isinckness of Test Coupon                                                                                                                                                             | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding Trailing Backing  ELECTRICAL CHARACTERISTICS (QW-409)  Current DC Polarity REV Amps.F3-110, F1-250 VoRs3-20, F1-22  Tungsten Electrode Size  Other  TECHNIQUE (QW-410) Travel Speed NOT RECORDED  String or Weave Bead STRING Oscillation  Multiplet of Sizele Pass (per side) MUI TIPLE |
| isickness of Test Coupon                                                                                                                                                              | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-408)  Percent Composition  Gas(es) [Mixture] Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| isinckness of Test Coupon                                                                                                                                                             | 5.1<br>  E7024<br>  1<br>  1<br>  3/16"<br>  .500" | GAS (QW-408)  Percent Composition  Gas(es) (Mixture) Flow Rate  Shielding — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |

# QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATION (WPS) (See QW-200.1, Section IX, ASME Boiler and Pressure Vessel Code)


| Company Name LIDE VESSELS INC.                                | By: EVAN LEMON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Walding Procedure Specification No. 3802                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Revision No. 1 Date 3-/                                       | <u>-89</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Welding Process(es) SMAW                                      | Type(s) MANUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                               | (Automatic, Manual, Machine, or Semi-Auto.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IOINTS IOW-402)                                               | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| JOINTS (QW-402) SEE PRODUCTION DRAWING                        | <u>ss</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Backing (Yes) (No) XX                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Backing Meterial (Type) WELD METAL OR BA                      | SE METAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Refer to both becking and reta                               | iners.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Metal Nonfusing Metal NO RETAINES                             | S USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nonmetallic Other                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sketches, Production Orawings, Weld Symbols or Written        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| should show the general arrangement of the parts to be well   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| applicable, the root spacing and the details of weld groo     | ve may be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| specified.                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (At the option of the Mfgr., sketches may be attached to illu |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| design, weld layers and bead sequence, e.g. for notch tough   | ness proce-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dures, for multiple process procedures, etc.)                 | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | ₩.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SE METALS (QW-403)  1 Group No. 1&2 to P-No. 1                | Group No. 1&2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OR                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Specification type and grade                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to Specification type and grade                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OR                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chem. Analysis and Mecn. Prop.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to Chem. Analysis and Mech. Prod.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thickness Range:                                              | " Fillet ALL ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date metal.                                                   | Filler ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pipe Dia, Hange: Grodve                                       | - FINAL COLUMN C |
| Other                                                         | à l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | n l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *FILLER METALS (QW-404)  Soer No (SEA) 5.1 5.                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E4010 57                                                      | 024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7 1                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7-110.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2010:                                                         | 8", 5/32", 3/16"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Size of Piller Metals                                         | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thickness Range:                                              | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3:31                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Electrode-Flux (Class)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flux Trace Name                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nsumable Insert                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ther                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>\*</sup>Each base metal-filler metal combination should be recorded individually.

QW-482 (Back)

|                |                                         |                  |                  | 23            |                             | WPS No. DE         | 702         | Ray                  |
|----------------|-----------------------------------------|------------------|------------------|---------------|-----------------------------|--------------------|-------------|----------------------|
| OSITIONS IC    | W-405)                                  |                  |                  | P             | OSTWELD HEA                 | TTREATMEN          | T (QW-407)  |                      |
| 0i-i(a) ad     | Partition (s) of Grown F3-ALL . F1-FLA1 |                  |                  |               |                             |                    |             |                      |
| Positioniss of | ression: Up F                           | 3                | Down             |               | Time Range                  |                    |             |                      |
| Wetting Frog   | Fillet ALL                              |                  |                  |               |                             |                    |             |                      |
| Position(s) of | Pillet                                  |                  |                  |               | AS (QW-408)                 |                    |             |                      |
|                |                                         | 19               |                  |               |                             |                    | Percent Com | position             |
| PREHEAT (Q)    | N-106)<br>b. Min. 50°                   | F ±              |                  |               |                             | Gas(es)            | (Mixtur     | re) Flow Rate        |
| Prensat Temi   | b. Min. 50                              | 7.5              |                  |               |                             |                    |             |                      |
| Interpass Ten  | np. Max. 600                            | <u> </u>         |                  |               | Shielding                   | ~ V                |             |                      |
| Preneat Main   | Tananca NO1                             | <u> </u>         |                  |               | •                           |                    |             |                      |
| (Continuous    | or special heating                      | ng where applica | able should be r | ecorasai      | Trailing                    |                    |             |                      |
|                |                                         |                  |                  |               | Backing                     |                    |             |                      |
|                |                                         |                  |                  |               | 82                          |                    |             |                      |
| ELECTRICAL     | CHARACTER                               | ISTICS (QW-40    | 9)<br>. PEU      |               |                             |                    |             |                      |
| Current AC o   | or ocDC                                 | Poi              | larity REV       | PEL ON        |                             |                    |             |                      |
|                | SEE BEL                                 |                  |                  |               |                             |                    | - 2         |                      |
| {Amps and      | volts range sh                          | ould be record   | sed for each eli | ectroda siza, |                             |                    |             |                      |
| position, ar   | nd thickness, et                        | c. This informs  | tion may be lis  | ted in a tab- |                             |                    |             |                      |
| ular form si   | imilar to that sh                       | own below.)      |                  |               |                             |                    |             |                      |
|                |                                         |                  |                  |               |                             |                    | ¥           |                      |
| Tungsten Ele   | ectrode Size and                        | Туре             |                  | - 48          | ure Tungeten, 2             | % Thoristed et     | <u>.</u>    |                      |
| -              |                                         |                  |                  | ()            | - dra 1 du <b>četan,</b> 2. | A Ittelligram's ac | 3.5         |                      |
| Mode of Mat    | at Transfer for (                       | GMAW             |                  |               | oray are, short e           |                    | re 1        |                      |
|                | -                                       |                  |                  | (5)           | bush sic' mour c            | scutting arc, e    | (C-)        | 23                   |
| Electrode Wi   | ire feed speed ra                       | nee              |                  |               |                             |                    |             |                      |
|                |                                         |                  | -                |               |                             |                    |             |                      |
| TECHNIQUE      | (OW-410)                                |                  |                  |               |                             |                    |             |                      |
| Seeing of We   | ave Bead                                | STRI             | NG               |               |                             |                    |             |                      |
| String or 198  | es Cup Size                             |                  |                  |               |                             |                    |             |                      |
| Unities or Gr  | B COB 3124                              | - IBaurine Ge    | inding, etc.)    | BRUSH, G      | RIND, OF                    | CHIP A             | S NEEDE     | D                    |
| initial and it | tarpass Geamin                          |                  |                  |               |                             |                    |             |                      |
|                |                                         | AIR              | ARC OR           | GRIND AS      | NEEDED                      |                    |             | <u> </u>             |
|                | ack Gouging                             |                  |                  |               |                             |                    |             |                      |
|                |                                         |                  |                  |               |                             |                    |             |                      |
|                | e to Work Dista                         | MI 17 7          | TIPLE            |               |                             |                    |             |                      |
| 1              | Single Pass (per                        | CINC             |                  |               |                             |                    | -           |                      |
|                | Single Electrode                        | 51140            | 3CC              |               |                             |                    |             |                      |
| Travel Speed   | d (Range)                               | <u> </u>         |                  |               |                             | <del></del>        |             |                      |
| Peaning        |                                         | NONE             | TINE! 5 9        | ACC TO 1      | EXCEED 1.                   | (2" TN T           | HICKNES     | S                    |
| Other          |                                         | NU S             | SINGLE P         | TMIM DO       | ENEVA EUR                   | THICKN             | ESSES O     | VER 1.25"            |
|                |                                         | * 20             | NIW 4-CIC        | INC : 5"      | ENEM) FU                    | 7 14TT PVI         | <u></u>     |                      |
|                |                                         | AND              | INCLUDI          | NG 1.5"       |                             | <del></del>        |             |                      |
|                | 1                                       |                  |                  |               | 1                           |                    |             |                      |
|                | 1                                       | Filler           | Metal            | Cur           | rent                        |                    |             | Other                |
|                |                                         |                  | <u></u>          |               |                             |                    |             | (a.g., Remarks, Com- |
|                | -                                       |                  |                  |               |                             | ļ                  | Travel      | ments. Hot Wire      |
|                |                                         |                  |                  | _             |                             | Vott               | Speed       | Addition, Technique, |
| Weld           |                                         |                  |                  | Түре          | Amp.                        | Range              | Range       | Torch Angle, Etc.)   |
| Layer(s)       | Process                                 | Class            | Dia.             | Polar.        | Range                       | nanga              | 1191139     |                      |
|                | <del> </del>                            |                  |                  | i             | °                           |                    |             |                      |
| 1&2            | SMAW                                    | E6010            | 1/8"             | REV           | 75-125                      | 18-24              | NA          |                      |
| 11             | # 1                                     | 11               | 5/32"            | 10            | 110-170                     | 20-26              | H           | ·                    |
|                | "                                       | E7024            | 1/8"             | "             | 140-190                     |                    | *tt         |                      |
| REM            |                                         | E/024            | 5/32"            |               | 180-250                     |                    | nt 📴        |                      |
| 137            |                                         | ••               | 1                |               | 230-305                     |                    | **          |                      |
|                | "                                       |                  | 3/16             | 1             | 250-303                     | /                  |             |                      |
|                | 1                                       |                  |                  |               |                             |                    |             |                      |
|                | 1                                       |                  |                  |               | 1                           |                    |             |                      |
|                |                                         |                  |                  | ļ             |                             |                    |             | }                    |

USPCI



USPCI

|                              | API STAN                                             | IDARD 6               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | appression of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\mathcal{D}_{\mathcal{A}}$  | 8 74                                                 | g plant di            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NOMINA BOUNDED ROSE          | 6:14                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND TOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NOMINAL CAPACITY             | 1,625 GAL                                            | DESIGN LIQU           | ID LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| । गीरशक्त सर्वादशासीयाः<br>। | . 5<br>5                                             |                       | A A LEAD OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | idina comanderate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 8.3 87 3                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 果准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 7973                                                 | n kiam                | . Careers in the contract of t | 8.F 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Albilio didi di massino      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | ANK                   | CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | neg melyeshiring and read .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ERECTED BY                   | LIDE                                                 | TANK                  | c Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toggista an anamini Maria    | Fill of the Minister section with                    | ngkarananan duak      | Automobile Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | distance in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2= 3/8                       | 84                                                   | <u>ତ୍ର</u> ିତ         | e i ale aktisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing a state of the |
| The second second            | म् प्रवेशकार के त्या के कार्य के कार्य के कार्य<br>- | are the second second | Balletin mit andergen e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | airt segmen da Creative deschatel (Miller)           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the control of the control of the control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### QW-483 (Back)

| POR | No. | 9 | <b>B02</b> |  |
|-----|-----|---|------------|--|
|     |     |   |            |  |

#### Tensile Test (QW-150)

| Specimen<br>No. | Width | Thickness | Area | Ultimate<br>Total Load | Ultimate<br>Unit Stress<br>psi | Type of<br>Failure &<br>Location |
|-----------------|-------|-----------|------|------------------------|--------------------------------|----------------------------------|
| 140.            | .505  | I DIA.    | .200 | 14120                  | 70600                          | WLD DUCT                         |
| 2               | .506  | DIA.      | .201 | 13740                  | 68400                          | BM DUCT                          |
|                 |       |           |      |                        |                                | ļ <u> </u>                       |
|                 |       |           | 1    | <u> </u>               |                                |                                  |

#### Guided-Bend Tests (QW-160)

| Type and Figure No. | Result     |  |
|---------------------|------------|--|
| SIDE SEND QW-462.2  | ACCEPTABLE |  |
| SIDE BEND QW-462.2  | ACCEPTABLE |  |
| SIDE BEND QW-462.2  | ACCEPTABLE |  |
| SIDE SEND QW-462.2  | ACCEPTABLE |  |

#### Toughness Tests (QW-170)

| Specimen Notch Notch | Notes | Test   | Test Impact | Lateral  | Lateral Exp. |          | Drop Weight |  |
|----------------------|-------|--------|-------------|----------|--------------|----------|-------------|--|
|                      | Temp. | Values | % Shear     | Mils     | Break        | No Break |             |  |
| B                    |       |        |             |          |              |          |             |  |
| 1                    |       |        |             |          |              |          |             |  |
|                      |       |        |             |          |              |          |             |  |
|                      |       |        |             | <u> </u> |              |          |             |  |

|                                      |                                                              | Fillet-Weld Test (QW-18          | 30)                         |                                  |            |
|--------------------------------------|--------------------------------------------------------------|----------------------------------|-----------------------------|----------------------------------|------------|
| Result — Satisfacti<br>Macro—Results | ory: Yes No _                                                | Penetration into                 | Parent Metal: Yes           | No                               | 547        |
|                                      |                                                              | Other Tests                      |                             |                                  |            |
| Deposit Analysis .                   |                                                              |                                  |                             |                                  |            |
| Welder's Name                        | BILLY LIDE<br>SOUTHWESTERN                                   | LABORATORIES                     | Clock No<br>Laboratory Test | Stamp No<br>No. <u>D9-8220-1</u> |            |
| We cartify that the                  | e statements in this record are statements in the ASME Code. | e correct and that the test weld | is were prepared, welde     | d, and tested in accordanc       | e with the |
|                                      | 9                                                            | Manufacture                      | LIDE VESSE                  | S INC.                           |            |
| Date 9-11-<br>(Detail of record o    |                                                              | By may be modified to conform t  |                             |                                  |            |

#### QW-483 (Back)

| T | ensil | e Test | LOW    | (-150) |
|---|-------|--------|--------|--------|
|   |       |        | . IUII | - 1-01 |

| POR | Ma | 9801 |
|-----|----|------|
|     |    |      |

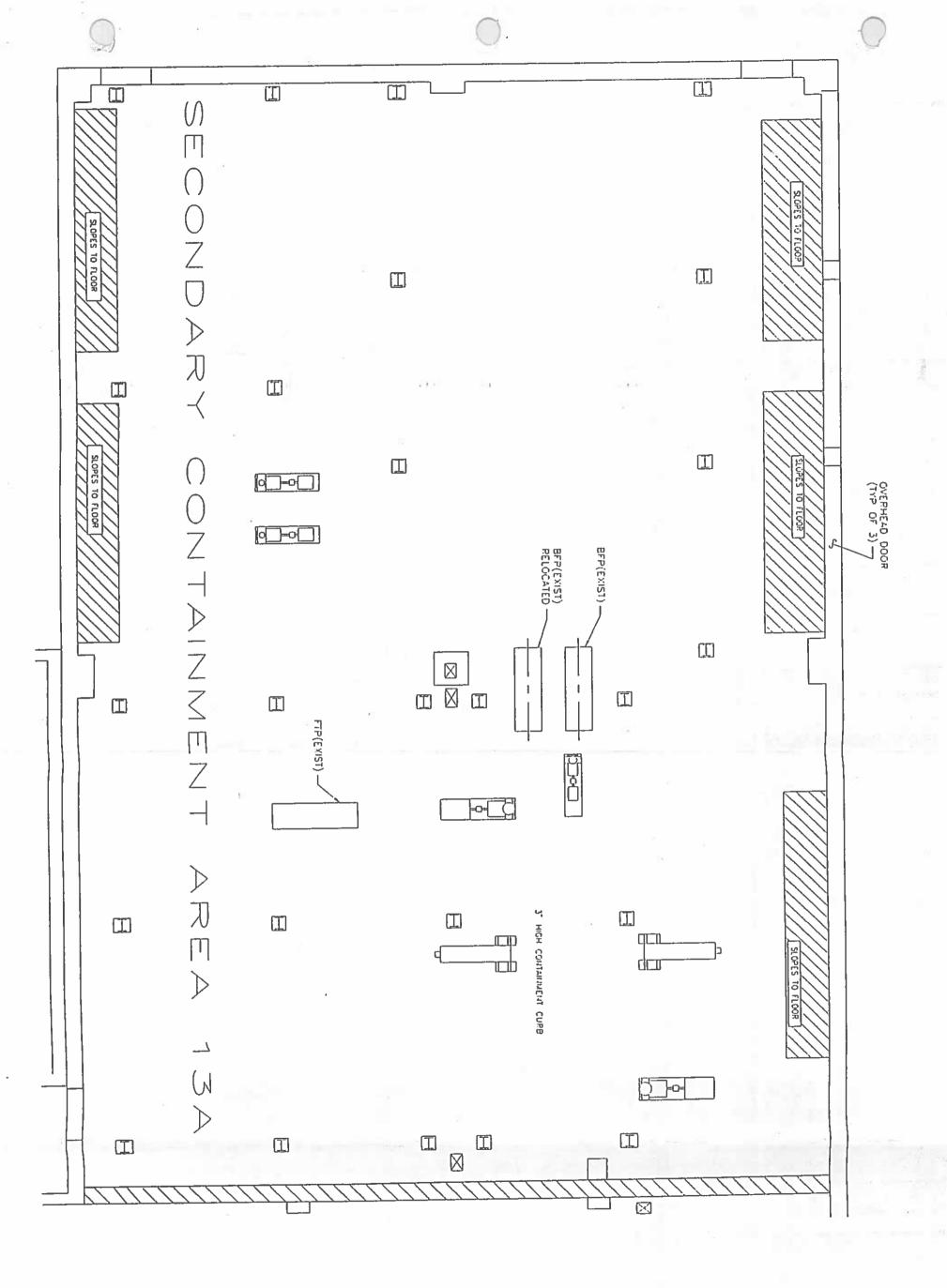
| Specimen<br>No. | Width | Thickness | Area   | Ultimate<br>Total Load<br>Ib | Ultimate<br>Unit Stress<br>osi | Type of Failure & Location |
|-----------------|-------|-----------|--------|------------------------------|--------------------------------|----------------------------|
| ı               | 1.506 | AIG       | 1 .201 | 15800                        | 78600                          | BM DUCT                    |
| 2               | .506  | DIA       | .201   | 15600                        | 77600                          | BM DUCT                    |

#### Guided-Bend Tests (QW-160)

| Type and Figure No. | Result       |
|---------------------|--------------|
| SIDE BEND QW-462.2  | ACCEPTABLE   |
| SIDE BEND QW-462.2  | ACCEPTABLE   |
| SIDE BEND QW-462.2  | ACCEPTABLE   |
| SIDE BEND QW-462.2  | I ACCEPTABLE |

#### Toughness Tests (QW-170)

| Specimen | Notch    | Noten    | Test  | Impact | Lateral | Exp. | Droo  | Weight   |
|----------|----------|----------|-------|--------|---------|------|-------|----------|
| No.      | Location | Type     | Temp. | Values | % Shear | Mils | Break | No Break |
| ( )      |          | <u> </u> |       |        |         |      |       |          |
|          |          |          |       |        |         |      | _     |          |
|          |          |          |       |        |         |      |       | <u> </u> |
|          |          |          |       |        |         |      | 1     |          |
|          |          |          |       |        |         | 10   |       |          |


#### Fillet-Weld Test (QW-180)

|                                                                                                                        | Penetration into Parent Metal: Yes No                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                        | Other Tests                                                                                                                                      |
| Deposit AnalysisDther                                                                                                  |                                                                                                                                                  |
| Velder's Name JOHN MCKINNEY  'ests conducted by: SOUTHWESTERN LA  Ve certify that the statements in this record are co | Clock No. 114 Stamp No. M  Laboratory Test No.D9-8220-2  Direct and that the test welds were prepared, welded, and tested in accordance with the |
| equirements of Section IX of the ASME Code.                                                                            | Manufacturer LIDE VESSELS INC.                                                                                                                   |

Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests required by the Code.)

Tank Wall Thickness

Secondary Containment Drawings



# KSL ENGINEERING & DESIGN INC. 306 RIDGECREST TYLER, TEXAS 75701

L. WEINBRENNEL PG. 3 OF 3

CHECK SFISMIC

D/H = 5.0/12.0 = .42

TANK SHELL = 3360 (1) TANK POOF 400 WI TANK CONTENTS 14,700 125

FIND EFFECTIVE MGS WITUL

2: 1875 For Zone 1

From Apr. E FIG. E-2 FOR DH = .42 T= 1.0  $\frac{\omega_1}{\omega_1} = 1$   $\frac{\omega_2}{\omega_1} = .9$ 

W1= 1470 115

Wz = 13,230 161

FIND X1 & X2 From Fig. E-3

X1/H = .43 X2/H = .85

X1 = 5.2 PT X2 = (0.2 FT

NATURA PERSON T= KVD WHERE K=.59 FOR FIG. E-4  $T = .59\sqrt{5} = 1.32 = 0$  G = .24  $C_2 = .305 = .30 (1.65)$ 

Cz= 134 for S=1.5 UNKNOWN SOIL CONDITION

M= ZI(CIUS Ks + CIWr Hz + CIWIXI + CZ WZXZ)

shace worf Time SLOSHING

M= .1875 (1.0) [.24(3360) 9.0 + .24(400) 12 + .24(1470) 5.2 + .34(13,230) 10.2] =

M= 10,524 H-4

FOR AMEHORES TANK CHECK STREET COM. STREETS & b= 4200 b + 1,273 (10,524) = .803 15/PT 2 CIRC

 $Sdness = \frac{803}{12(725)} = 270051$ 

Acrow. Conjucisive = .50 /5 = .5(3

# KSL ENGINEERING & DESIGN INC. 306 RIDGECREST TYLER, TEXAS 75701

L. WEINBREWWCL 16. Za=3

SHELL DESIGN

$$E_{5} = \frac{2.6(.5)6(1.5)}{.7(21000)} + 48^{4} = .008' + 48'' = .13314$$

7/2 Star 15 OR

HEAD DECIGN

Top Hero: Fur Pure DESIGN

LOADING IS SOPE ( DEAD + loops/ LUE LOAD

150/4/160= 1.04 141

th- DVCP + 18" C= 125 POR WEDOW CONNOR JOINT

$$\pm_{h} = 60^{n} \int \frac{.25(1.04 + 1/6)^{2}}{21,000} + \frac{1}{100} = .336^{n}$$

3/8" Hemo Putte DK

CHECK WIND ASSUME: TANK ENTY EFF DIA = 6' SHAPE FACTOR . 80

Wins Press. 100256 (100)2 = 26/5/

WINS FORCE 26/4 (12) = 1500 =

MONENT = 1500 15 (12/2) - 4200 \* (5.3/2) = -2130(+-15

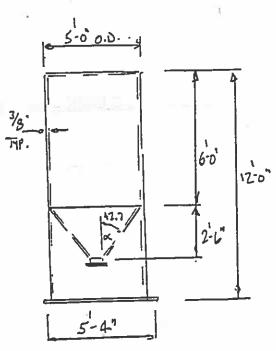
No UPCIFT

#### KSL ENGINEERING & DESIGN INC. 306 RIDGECREST TYLER, TEXAS 75701

L. WEINGLENNEL PG. 10-3-

### STRUCTURAL DESIGNS 5-0 1.D. x 12-0 THL

DESIGN CONDITIONS: ATMOSPHERIC TANIC

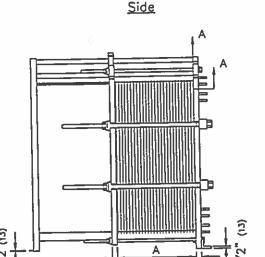

DESIGN TEMP 250°F:

WIND VELOCITY LOUMPL SIESME ZONE I

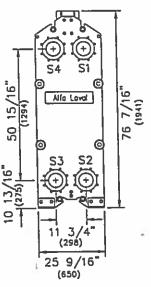
S.G. = 1.5

CORROSION ALLOW: 18"

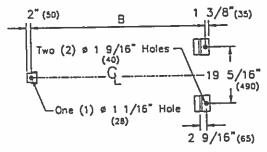
SHELL HEAD 3/8 THE CONE ANGLE & 42.7' TANK EN/TY 4200" TANK FULL 17,200"

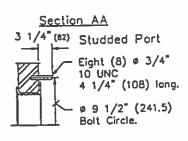



STRES CORRECTION FOR 250°F = .90 45 .90(3600) = 32,400/51 ALLOWADLE = 3/345 = 3/3 (32,400) ALLOWADLE = 21,600 pc-1


Heat Exchanger

Designed, Constructed and National Board Stamped in Accordance with latest 1992 A.S.M.E. Code and Addendum.




**Front** 









Dimensions in () are millimeters(mm) B= 42 5/16"(1075) A= See Plate Spec Documentation

| LOC        | Function                                                             | Fluid                                                      | Connections<br>Material | Size           | Rating                       | Туре                         |
|------------|----------------------------------------------------------------------|------------------------------------------------------------|-------------------------|----------------|------------------------------|------------------------------|
| \$2<br>\$3 | Hotside Inlet<br>Hotside Outlet<br>Coldside Inlet<br>Coldside Outlet | 30.7 psig Steam<br>30.7 psig Steam<br>Solution<br>Solution | SS<br>SS<br>SS<br>SS    | 6"<br>6"<br>6" | 150#<br>150#<br>150#<br>150# | STUD<br>STUD<br>STUD<br>STUD |

(50)

Notes: Carboline 134 1.5 mils DFT (Alfa Laval Blue)

**CERTIFIED** APPROVED FOR FABRICATION

Customer Name : USPC1 : 20572

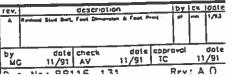
: # 2 Heat Exchangers

: 942005 Order Number

A/L Serial#(s): 30101-96638 thru 96639

Design Press/Temp.: 150 PSI / 300 °F

Plate/Gasket Matil: AISI 316 / EPDM Plates Actual/Max.: 39 / 64 (0.5mm)


Weight Dry/Flooded: 2350 lb / 2607 lb

Length CBar/TBolt.: 900 mm / 750 mm

M15-FFG

Alfa Laval Thermal Inc.

Manufactured in Richmond, Virginia



Alfa Laval Thermal Inc. 5400 International Trade Drive richmond, VA 23231

Plate Heat Exchanger Bill of Materials

Implementation Date: 2/28/94

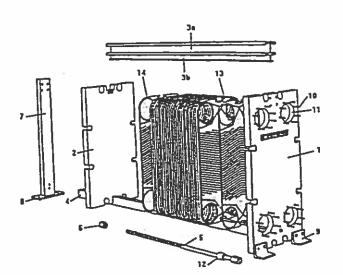
Revision:

Page 1 of 1

QA03138

Subject: M15-FFD

BACKGROUND


Given are standard ASME/ASTM materials of construction.

|   | No.                                                                      | <u>Item</u>                                                                                                                                                                                     | Quantity                                                       | <u>Material</u>                                                                                                                                        | <u>Notes</u>     | <u>Dimensions</u>                                      |
|---|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------|
|   | 1.<br>2.<br>3a.<br>3b.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10.<br>11. | Frame Plate Pressure Plate Carrying Bar T-Profile Cladding Guide Bar Tightening Bolt  Tightening Nut Support Column Support Foot Frame Foot Stud Bolt Connection Liner N/A Channel Plate Gasket | 1<br>1<br>1<br>2<br>1<br>8<br>8<br>1<br>1<br>1<br>2<br>48<br>4 | SA516-70<br>SA516-70<br>Aluminum<br>SA240,304SS<br>SA479,304SS<br>SA193,B7<br>SA194,2H2<br>Aluminum<br>SA36<br>SA36<br>SA36<br>SA193,B7<br>SA240,316SS | 1<br>1<br>1<br>2 | 900 mm  900 mm  750 mm  2" - 4 1/2 UNC  2" - 4 1/2 UNC |
| 7 | 14.                                                                      | Channel Plate                                                                                                                                                                                   | 39                                                             | SA240,316SS                                                                                                                                            |                  | Fiechohomaned                                          |
|   | Not S                                                                    | hown<br>OSHA Shroud                                                                                                                                                                             | 1                                                              | Aluminum                                                                                                                                               | 3                |                                                        |

Notes:

(1)Painted. (2)Zinc Plated. (3)Not Shown

Drawing is not an accurate depiction, see certified print.



**USPCI** P.O. #: 20572 TAG: #2 HEAT EXCHANGERS A/L ORDER #: 942005 A/L SERIAL #: 30101-96638 30101-96639

CERTIFIED

#### ALFA-LAVAL THERMAL

#### PLATE HEAT EXCHANGER Specification Sheet

P.O.#: 20572 CUSTOMER: USPCI Order#: 942005 Alfa Laval Thermal Inc. Supplier: Charles Martin, Thermal Engineering Co Tag#: # 2 Heat Agent: Exchangers

Quantity: 2

30101-96638 thru 96639 Serial#:

PHE Model Type: M15-FFG

COLD SIDE HOT SIDE =2= -1-

Solution : 30.7 psig Steam Fluids

312000 10349 lb/hr Flow rates 180.0 275.0 F Inlet temperature 230.0 272.2 F Outlet temperature 8.9 2.0 psi Pressure drops

: 260 sq ft Total Surface Area

counterflow Flow regimen fluids :

S3 Connection locations in S1 : **S4** S2 out

SS SS Material in connections

39 Total number of plates

AISI 316 Plates material 0.5mm

thickness

EPDM Clip-on : Gasket material

150 PSI Design pressure 300 F Design temperature

13 Liquid volumes US gallon 13 2300 lb Total unit dry weight

> CERTIFIED APPROVED FOR FABRICATIO

Proument

Date 06/22/94

P.O.#: 20572

CUSTOMER: USPCI

ALFA-LAVAL THERMAL PLATE HEAT EXCHANGER

Model Type M15-FFG

Quantity

30101-96638 thru 96639 Serial#:

Supplier: Alfa Laval Thermal Inc. Order#: 942005 Charles Martin, Thermal Engineering Co Tag#: # 2 Heat

Agent: Exchangers

Gasket sides of the plates are facing the frame plate.

Plates with parallel flow.

**AISI 316** Plates material 0.5mm thickness

EPDM Clip-on Gasket material

174 mm A - Dimension (See Drawing) Total number of plates 39

2300 lb Total unit dry weight

Extra/Inspection port location Side 1: Side 2:

\_\_\_\_\_SAMPLE FLOW DIAGRAMS-----

|                   |                      | Sample  | SING      | LEPASS Flow       | v Diagra | am<br>      |     |   |  |
|-------------------|----------------------|---------|-----------|-------------------|----------|-------------|-----|---|--|
| 121<br>120<br>119 |                      | 03B L   | 0         |                   | 0        | u<br>u<br>) | S - |   |  |
| 3                 |                      |         | (<br>U=   | (<br>=<========   | (<br>==U | (<br>0      | A   | D |  |
| 2<br>1            | Chan Plt<br>End Plt2 |         | 0         | U<-               | 0        | 0           | M   | I |  |
|                   |                      |         |           | S3                |          |             | P   | A |  |
|                   |                      |         |           | TIPASS Flow       | T2       | m<br>       | L   | G |  |
| 121<br>120        | Tran Plt<br>Turn Plt | 04B H   |           | 0                 | 0<br>U<- |             | E   | R |  |
| 119               | Chan Plt             | 03A I   | , U=<br>) | :=<===U<br>)<br>, | )        | )           |     | A |  |
| 71                | Chan Plt             | 03B H   | 0 1       | 0                 | U<-      | U           | F   | M |  |
| 69                | Chan Plt<br>Turn Plt | 11B H   | 0 1       |                   | 0<br>>   | U           | L   | S |  |
| 68                | Chan Plt             | 03A 1   | , U=<br>) | )                 | )        | )           | 0   |   |  |
| 4                 | Chan Plt             |         | )<br>0 1  | 0                 | 0<br>U>  | 0           | W   |   |  |
| 3                 | Chan Plt             | . 03A I | . U=      | ===>==U<br>0      | 0        | 0           |     |   |  |
| 1                 | End Plt2             | 845 1   | I         | S3                | •        |             |     |   |  |

See following page for Flow Diagram Discriptions. \*\*\* SEE PAGE 1 FOR YOUR FLOW DIAGRAM. \*\*\*

```
Singlepass....Plate heat exchanger with connections on frame plate
            (stationary cover) only.
Multipass.....Plate heat exchanger with both frame plate and pressure
           plate (movable cover) connections.
S1, S2, S3, S4... Frame plate connection designations.
T1, T2, T3, T4... Pressure plate connection designations.
            (See drawing for locations of T and S ports.)
 1 to 121...Plate position starting from frame plate.
Chan Plt...Channel Plate. Standard 4-port channel plate. Gasketed so
         that flow from two ports opens to the channel plate center.
End Plt2...End Plate 2. Channel plate adjacent to frame plate. With
         port holes fully gasketed so that flow does not go between
         this plate and the frame plate.
End Plt1...End Plate 1. Channel plate adjacent to pressure plate
          on single pass unit.
Turn Plt...Turning Plate. Redirects flow with port locations which are
          not punched (no U or O) on multipass units.
 In Plt...Transition Plate. Channel plate adjacent to both pressure
          plate and partition plates on multipass unit.
. _rt Plt...Partition Plate. Thicker steel plate required on some
          multipass units.
Twin Plt...Twin plate. Channel plate type used on welded units only.
76,03,83...Plate hole punching description. A-L internal use only.
 -----PORT PUNCHING-----
 0...........Port surrounded by ring gasket. Fluid in this port
 U......Flow opening port. Fluid flows into this channel.
 No 0 or U..If no \hat{\mathbf{U}} or \hat{\mathbf{O}} is shown then this port location is not punched
          and fluid does not flow through this port.
               ------PLATE ORIENTATION-----
 A,B......Plate orientation, as seen from gasketed side of plates:
  .....Low Theata channel plate. Chevrons at angle less than 90
          90 degrees.
```

(Channel plate arrangements can have all Highs, all Lows or

a mixture of Highs and Lows.)

2\*M15-F CH\_\_ AISI\_316 0.5mm EPDM\_Clip-on

06/22/94

1\*19 L S1->S2 30.7 psig Steam 1\*19 L S4<=S3 Solution

39 End Plt1 16B H
38 Chan Plt.03A L U==<==U O O
37 Chan Plt.03B L O O U U
36 Chan Plt.03B L O O U U
35 Chan Plt.03B L O O U U
6 Chan Plt.03B L U U O O
5 Chan Plt.03B L U U O O
6 Chan Plt.03B L U U O O
7 Chan Plt.03B L O O U U
8 Chan Plt.03B L O O U U
9 Chan Plt.03B L O O O
9 Chan Plt.03B L O O O
1 End Plt.03A L U ==<==U O O
1 End Plt2 83B H O O O O
1 S4----S3-----S2----S1-

| 74 37               | Chan D1t 03 L                                | 316 0.5mm EPDM_Clip-on<br>Channel plate<br>End plate 1<br>End plate 2                        | 0.6mm               |
|---------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|
| 74 37<br>2 1<br>2 1 | EPDM Clip-on<br>32330-1804-3<br>32330-1804-3 | Channel plate gasket<br>Channel plate gasket<br>End plate gasket II c<br>2 Channel plate gas | onsists of:<br>kets |

Structural Support Calculations

#### COLUMN LOADS ....

| A-1:-         | 3.6 k   |
|---------------|---------|
| B-1           | 143 K   |
| C.9 - 1       |         |
|               | 190 K   |
| 医-1           | 14,21   |
| - 2-4         | 4.5 K   |
| B.2           | _       |
| 1D-2          | 62.9 K  |
| 臣-グニー         | 34,1 K. |
| A3            | 8.4 K.  |
| B-3           | _       |
| C.9-3         | 28.8K   |
| Di1-3         | 19.9K   |
| E-3           | 14.4K   |
| A-5           | 9.8 K   |
| B.5           | 17.6 K  |
| A-7           | 4.8 K   |
| B-7:-         | 8.5 K   |
| ۲-٦ ٦         | 11.5 K  |
| F-7           | 12.1K   |
| <b>د</b> ھ_ ~ | 24.8K   |
| F-6:-         | 24.2 K  |
| C-4           | 78.1K   |
| F-4           | 24.2K   |
| F-3.1         | 12.0K   |
|               |         |

WILL BE 143-24

WITH KL 13-0 ALLOWBLE

COLLOBO IS 93.0 K.

THIS SATISFIES ALL COMBITIONS



| . Hok     | ez. Forces | व (द्वाठा छ | <u>F'</u> . |          |
|-----------|------------|-------------|-------------|----------|
|           | )          | 1160 4      | 11,0        | ·) · ·   |
| 3.26      |            |             |             | •        |
|           |            | <u>~</u>    |             | w p eter |
| <b>*9</b> | - 100 m    | 178         |             |          |
|           | 32.5       |             |             | ·        |

3,74 . 18150 KIPS PER COL.

. 3150 x 11,5 + 9,37 K1 - HOMENT.

9,37 x 12 x 1000 . 512 REGO 53'

148,31 = 27.5 > 5.2 COLLINES OF



PAGO 6

# HORZ. FORCES & DING. BRACING.

7.26 KIPS 0 C.7 TO F.7

12.23 ... 0 E.2 TO E.3

6.10 a A.1 TO A-2.

14.64 a D.1-1 TO E-1

Otis A Clark PE.



DIAN BRANCE H. 4-38. 1.50" 26.13 - 17.42 KSI < 24

... COWMN UPLIFT 21,65 1/4, 344 EPONY SHCHORS

PULLOUT TOST ON 31+ EPONY AND, W/612" INBODOMENT IS

RELOW KIPE, WITH A SAFETY FACTOR OF 4 TO 1.

6kx4. 24 > 21.65 O.K.



## PESKEL LOADS (1990 BOCK NATIONAL BLDE CODE)

... TANKS FTI, FTO, d. FT3 47300 LBS. EACH (FILLED).
... TANK EF4 25,300. LBS (FILLED).

### LATERIAL FORCES FOR ENRIHOLLAKE LOADS

V= 2.5 Av IKCSId. (Page 278).

Av 2 v.1. (20NG 1? (Page 273).

I = 10 (TABLE 1113.1, PAGE 278).

K = 10 (TABLE 1113.4.3., PAGE 278)

C = +12 (Page 279).

S = 1.5 (TABLE 1113.4.6., PAGE 281).

LI = 10 (TABLE 1113.4.6., PAGE 281).

N= 5'2'x' 1'x 1'0x 1'0x 10x 10x 12 x M



TEL NO.405 878-0338

Mar 29,95

(1412-14)

LHORNECO LETH 31-1

(ITIVIST)

BROH & GRID. A-1. TO 131.

Ha (0 + 00 + 24 13.08 + 74

FROM 150 2-174 DUDNEBLA M. 27,3 > 7.4

BEAM & GRID A-2 TO B-2 HUBBRESO LCH 341.

2.0.2 H&D 33 x 3.08. Ma@ 33 x 450 - 7:4 1.42 = 11.4 M - 17 4.3, 308 -17 11 = 119 Mac 4.3 , 2.31

FROM ASD 2-174 BUNGABUS M. 27,3 > 11,9

Mar 29,95 9:09 P.11 TEL NO.405 878-0338 Otis A Clark PE. (WID, 35) GRID: B.2 TO . D-2 LARRAGO LATH 2611. MOD 810 - 221 .... Ma @ 210,5.13 -204,292 = 48.2 H = 1 21.0 12.21 FROM ASD 2-172 PROPRETE N. 9115 > 48.8 (A15.50) BEAM & GRID D-2 TO E-2. LIAMPRICAD FATH =58.3.Ma D: 26.4 ,2,21 MOD 76.4 513 -75.81297 = 60.1.

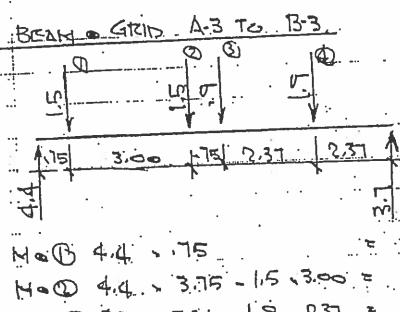
FROM ASD 2-173 BLOWARIO M - 66: 8 5 60.1

Ha 3 76.4 x 221

**⇒**58.₹

BENH & GRID D.I. - I TO E- 14 D.I-3TO E-3 (IJING) (HABBREED FETH SIII) = 10.3 N. Q 15.4x.67 MOD 15.4 x3,59 - 129,292 2 1716

. FROM ASD. 2-173. DUONARUO. N. - 66.4. > 24.3.


· (NIO19) BOAM & GRID . B. I. TO CALL UNBRACED LETH ? 5.51

M-0 64 , 201 ... H= 064 x 5.13 - 7.5 , 2.72 + 10.9 H-392467.

FROM DSD 2-174 ALLOYDRE H& 42.5. > 14.7

TEL NO.405 878-0338

Mar 29,95 9:10 P.13 PAGB- 11



(111044) UNISCHEOD LETH 30

No 3.37 = 5.14 - 1.9 , 237 M. @ 37 , 237

FROM ASD. 2-174 ALLOWABLE IN - 17.3 >

(Missisce) A-5. To A-- GRID UNARRORCED LATH 310 ..

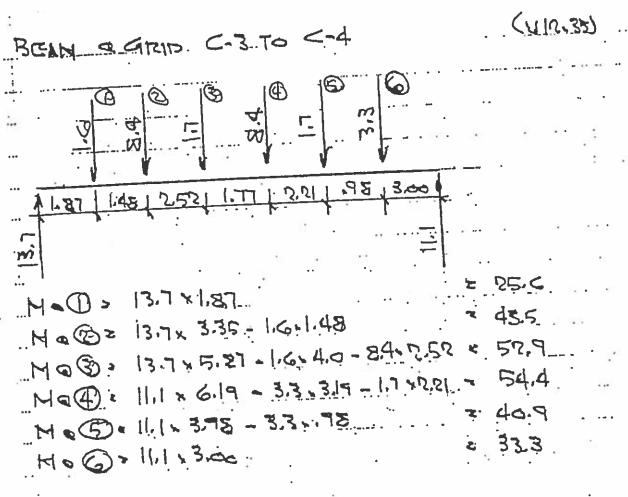
J0.4 M- D 61 5 3,35 Me (2). GILX 7117 - 31 x 3.82 - 31.9 HO 3 62 x 624 - 27 x 335 . = Jd'C 17.9. M. @. GIZ , D.89.

PROM 450 2-172 ALLOWARD M = 76.2 > 31.9

| Clark PE. TEL NO.405 878-0330                             | TOGO IC                                   |
|-----------------------------------------------------------|-------------------------------------------|
| BEAM O GIZID A.3 TO A.5                                   | MIRRE LAW 410                             |
| Me Q = 4.2 . 3.31 2 13                                    | 150 · · · · · · · · · · · · · · · · · · · |
| He B 4.0. 3.98  FROM ASD 2.170 BUDLIBUE H. 70             | ۵·2 > 23.4                                |
| 13.31   3.31   400   3.98   3.98 A                        | (HIRAC)                                   |
| MaD = 7.6 . 331 = 35<br>MaD = 7.6 . 6.60 = 3.3. 3.31 = 35 | 9.1                                       |

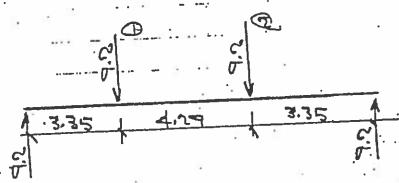
2-172 bushaped M= 76,2 > 41,2

a . 28,4


H-00: - 7.1 . 7.96 - 3.9. . 3.98 - 41, 2

H. Q. 7.1. x 3.98.

[(1115-50) CAN & GRID B.S. To B.T. THERMORD LOTH 3/9/2 3,35 3.87 = 23.1 N.O = 6.9 + 335 MOD = 6.9: 7.17 - 3.5, 322 = 361 Mass = 7.0 x 6.24 - 32 1: x3.35 = 33.3 = 808 Ma @ = 70 x 2.89 ..... "FROM LSD 2-172 ALLOWARLE 14 - 76,2 > 33.3 CROSS BOAM LINDER FT 1, 2, 13 (C. FLACED 5/10 SPAN (WE-18) LINBROCED LATH .160


MaD = 70 - 1.42 = 9.9 MaD = 7.0 + 2.92 - 6.7 + 1.50 = 10.4 MaD = 7.0 + 1.42 = 9.9

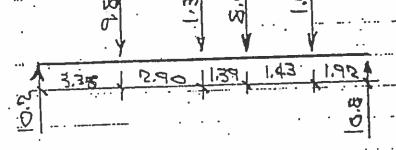
FROM ASD 2,174 SULLWARLE H . 30.3 > 10,4



# [FROM ASD ... 2 - 178 ... ALLOWARLE M. 91.2. > 54,4

BEAM - GRID F-3.1 TO F-4, F-4 TO FG (U.12.26)




Me De 9.2. 335 - 30.8.

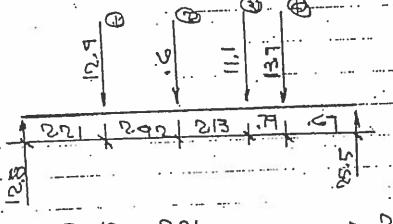
TEL NO.405 878-0338

Mar 29,95 9:13 P.17

# FROM ASD. 2.173 KLOULBUE H. CC. 8 > 30.4

BEAM = GRID C-4 TO C-6 .... UNBELLED LON 31414




Me@ = 10.2 x 3.35 - 1.5 1.43 = 34.0 Me@ = 16.2 x 3.35 - 1.5 1.43 = 34.0 Me@ = 16.2 x 3.35 - 1.5 1.43 = 34.0

Mar 29,95 9:14 P.18

(115.8C) BEAH LINDER EPA (2 PLACES) ... UNBRACED LOTH 54 1031 Ma D& - 8,1 x 355 .... = 28,8 M-@ & B . 8.1 . 4.63 - 49 1.08 : 32.0 FROM ADS 2-173 ALLOWARITE M . GG. 8 > 32.2

BOAM & GRID B-3 TO G9-3

(पारवंड)



MOD 128, 221 He @ 12.8, 5.13 - 129, 290 = 28,0 MO 3 75.5 x 1.46 - 13.7 . 79. - 76.4 7:17.1 M & 4 25.5% 67

FROM DOS 12-1712 ALLOWERUS 14: 91.2 >28.3

Otis A Clark PE. TEL NO.405 878-0338

Mar 29,95 9:15 P.19

| (LIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CROSS BEDIA - HOOR REA (2PLEOS) - 540 SPIN (USIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CROSE ISOMY - INBROCKO LATH ILC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UNRROCAD LATH LUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.42 1 1.50 1 1.50 1 1.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second s |
| M = @ 4-3 + 1-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOO 43 - 292-404150 = 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ha 3 43 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| en de la companya de<br>La companya de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PROH 550 7-174 Alloware M. 30.3 > 6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The state of the s |
| - True (- Plance) (412-24).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BIERM UNDER FLASH TANKE (< PLACES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BIGNAL MUDGIS LIMBH MING THE TOTAL T |
| BIGNAL MUDGIS LIMBH MING THE TOTAL T |
| BIGNAL MUDGIS LIMBH MING THE TOTAL T |
| BENKI UKISCIS I-MSH MICE DI DI DI DI STI 511034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BENKI UKISCIS I-MSH MICE DI DI DI DI STI 511034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BIGNAL MUDGIS LIMBH MING THE TOTAL T |
| BENKI UKISCIS I-MSH MICE DI DI DI DI STI 511034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.55 11.08 3.74 11.08 3.55. 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BENKI UKISCIS I-MSH MICE DI DI DI DI STI 511034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

E. H. CG.8 > 52.2 PROM ASD 2-173

| ; À Cla  | ark PE.                 | TEL NO.405 878-0338    | Mar 29,95                                | 9:16 F.20<br>FACE 18 |
|----------|-------------------------|------------------------|------------------------------------------|----------------------|
|          | į.                      | SEID E-RTO E-3         | •                                        | 4) no 1214           |
| ·        |                         | 12.33 2.8. K           | en e |                      |
|          | FROM A                  | SD 7-174 ALLOWARLL ME  | 38,5 2,0 %                               |                      |
|          | BEAM 9                  | GRIP B-2 TO B-3        | Univer<br>CMS-10                         | ed Land 1014         |
|          | •                       | x 10.23 . 5.5 Kl       |                                          |                      |
|          | FROM D                  | SD 2-114 buolina M = 1 |                                          |                      |
| •        | BENN                    | GRID B-1 TO B-R_       |                                          | RACED LATH INLY      |
|          |                         | 2,12,33 2 6.5 kl       |                                          |                      |
|          | Fizon                   | ASD 8-114 DrayABUS. 1  | 4 = 38/3 > 6·                            | <u></u>              |
|          | <ul> <li>387</li> </ul> | 1 - GRID A-1 TO A-12.  |                                          | 12.74)               |
| 3        |                         | 3.7. Kl                |                                          |                      |
|          | FRON                    | PSD 5-134 PROMPER      | : M. 38,2 > 3                            | (113/24)             |
| • •      | "B@bh                   | 4 & GRID A-5 TO B      | - 17                                     | KIND ICTH 9/3        |
| <b>9</b> | M.3                     | 4.9.85 , 3.9           |                                          |                      |
|          | FIZO                    | 1 p2b 5-114 prompting  | S N = 38,5 >                             | S                    |
|          |                         |                        |                                          |                      |

otis

|            | BEAM 7178 SWITH OF GRID B-7 TO C-7. WEND.  UNTRACOD LATH 71-3 |
|------------|---------------------------------------------------------------|
|            | M-3-2-775 2,9K                                                |
| ٠.<br>د څه | FROM ASD PAGE 2-175 ALLOHABLE M. II.5 > 2.9.                  |
| · .        | BEAM GLZ HORTH OR GRID B-5 TO C.5. (W8110)                    |
| **         | M= 3,2 x7,25 2,9 K1                                           |
| •          | FIRM ADS 2.175 ALLOHABLE ME 11.5 > 2.9                        |
|            | BELM 21034 HORTH OR GRID B-5 TO C-5 (WBUD)                    |
| )<br>A     | 14.2.8.7.25 - 2.5 K                                           |
| ,,, m.     | FROM ADS 2-175 AUDHARLE M = 11.5 > 2.5                        |
|            | BERM 3/33 SOUTH OF CARITY B-15 TO C-15 (WE-10)                |
|            | M = 3.0 - 7.25 . 2.7 K                                        |
| · ·        | FROM DOE 2.175 ALLOWARLE M& 11.5 > 27.                        |
|            | BEAM GLT'S SOUTH OF GRID B.5 TO C.5 (W8.10)                   |
|            | M- 3.247.25 . 2,9 K                                           |
|            | PISON PDE 15-122 VMONTABLE M - 11:2 > 5:3                     |

BEAN 2104 HARTH OF GRID A-5. TO B-5 (USIO). LIHARACOD LOTH 913 ... M.3.419.25 3.9 K FROM ADS 2-175. DUCONBUE. M. 9,0 > 3,9. BEAN 613 HORTH OF GRID .. A.S. TO. B-5 ... (c12110) .... UHRRACEP LETH 913. M= 4.0\_9.25 . 4.6 K' FROM NOS 2-1715 DUCHABRIE M = 9.0 > 4.6 BEAN TIRE SOUTH OF GRID A-T TO BOT (WELLO) M: 4.2.9.25 - 4.9 K FROM: ADS 2-175 becomme M. 9.0 > 4.9 BEAM 3144 SOUTH OF GRID A-7 TO B-7 (WEID) N.40, 9.25, 4% K FROM ADS 7.175 AUGUNTER ME 9.0 > 4.60 BEAM 3-44 SOUTH OR GRID B-5 TO C-5 (NEND) Unktenced Lath 713

FROM ADS 2-175 BULDIABUC H& 11.5 > 2.9

M= 3.2. 1.25 . 2.9.K

| s A Clark PE.<br>! . | TEL NO.405 878-0338    | Mar 29,95<br>·. | 9:18 P.23                              |
|----------------------|------------------------|-----------------|----------------------------------------|
| Beam ac              | RID D-R TO D.3         | (المانمال):     |                                        |
| M = 3.0 , 11.23      | 4.7.Kl                 | THRENCED-LC     | ······································ |
| E ASB                | 7-175 · Sububbus . M = | 20.75 > 4.7     |                                        |
| BEATI O              | TRID . D-1.10 D-7      | THERMORD L      | _                                      |
| N. B.2. 125          |                        |                 |                                        |
| Fran Ast             | > 7:175 Accornage M    | 17.0 > 5.0      |                                        |
| BEAM 3411            | 14 JULY HARTH OR GRID  | A-3 To B-3      | (18-10)<br>(18-10)                     |
| N=44.93              | 5 2 511 KI             |                 | , baill                                |
| FROM DY              | D. 2-175. DUDINBUR!    | M . 9.0 > 5.1   |                                        |
| BEAM 61              | 12 South or GKB A-     | 5.70.85 (U.S.   | (a)                                    |
| : M. 4p.9.3          | 4,6                    | Unbehasi        | LGTH 1                                 |
| FFCH ASD             | 2.175 bLLOWARLE Me     | 9,0 :>4.6.      |                                        |
| BCAM 3               | 1334 South or Grid A   | 5 To 8-5        | 112110)                                |
| M. 3.6.9.            | 35 E 4, D              | LINERACE        | o rath to                              |
| FRON LT              | >5 5.175 DLGUARUE      | M. 9.0 > 4.0    | **                                     |

Otis

BUDIT OF TANKE 316 8 SPAN (8 PLACES) (US.10)
WHENCUS LEM 368

M= L2 x 3:55 , 5 K!

FROM ASID 2.175 ALWANGLO M. 15.6 > .5

TEL NO.405 878-0338

Mar 29,95 9:19 P.25

BEAM - GRID A-7 TO B-7

(WE. PA) UHRRASCO LATH 913...

Me 18.49.25 21 K

FROM ASD 2.174 ALLOWARLE Ma 38.3 > 2.1

BEAM & GRID B-7 TO C-7

(118,24)
LIMBRINGED LETH 763

M= 1.4.785 ... 1.3.:

Kron ASD 15.174 MICHARIA M. 38.3 > 1.3.

BEOM . GRID B.5 TO C.5

(M8.84)

UNERSCED LOTH 713

M. 2.6.7.25 . 2.4. KI

FROM 680 2-174 DUOWARD M. 38.2 > 2,4

BEAM & GRID C-7 TO F-7.

(1915-5C)

UHTERACED LETH 1860/

H= 3.6 = 18.04 . 8.1 kl

H - CANT, END 2 120, 5,452 , 3:0 K1

FRON DED 2.174 BLIONARIE ME 31.4 > 8.1

BEAM & GRID. C-GTO F-G & C.4 TO F-4. (WIRING) UNBRUEZO LETH 18602

Me. 7.2. 1804 e 16.2 k

HO CONT . 140 x 5.452 , 5,9 KI

FROM ASD 2-174 BLOWABLE N & 31,4 > 16.2

BOAM O GRID C-3,1 TO F-3.1

(1112.00) UHBRACOD LCTH 12 of

M= 6.6. 18.04 = 14.9 K

M = ChHT. = 2015:462 3,0 K

FROM ASD. 2-174 DUGGABLO N- 31.4 > 14.9

BEAM - FILTON PRESSOR GRID & TOF (GRUCES) (WINNER) UNBOACED LETH 1816

M. 3.6. 1800 - 8.1 KI

M& CONT. = ,46 x 5,452 & 6,8 K!

FROM ADS PITTE BLOWARD M. 31.4 > 8.1

| BEAR THING 34 12 HATH OF GEID. B-3 TO C-3. (US.10)               |
|------------------------------------------------------------------|
| UN ARORISO DE IM-                                                |
| M= 34.7.25 = 3.1 K<br>E. FRON ASD P.175 ALLOVARIA M= 11,5. > 3.1 |
| BEAM @ GRID E-1 TO E-D. (W8.10).                                 |
| H. 1.8. 11.33 - 2.5                                              |
| FROM DOS PACO 2.175 AMOUARIS. M. 5.0 > 2.5                       |
| BEAM ALGERT OR GRID A:3TO A:R (11810)                            |
| H= 18 x 13, 29 k1                                                |
| FROM ASID 2.175 ALONARUE M= 4.8 > 2.9                            |

TEL NO.405 878-0338

Mar 29.95 9:22 P.28

MEZZ BRAM - GRID B-1. TO C9-1 (18.15)

WHEREARD LATH 410

13.12 | 100 | 168

WO D - 21. 3.12 - 6.6

M - D - 21. 3.12 - 6.6

M - D - 2.8 - 1.58 - 4.4

FROM ASD 2.175 ALLOWER M - 23.6 > 6.6

FROM 550 2-174 BUDGEBUG M. 8 29.8 > 14.4

9:22 P.29 Mar 29,95 Dtis A Clark PE. TEL NO.405 878-0338 (3 Places). MEZZ BEAK B-370 C.3-3 & D.1-370 E-3 (WEVIS) UNBROKED LETH 317 121 TO Dil-1 M. B 19,154 . 2,9 K. \_H = 0 0.7. 358 = 2.5 kl FROM ASD ?- 175 - BLOODBLO M = 23.5 MEZZ BEAH & GRID D-2 TO E-2 .... No B - 56 + 154 ... M. @ = 5.6; 5.12 - 5.2, 3.58; = loil Ma 3 + 4.7 +1.54 PRON ASD 7-114 AUDINBUE 14 : 27.6 > 10.1

TEL NO.405 878-0338

Mar 29,95 9:23 P.30

Poca 29

ME22 BEAM .. C.9-1. TO C.9-2.

(U 3/15)\_ . . . . CUMRENCED LATH -10:13

N: 361261 . 5.7 K

... FROM: ADS 17.175 SUCHERS M = 14.0 > 5.7

MEZZ BEAM DIL-1 TO DIL-? (WEIS)

(UHRRACID. LGTH = 710) ...

1 M = 5,2 x 1267 - 8,2 k1

" ELON YUS JULIZ PROPRET HE SI'D > 8'5

MEZZ BEAN 117 VON OF CALTO CA-Z: (USIS)

· (LIMBERGED LETH ALC)

M= 4.2,13 - 6.8 K

FROM NOS 2.175 MUSHABUR M = 21,25 > 6.8

MEZZ BZAM 3/1/2 EUST OF B-1 TO B-? (HD.15)

(ALC THREACED FOLK)

M: 5.6,13, 9,1

FROM ADS. 2.175. ALLOWAGE. M = 21.25 > .9.1

MEZZ BOAM ILON EAST OF BO TO \$3 (USIS)

CUMBRICUD LATH 760)

M. 40-13 665

FROM ADS 2-175 ALLOURIS M = 21.0 > 6.5

Mar 29,95 9:24 P.31

PACE 30

MEZZ BEAM & GRID E-1 TO E-2, (U8.10). B2 70 B3 8 E2 TO E3

ME 1.2:13 142 KI ... (THELTOP PATH 180) ...

FROM Aby 8-175 ALWINGUS H = 4.0 > 1.95

MEZZ BELL - GEID BITO. BY. (WE-10.)

CUMBRACAD LETH G18).

M. 26.13. 42 K!

FROM ADY PAGE 2-175 MUNICIPARIE H = 127 >.

... MEZZ BEAM & CRID. C9-3. TO C.9-2. 4. D.1-3. TO D.1-2 (CIS) WHERE GOD LETH 7(S)

M: 52-13 8.5 K

FROM ADS -2:175 ... ALLOW M = 21.2 > 8.5

MEST BOM ICALIES OF ELTOER \* ERTOES. (US.15)

.... (UHBRACOD (CTH 762)

Me 40, 13, 6, 5 k'...

FROM ADS 8:175 ALIOUARLY M. PILO > GIS

CHABRIEGO FOTH SILL

TEL NO.405 878-0338

MEZZ BEAM 2-11 SPAN, G.PLACEF, WANDOWN (PLI)

PROM ADS PLITS ALCUMENTE M. 16.0 > 14

MEZZ BEAM - TANK OPCHINGS (G. PLACES) (118.10)

Mx 647.16. 1.1. K. ...

FROM DOS 12-175 BLIGHABLE H+ 16:0 > 1.1



| Otis A Clark PE. TEL NO.405 878-0338 Apr 03,95 1 |            |
|--------------------------------------------------|------------|
| COLUMNS ON 6" SLATS                              |            |
|                                                  |            |
| Maxical Loop Is AT B.5 - 17.6 Kmg.               |            |
| 6" SURB 4000 PSI CONC W/ #40012 PEIN & CT        | R          |
| ALLOWABLE M POR FLORSLATS                        |            |
| - As feld = .20 x 74000 x.85 x 3 x 17,040 "1     | <b>BS</b>  |
|                                                  |            |
|                                                  |            |
| 423<br>CRITICAL SUCTION                          |            |
| CHECK OF 2 VAY (PUNCHINE) SHOOR                  | 1.7.28 390 |
| 4x16"x6" x 1.1 74000 + 76.7 K > 17.6             | k 0.K.     |
| REQUIRED MOMENT POR ET OF SLAS                   |            |
| 7500 x 11.5 x 11.5 = 19180 " 185 < 12,240 " LBS. | o.Ł,       |
|                                                  |            |
| FRON DED PLACE 12-302 BOAM DIAG #20              |            |

. ......

1 . . .

Apr 03,95 13:36 P.03 Otis A Clark PE. TEL NO.405 878-0338 (REVISED)

Apr 03.95 13:37 P.04 Otis A Clark PE. deri Maicol Langer. 7.1 k Otis A Clark PE. TEL NO.405 878-0338 CAP Ps a Cas F3,14 F7 FROM PORCE 5 MOMENT IN 937K ×12 14.86 K · Fuer 9,37 0.4, E. 79.d > 14.86 Ot, 9,37 x 12 | 6.66 k 16,66 8,38 Pan Bat < 9,3 O.K.

Foundation Design Analysis

Mar 29,95 9:02 P.02

TEL NO.405 878-0338

Utis A Clark PE.

#### OTIS A. CLARK PE.

Phone (405) 878-0338

130 Bdwy. Bldg. Suite 202 Shawnee, OK. 74801

To: .USPCI

Lone Mountain Facility Route 2, Box 180A Waynoka, Okla. 73806

Attn: Lawson Fenton

#### March 28, 1995

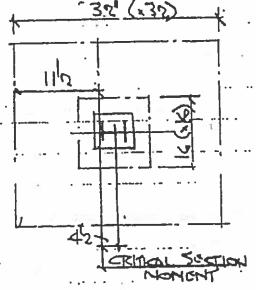
The following is an investigation for the foundation support for the mezzanine platforms for the Wastewater Final Treatment Facility, and the calculations for the design of the beams, columns, and bracing for the structure. The design loads are per the 1990 BOCA National Building Code and are shown on page #7 of the following submittal.

|            |                                                                 | •                                                                                          |
|------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| LOAD, KIPS | FOUNDATION CONDITION                                            | REMARKS                                                                                    |
| 3.6        | '17" floor slab                                                 | OK (see page #2)                                                                           |
| 4.5        | 785 - 15                                                        |                                                                                            |
| 8.4        | 8                                                               |                                                                                            |
| 9.8        | 6" floor slab                                                   | OK (see page #1)                                                                           |
| 4.8        | 90 colonia                                                      | ٦.                                                                                         |
| 14.3       | 17" floor slab                                                  | OK (see page #2)                                                                           |
| 36.3       |                                                                 |                                                                                            |
| 27.9       | 0.                                                              | 40                                                                                         |
| 17.6       | 6" floor slab                                                   | OK (see page #1)                                                                           |
| . 8.5      |                                                                 | 10                                                                                         |
| 28.1       | 24" x 36" cont.ftg.                                             | Ok (see page #3)                                                                           |
|            | 4.5<br>8.4<br>9.8<br>4.8<br>14.3<br>36.3<br>27.9<br>17.6<br>8.5 | 4.5  8.4  9.8 6" floor slab  4.8  14.3 17" floor slab  36.3  27.9  17.6 6" floor slab  8.5 |

|       |      |                      | <u> </u>         |
|-------|------|----------------------|------------------|
| C-6   | 24.8 | 24" x 36" cont.ftg.  | Ok (see page #3) |
| C-7   | 11.5 | 6" floor slab        | OK (see page #1) |
| C.9-1 | 14.1 | 17" floor slab       | OK (see page #2) |
| C.9-3 | 28.8 | 1                    |                  |
| D-2   | 62.9 |                      |                  |
| D.1~1 | 19.0 | 4                    | ·                |
| D.1-3 | 19.9 |                      |                  |
| E-1   | 14.2 |                      |                  |
| E-2   | 34.1 |                      | a A sa           |
| E-3   | 14.4 | 90 .                 | . 40             |
| F-3.1 | 12.0 | 6" floor slab        | OK (see page #1) |
| F-4   | 24.2 | 24" x 36" cont. ftg. | OK (see page #3) |
| F-6   | 24.2 | 7,                   | ٩,               |
| F-7   | 12.1 | . 6" floor slab      | OK (see page #1) |



Otis A Clark PE.


# COLUMNS ON G" SLATS

MAY COL LOOD. IS AT B.5 - 17:6 KIPT,

\_ 6" SUKB, 4000 PSI CONC. " #4012 EIN. @ CTR.

"ALLOWABLE M PER PT. - SLATS.

= As fold = 120 x 14000 x 85 x 3 = 17,7240 " LBS.



CHECK OF 12 MAY (PUNCHING) SHOOR - 76.7.K. > 17.6K O.K

REQUIRED MOMENT PER FT OF SLAS

7500 x11.5 x11.5 = 6,888 "LIS < 12,240" LBS. O.K.

# COLUMNS CSH. 17" SLATS W/ G. - 12:E,W. T&B

Max Col LOAD IS LIT GRID D-R - GR, 9 KIPS

" +4+ S4000 × 12 + 126,720 "LB = 10,56 K1

ALLOUNISLE . SOIL BRG. = 2500 " SLEG LIT 180 < 2300

2.32 27.11 50 FT REGIO MIZA = 563 SAUARE

2 WAY (PUNCHING) SHEAR 4x27x17x 1.1 74000

READ HONCHT IN GRADE BEAN

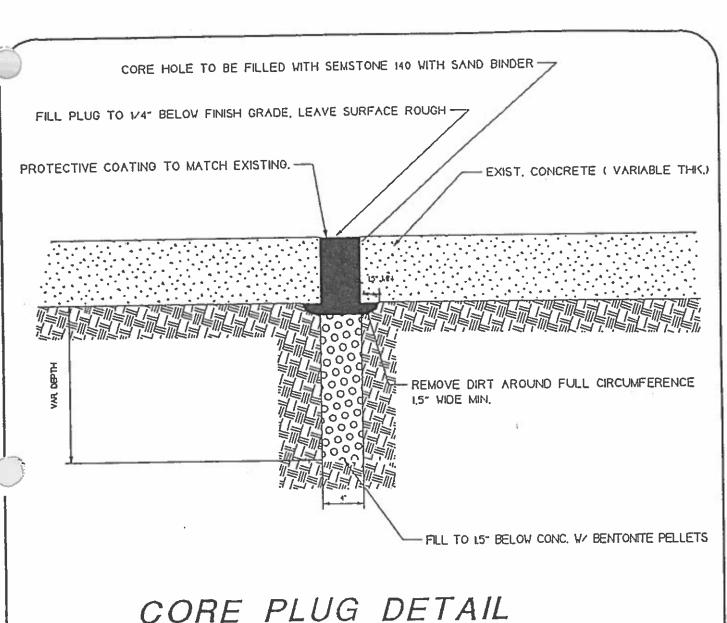
275× 7.32 = 1.31 k' < 10.56 k' O.K.

17. 195

## COLUMNS ON 24" 36" GRADE BOAM

: MAX COLLOAD IS AT COL C-4 - 28.1 KIPS.

GRUDE BEAM HAC 2.46 . TOP, CTR & BOTT (ACCORDING TO LAWSON FENTON)


LLOUARUS MONGHT IN GRADE BOAM (FIGURAL THE REINE) \_\_\_\_\_ As fr14 - 182, 74000, 30, 637,600 "LB. OR 52,8 K"

DLIONARUE SOIL BRE 2500 - GB WEIGHT 360 = 2140 28,100 - 6-8 LENGTH OR GRADE BOOKT SOL.

"READ MONENT IN GRODE ROOM.

21.2K.xG.G7, 18.2K < 52.8K O.K.





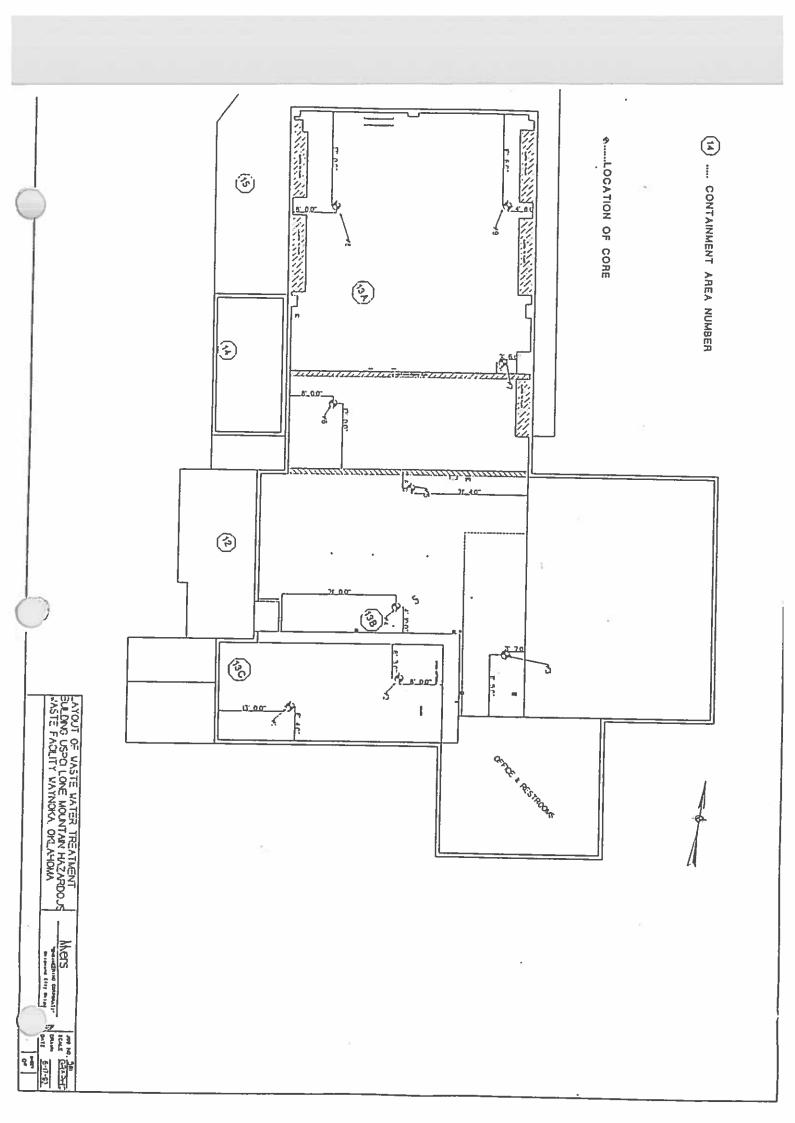
# CORE PLUG DETAIL

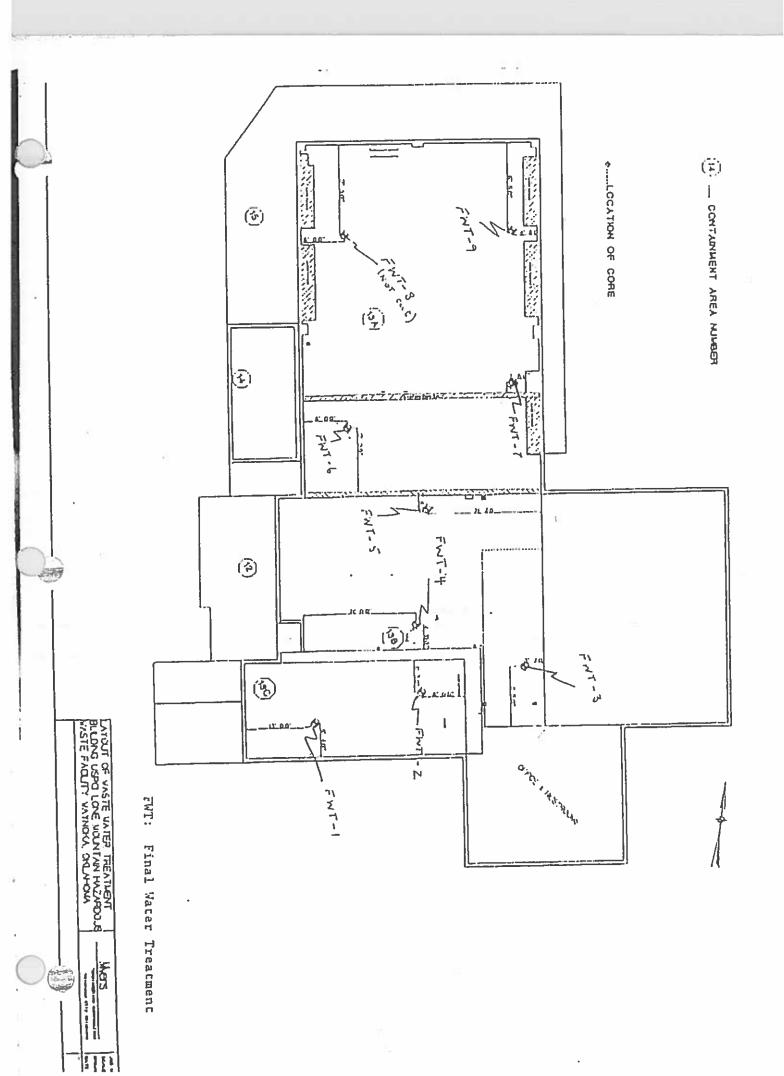
THE ELL ALEAL TO BENTONITE SEAL PER CENE VALKER RECLIEST

CORE PLUG DETAIL FOR USPCI, LONE MOUNTAIN FACILITY WAYNOKA, OKLAHOMA

ENDINEER IND CORPORATION Oktohena City Oktohona

JOB NO. 5111 SCALE NTS DRAWN LYC DATE


SHEET


| Specimen | <u> Piemeter. In.</u> | Drilled<br>Length. In. | Capped<br>tength. In. | Crushing<br>Load, 105, | L/D Correction Factor | Compressive<br>Strength. Osi |
|----------|-----------------------|------------------------|-----------------------|------------------------|-----------------------|------------------------------|
| PHT-1    | 3.75                  | 5.5                    | 5.7                   | 32,440                 | 0.96                  | 2.810                        |
| PHT-2    | 3.75                  | 5.5                    | 4.9                   | 47,200                 | 0.93                  | 3,980                        |
| PHT-3    | 3.75                  | 6.5                    | 4.5                   | 41,400                 | 0.93                  | 3,490                        |
| PHT-4    | 3.75                  | 7.5                    | 4.6                   | 60,700                 | 0.93                  | 5,110                        |
|          | 3.76                  | 7.0                    | 7.1                   | 43,000                 | 0.99                  | 3,860                        |
| PHT-5    | 3.75                  | 6.5                    | 4.1                   | 57,100                 | 0.88                  | 4,550                        |
| PHT-6    |                       | 7.0                    | 5.8                   | 43,800                 | 0.96                  | 3,810                        |
| рнт-7    | 3.75                  | 6.0                    | 5.8                   | 74,800                 | 0.96                  | 6.480                        |
| PHT-8    | 3.75                  |                        | 5.5                   | 33,900                 | 0.96                  | 2,950                        |
| PHT-9    | 3.75                  | 5.0                    |                       | 72,500                 | 0.93                  | 6,100                        |
| PHT-10   | 3.75                  | 6.0                    | 4.7                   |                        |                       | 4,840                        |
| PHT-11   | 3.75                  | 6.0                    | 5.6                   | 55.720                 | 0.96                  |                              |
| PHT-12   | 3.75                  | 6.0                    | 6.6                   | 65,600                 | 0.98                  | 5,800                        |
| PHT-13   | 3.75                  | 5.0                    | 5,3                   | 68,700                 | 0.94                  | 5,850                        |
| PHT-14   | 3.75                  | 5.0                    | 5.3                   | 80,200                 | 0.95                  | 6.900                        |
| PHT-15   | 3.75                  | 6.0                    | 5.1                   | 60,200                 | 0.97                  | 5,290                        |
| FHT-1A   | 3.75                  | 6.0                    | 4.7                   | 53,800                 | 0.93                  | 4,530                        |
| FHT-18   | 3.75                  | 13.0                   | 6.0                   | 50.800                 | 0.97                  | 4,460                        |
| FHT-2    | 3.75                  | 22.0                   | 7.0                   | 30,740                 | 0.99                  | 2,760                        |
| #FH1-3   | 3.75                  | 15.0                   | -                     | •                      | •                     | •                            |
| FHT-4    | 3.75                  | 6.0                    | 7.0                   | 81,600                 | 0.99                  | 7,320                        |
| FHT-5    | 3.75                  | 6.0                    | 5.8                   | 81,700                 | 0.96                  | 7.100                        |
|          | 3.75                  | 19.0                   | -                     |                        | -                     | -                            |
| *FH1-6   |                       | 14.5                   | -                     |                        | •                     | -                            |
| aFHT-7   | 3.75                  |                        | 7.0                   | 53,200                 | 0.99                  | 4,770                        |
| FH1-9    | 3.75                  | 7.0                    | 7.0                   | 55,500                 |                       |                              |

1.

PHI - Pre-Hater Treatment FHI - Final Hater Treatment

s Samples which we were not able to pull out of the hole.







March 27, 1995

Mr. Jim Richenbaugh Black & Veatch Waste Science 4717 Grand Avenue, Suite 500 Kansas City, MO 64112

Re:

USPCI Lone Mountain Facility

Subject:

Waste Water Treatment Floor Structural Design

The concrete floors in the area where the mezzanine has been erected were poured as part of two different building expansions. The first expansion was poured in the spring of 1987 and was designed to be eighteen inches thick with two layers of 3/4 inch reinforcement bars tied on one foot centers and separated by twelve inches between the top and bottom mats. All reinforcement bars were kept within three inches of the slab's surfaces and were supported by concrete brick on a two inch layer of sand. This slab underlies the area that supports the Flash Tanks and EF4 and extends to the south edge of the filter press mezzanine.

The second expansion attaches to the north side of the first slab and was poured in November of 1987. It was poured around four existing boiler foundations that were 2 feet wide, 3 feet deep, and 24 feet long. The floor slab was poured six inches thick and used a layer of 1/2 inch reinforcement bars tied on one foot centers, supported on a concrete brick and a 2 inch layer of sand. This slab underlies the area supporting the filter presses.

Both slabs were poured using a 4000 psi concrete strength mix as verified by the core sample tested by Meyers Engineering of which a report has been sent to you earlier this week.

I hope this will provide the information you needed for the certification work now in progress.

Sincerely, Lawren Fenten

Lawson Fenton Project Manager

2, Box 170 Waynoka, Oklahoma 73860-9622

Tel: 405/697-3500 Fax: 405/697-3596 Our Mission:

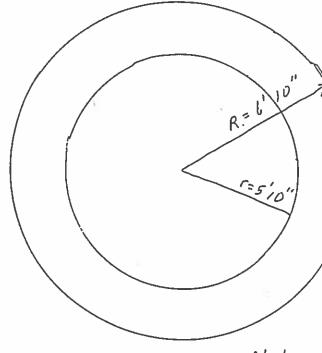
Provide the highest quality waste and by-product management services that consistently meet or exceed customer needs and regulatory requirements at competitive cost while enhancing shareholder value.

# EFA TANK LOAding

, ANK Volume = 1625 9Al.

Fluid Sp. Gr = 1.5 MAXIMUM

Fluid weight (max) = 1625 gal. x 8,35 16/90/6000 x 1.50100 = 20,350 Li


Tank Weight = 7000 Lb.

Weight of truck + contents = 700016 + 20, 350 66 = 27,350 66

Base plate Area =  $\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$ = 3.14  $\left[ \left( 3'5'' \right)^2 - \left( 2'11'' \right)^2 \right]$ = 10 ft

Loading = wt. (tank + contents)

1 = 2735016 2735 16/ft



TANK Base Plate

Tank Leak Tests

### Hydrostatic Test Record

Customer: USPCI - Lone Mt. Facility

Project: Evaporation Feed Tank No. 4

Location: Waynoke, OK

Test Start Date 3/1/95 Test Start Time 7:45 a.m.

Test Finish Date 3/1/95 Test Finish Time 11:45 a.m.

#### Test Procedure:

Fill evaporator feed tank to the top mtd. nozzle with water.

#### Results:

All tank nozzles were flanged off below the test water level. There was no change in water level inside the feed tank. Visual inspection of tank and tank nozzles indicated no water leaks.

Witness Day Prier

Date: \_\_\_\_\_3/1/95

#### WISco, INC.

11811 North Fwy., Suite 670 Houston, Toxas 77060 (713) 820-8066

| Page 1 of   | 1        |
|-------------|----------|
| Report Date | 11/19/93 |
| Report No.  | 001      |
| ·           |          |

| Mat'l Destination Lone Mt. Facility, Waynoka, OK Shipment Date is now11/24/93 Inspector estimated shipment date11/24/93 VendorLide Tank CoManufacturerLide Tank CoShop LocationMexia, TX Inspector's ContactMr. Billy Lide | Attn: Bruce Patterson  Rev. Dated  Req. Date  As of 11/19/93 Changed from  Order is 85 percent completed  Order No. Dated  Phone 817-562-5526  Shop Order TKEB2 & TKEF4  Position Customer Contact  Inspection Expediting Status |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inspector's Contact Mr. Billy Line Report is: X Interim Final Regarding: X MATERIAL DESCRIPTION:  Two (2) tanks - one 6' 4" OD x 12' 0" high; one 5' 0' To specifications of USPCI and API 650                             | Inspection Expediting Status                                                                                                                                                                                                     |

STATUS OF ORDER: Engineering, Materials, Fabrication, Inspection, Completion

The following was performed on each item:

Dimensional checks covering elevation, orientation, projection of all nozzles and manways. All of which were noted to be acceptable and as noted on shop approved drawings.

Fit-up of material: seams, junctions and welding of same was found to be very good. Visual inspection on nozzle fit-up and welding was noted as very good.

Review of two (2) spot x-rays (one on each item) was found to be satisfactory.

Leak test on each item was performed and noted as acceptable. Vessels were filled for over twelve (12) hours. Visual inspection disclosed no leaks or seeps.

Inspection of blasting and painting is scheduled for Wednesday, 11/24/93.

Roc 4-93

INSPECTOR: INSPECTION ORDER:

Dub Greer 12418-30-46

Piping Leak Tests

#### Piping Pressure Test

| $C_1$ | isto | \mi | er. |
|-------|------|-----|-----|

USPCI - Lone Mt. Facility

Project:

Discharge piping from Evaporation Feed Pumps P76 and P79 to

- (1) the block valve located just before suction side of Pump P75.
- (2) the block valves located on either side of Preheat Exchanger EU-4.
- the check valves located between the normally closed (NC) valves and the TEEs connecting to the suction side of Filter Press Pumps P77, P80, and P83 (including by-pass lines).
- (4) the flange located on suction side of Pump P-5.

Location:

Waynoka, OK

| Test Start Date: | 8/5/96 | Test Start Time:  | 3:55 p.m. |
|------------------|--------|-------------------|-----------|
| Test Finish Date | 8/5/96 | Test Finish Time: | 5:55 p.m  |

#### Test Procedure:

Fill piping section between Pumps P76 and P79 discharge to valves described above. Apply water pressure to system up to 105 psig by hydro pump and hold this pressure for minimum 2 hours.

#### Results:

Piping section was isolated from Pumps P76, P79, and P-5 by flange and Pump P75, EU-4, and Pump P83 by valve. System was pressured up to 105 psig and held this pressure for 2 hours. No change in pressure gauge reading was observed.

SEAL GEOFFREY E.
BRUEGGEMANN
11079
OKLAHOMA

Date: Aug. 20, 1996

Signature Do Juy E. Brugg

Envirotech Services, Inc.

Tank Metallurgy

| TPTANCE STANDARD A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PT   50 (TE)                                             | A DESCRIPTION TK . EF4                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| OGRAPHIC REQUIREMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NTS RT-3                                                 | 1 DESCRIPTION                                         |
| SOURCE:  TYPE Tripa  SIZE  STRENGTH 41ci.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EXPOSURE: S. TO F. DISTANCE MAT'L THICKNESS TIME         | VIEWING:  SINGLE  COMPOSITE  SINGLE WALL  DOUBLE WALL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PENETRAMETER:  SIZE SHIM THICKNESS SOURCE SIDE FILM SIDE |                                                       |
| VIEW OF TO SERVICE OF THE PROPERTY OF THE PROP |                                                          | OTHER                                                 |
| 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                       |
| 1-2 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | la l              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          | •                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                        |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | ·                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | 2.                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | 2                                                     |
| RADIOGRAPHER D. Stal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LEVEL II O.C. MGF                                        | REVOLUTE 11-18-93                                     |
| AUTHORIZED INSPECTOR Peup<br>COMMENTS: 11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19-93 WISCO IX.                                          | DATE                                                  |

| DURC       | GRAP                     | HIC F      | REQU                                  | JIRE                                  | EME      | NTS<br>EX<br>—<br>— | PO:                      | SUF               | T<br>1E:<br>6. T<br>1M1                          | 3<br>0 F<br>E_                          | F. C                                  |              | •                                      |   |             |             | VIEWING: SINGLE COMPOSITE SINGLE WALL DOUBLE WALL | <u>-</u> - |
|------------|--------------------------|------------|---------------------------------------|---------------------------------------|----------|---------------------|--------------------------|-------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------|--------------|----------------------------------------|---|-------------|-------------|---------------------------------------------------|------------|
| _M:        | MFG _<br>TYPE_<br>SIZE _ | Kod<br>47. |                                       |                                       | v        | F                   | IZE<br>HIM<br>OUF<br>ILM | THI<br>RCE<br>SID | CKI<br>SID                                       | NES                                     | s                                     |              |                                        | 3 |             |             | SCREENS:<br>FRONT OOS<br>BACK OLO                 | 23         |
|            | EW<br>MBER               | · .        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | A   S   S   S   S   S   S   S   S   S | 13/8/8/Q | MC 65/7             | NO STATE                 |                   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\           | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100kg/3/m//  | 10   1   1   1   1   1   1   1   1   1 |   |             | 01          | THER                                              |            |
| <u>L-1</u> |                          | i          | <u> </u>                              |                                       | İ        | i                   |                          | İ                 | 12                                               | 1                                       |                                       |              |                                        |   |             |             |                                                   | _          |
| 1-6        | <u></u>                  | _  ~       | 1_                                    |                                       |          |                     |                          | <u> </u>          |                                                  | 01                                      |                                       | _            |                                        |   | 10          |             |                                                   |            |
| 0          |                          | -          | <u> </u>                              | 1 1                                   |          | <u> </u>            |                          | 1                 | <br>                                             | <u> </u>                                |                                       | <u> </u><br> |                                        |   |             |             |                                                   |            |
| Table .    |                          | .21        | 1                                     |                                       |          | 1                   | +                        |                   |                                                  |                                         |                                       |              |                                        |   |             |             | ~                                                 |            |
| 7          |                          | 1          |                                       | <u> </u>                              | <u> </u> | <u> </u>            | 1                        | 1                 | 1                                                | !<br>                                   | <u> </u>                              | -            | <del></del>                            |   | <del></del> |             |                                                   |            |
| 1,01       |                          | 1          | 1                                     | 1 1                                   | <u> </u> |                     | <u> </u><br>             | <u> </u>          |                                                  | <u> </u>                                | l (                                   |              |                                        |   | <u> </u>    | <del></del> |                                                   | _          |
|            |                          |            | 1                                     | 1 1                                   | <u> </u> | +                   |                          | +                 | <del>                                     </del> | <u> </u>                                | 1 1                                   |              |                                        |   |             |             |                                                   |            |
|            | <u> </u>                 | _          | 1                                     |                                       |          |                     | <u> </u>                 | $\frac{1}{1}$     | <u> </u>                                         |                                         |                                       | - 1          |                                        |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          | <u> </u>            | $\dot{\top}$             | +                 | <del> </del>                                     |                                         |                                       | <u> </u>     |                                        |   | -           |             |                                                   |            |
|            |                          |            | 1                                     |                                       |          | i                   | Ť                        | T                 |                                                  | -                                       | İ                                     |              |                                        |   | · · ·       |             | /                                                 |            |
|            |                          |            | i                                     |                                       |          |                     |                          |                   | T                                                |                                         |                                       |              |                                        |   |             |             |                                                   | 5.5        |
|            |                          |            |                                       |                                       |          |                     |                          |                   | 1                                                |                                         |                                       |              |                                        |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          |                     |                          |                   |                                                  |                                         |                                       |              |                                        |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          |                     |                          |                   |                                                  | <u> </u>                                |                                       |              |                                        |   |             |             |                                                   |            |
| ii         | in.                      |            | 1                                     | 1                                     |          |                     |                          |                   |                                                  |                                         |                                       |              |                                        |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          |                     |                          | 1                 | <u> </u>                                         |                                         |                                       |              | *:                                     |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          |                     |                          |                   |                                                  |                                         |                                       |              |                                        |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          |                     |                          |                   |                                                  |                                         |                                       |              | 0                                      |   |             |             |                                                   |            |
|            |                          |            |                                       |                                       |          |                     |                          |                   |                                                  |                                         |                                       |              |                                        |   |             |             |                                                   |            |

e2

| Test Heport |            |
|-------------|------------|
|             |            |
|             | announce . |
|             |            |
|             |            |
| •           |            |

GENEVA BT

Zawing J. Ange **-** 0 00425400 TALLY NO. EA66015 MILL ORDER NO. P.O. DATE PURCHASE C. 18NO. 06/09/93 60-0641./X-53625 10848 LUNA ROAD ONEAL STEEL INC GC625400 09-23-93 SP 595603 DALLAS TEXAS SHIPPERS NO. P.O. DATE CORP MANNESMANN PIPEASTEEL HOUSTON TX 77056-3811 1990 POST DAK BLUD PROVO. UTAH 84603 P.O. BOX 2500 GENEVA STEEL JOB, CONTRACT

THIS IS TO CERTING THAT THE PRODUCT DESCRIBED HEREIN W MANUFACTURED, SAMPLED, TEST ACCORDANCE WITH THE SPECIF: CATION AND FULFILLS REGUIR MENTS IN SUCH RESPECTS. ED AND/OR INSPECTED IN

CORPORATE DIRECTOR, QUALITY DATE 09-23-93

> C.25 MAX P.040 MAX S.050 MAX HR365058 Y/P 36 KSI MIN MIN DRY NO OIL (FOR CONVERSION TO ASTM A-36) T/S 58 KSI H.R. SHEET

CERTIFIED T/R RA/SN O1 MILL

| <u></u>                   |                              | 1       | _                           |                                          |
|---------------------------|------------------------------|---------|-----------------------------|------------------------------------------|
| AREA<br>AREA              |                              |         | . eau                       | -(                                       |
|                           |                              |         | IN THE USA.                 |                                          |
| ELONGATION %              | 27.0                         |         |                             | L.                                       |
| TENSILE STR.              | 64900                        |         | 00                          |                                          |
| YIELD PT.<br>PSI          | 43000<br>45700<br>DATA***    | 8       | PROCESSES                   |                                          |
| 30                        |                              | 8       |                             | 中の の 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| TEST OR PIECE<br>IDENTITY | .3680"<br>.3680"<br>***END C | =       | MANLFACTURING               | 11.10                                    |
| TE                        | *                            | 6       | LFAC                        | 22. 7.22                                 |
| HEAT NO.                  | 294                          | >       | Z<br>E                      | 11.17.22                                 |
| HEA                       | 103294                       | AL N    | 2 Z                         |                                          |
| WEIGHT                    | 48630#                       | NS      | WEL 1                       |                                          |
| <u> </u>                  | 488                          | - Q¥    | Ä.                          | 12 1 1 14                                |
| OUAN                      | <del>,</del>                 | క       | E U                         | N - 211 . 110                            |
|                           | <br>  Cl                     | ₹       | SMELT ENG                   |                                          |
|                           | 655782                       | 3       | 1                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |
|                           | COIL.                        | S       | O1S O4                      | 4 4 4                                    |
| SCRIPTIO                  |                              | _   %   | CERTI                       | 2                                        |
| MATERIAL DESCRIPTION      | 72.0000"                     | AN NW   | 10                          | 3                                        |
| WAI                       | 2                            | ┢       | 1 -                         |                                          |
|                           | 3650"<br>3650"               | TYPE C  | 1 - 101 C.                  | THE STREET STREET STREET STREET STREET   |
|                           | 98.85TION<br>3.36.5.         | 1       | l « <sup>U</sup>            | L                                        |
| TEM                       | i e                          | HEAT NO | 103294<br>'GENEVA<br>***END |                                          |

| · ·             | HEREIN UA             | ы                                                                 | ECTS.                                                          | ne i kuma ngo ne ji di danar |                     | % RED. PEN.                      |                                         |         | USA, '                                  | 4                                         |
|-----------------|-----------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|---------------------|----------------------------------|-----------------------------------------|---------|-----------------------------------------|-------------------------------------------|
|                 | ERTIF<br>RIBED        | UFACTURED, SAMPLED,<br>AND/OR INSPECTED IN<br>ORDANCE WITH THE SP | CH RESP                                                        |                              |                     | ELONGATION %                     |                                         |         | ED IN THE                               | 1                                         |
|                 | IS                    | MANUFACTURED<br>ED AND/OR IN<br>ACCORDANCE W                      | CATION AND MENTS IN SU  MANAGER - Q DATE 12-08-92              |                              |                     | TENSILE STR.<br>PSI              | 72000                                   |         | S OCCURRED                              |                                           |
| 33              | THIS                  | MAN<br>MAN<br>ACC                                                 | CCA<br>MA MEI<br>DATE                                          | 9                            |                     | YIELD PT.<br>PSI                 | 46600<br>51100<br>DATA***               | 00      | PROCESSES                               |                                           |
| *****           |                       | INVOICE NO.                                                       |                                                                | 5/                           | PROD                | TEST OR PIECE<br>IDENTITY        | 3600"<br>3600"<br>*ENU OF               | CB      | i l                                     |                                           |
| 1011 10         |                       |                                                                   | -                                                              | NIW T                        | PER PR              | TEST OF JOEN                     | .3600<br>.3600<br>***END                | LT T    | MANLF ACTURING                          |                                           |
| Ď               | .o.<br>23-3878-92     | EAS4100                                                           |                                                                | 35 KSI                       | RESULTS             | HEAT NO.                         | 1C3269                                  | >       |                                         |                                           |
|                 | 12                    | ₹                                                                 | ROAD<br>13093<br>XAS                                           | Y/P                          | TEST RE             |                                  |                                         | 7       | ING AND                                 |                                           |
|                 | PURCHASE O. 2 60-8349 | 8 12-08-92<br>RG 310945                                           | UNIC<br>MESA<br>IN424<br>ON, TE                                | S.OSOMAX HR36SUSB            | H                   | Y- WEIGHT                        | 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | MO SN   | i iii                                   |                                           |
|                 | P.O. DATE<br>10/16/92 | SHIPPERS NO.  GC508408  VEHICLE RG                                | FERRO<br>7400 I<br>SP SP<br>HOUST                              | MAX HI                       | S REPOR             | OUAN                             |                                         | ຮ       | <u> </u>                                | 73<br>12<br>15<br>16                      |
|                 | 10                    | SHS COO                                                           |                                                                | 1                            | T/R ANALYSIS        | HENGTH                           | 566534                                  | Z<br>CC |                                         | という 人を変                                   |
|                 |                       |                                                                   | а.                                                             | Р.040МАХ                     |                     |                                  | COIL                                    | IS      | 8 M L                                   | odernose C-B attyperer                    |
| •               |                       |                                                                   | EL CORP                                                        | 1                            | CERTIFIED           | MATERIAL DESCRIPTION WIDTH, DIA. |                                         | 8       | 011 022 03<br>CERTIFIES                 | Care C.                                   |
|                 |                       | 603                                                               | PIPE&STEEL<br>AK BLVD<br>77056-3811                            | C.25MAX<br>DRY NO OIL        |                     | MATERIAL DE<br>WIDTH, DIA        | 72.0000"                                | WW      | 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                           |
|                 | 7                     | STEEL<br>X 2500<br>UTAH 84                                        | ANN PIPEASTEEL<br>3T OAK BLVD<br>TX 77054-3811                 |                              | L RA/SN<br>CAPTION  | NESS                             | 3600 ". 3600 ".                         | 1705    | HEAT 23 86 D                            | D. C. C. C. C. C. C. C. C. C. C. C. C. C. |
| Therease as ear | JOB, CONTRACT N.      | GENEVA STEEL<br>P.O. BOX 2500<br>PROVO, UTAH 84603                | MANNESMANN PIPEAST<br>1990 POST OAK BLVD<br>HOUSTON TX 77056-3 | H.R. SHEET<br>58 KSI MIN     | 01 MILL<br>SPECN CA | EW CHICK                         | 0                                       |         |                                         | 008064                                    |

Piping Metallurgy

TO

#### BELLVILLE TUBE CORP

|                                                                | f.U.Ecz 220<br>Bollyille,Tera                                                 | 77418                                          | 25                        |                                                   | HILL.                                                | CERTIFICA                                                          | TION                                 |                                      |
|----------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|---------------------------|---------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 5.0.4 :<br>001363                                              | CUSTOMER CRAN                                                                 | H #2                                           | ; DAT                     | E:<br>5-13-                                       | -93                                                  | 1 904                                                              | 2                                    | 79                                   |
| D: Houst                                                       | Pipe & Sup<br>Holmes Rd.<br>Dn, Texas<br>77051                                | ply .                                          | A PURE                    |                                                   | Si<br>Hi<br>I!<br>Pi<br>(<br>Ti                      | Taxas Pipe<br>7330 Holma<br>Houston,                               | es RD.<br>Texas                      | Y                                    |
| SPECIAL IN                                                     | 151. 6                                                                        | r B/X4<br>3 Gr B<br>25<br>DING                 | ERN                       | BET<br>BET<br>1 SE                                | E :                                                  | 1,303 F                                                            | cs.                                  | E5.*                                 |
| DE009 25 DE010 25 DE011 25 DE012 25 DE013 25 DE014 25 DE015 25 | EAT D 3763 .20 5765 .21 5765 .21 5765 .21 5762 .20 5762 .20 5762 .20 5765 .21 | #n<br>.99<br>.98<br>.98<br>.98<br>1.00<br>1.00 | P.010.010.010.011.011.011 | S<br>.006<br>.004<br>.004<br>.005<br>.005<br>.005 | ,Si<br>,22<br>-21<br>-21<br>-20<br>-20<br>-20<br>-20 | 72,710<br>72,510<br>72,903<br>72,054<br>71,971<br>75,206<br>74,487 | 51,479<br>48,538<br>49,872<br>53,979 | 45.7<br>45.7<br>44.7<br>45.3<br>45.4 |

All material has passed API flatting tests, and Hydrostatic tests.

Notes the tailing any other provision in this contract, P.T.E. eales no warranty as to the suitability or fitness of this product for upgrading by Auench and Teaper or any other process, unless B.T.C. shall be consulted in advance and give its approval in writing.

We bereig certify that the above information is true and current as contained in the records of this division.

7. hr 41 47.01



## HACKNEY, INC.

P.O. Box 568887 • 2525 Stemmona Freeway

Dallas, Texas 75356-8887 • (214) 534-2850

| YOUR ORDER NUMBER | AEFERENCE | CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPE |
|-------------------|-----------|--------------|-------------|--------------|-------------|
| DARRELL ANDERSO . | 35        | 454634       |             |              |             |

SOLD TO: K & K SUPPLY CO PO BOX 548 DUNCAN OK 75533

SHIF TO:

| TRI 414 (R 6/91)   | _        |                 |           |                | CEI                 | RIII        | IED                                     | TES   | STRE             | PORT       |             |                 |                           |           |
|--------------------|----------|-----------------|-----------|----------------|---------------------|-------------|-----------------------------------------|-------|------------------|------------|-------------|-----------------|---------------------------|-----------|
| ITEM QUANT         |          |                 |           |                |                     | DE          | SCRIPTIC                                | N/SPE | CIFICATIO        | N          |             | 73-2107         |                           | HEAT CODE |
|                    |          | 6 ST            |           |                | 6090                | 7           |                                         |       | -921/9<br>SS REL |            |             | 200 F           |                           | CPEN      |
|                    |          |                 | •         |                |                     |             |                                         |       |                  |            | 4           |                 |                           |           |
| 11-11-11-11-11     | KINDAL!  | of the state of | TO THE    |                |                     | THE STATE   | ), ST, C.Y.                             | L'ana | 1.42000          |            | l'astration | Latin C.        |                           |           |
| CODE               | C        | Mn              | P         | S              |                     | 51          | Cr                                      | Мо    | Cu               | NI         | V           | КЪ              | The state of the state of | C.E       |
| - N                | . 17     | .77             | . 01      | 1 . (          | 807                 | . 23        | 02                                      | .00   | .01              | .01        | . 00        | .00             |                           | .30       |
| ne steel till test | જારત છે. | ALSO TO         | Section 1 | कारग <i>ि</i>  | डाएस                | :क्स्प्रस्थ | 0 7 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 |       |                  | ម្រង់កំនុង | V. PCan     | <br> <br>       | allas atait               |           |
| HEAT CODE          | TENSIL:  | E * YII         | ELD   %   | Elong.<br>N 2" | Hard-<br>ness<br>HB | Size Mr     | 4 Tamp.                                 | - 1   | OOT POU          | T          | LA          | TERAL<br>ANSION |                           | % SHEAR   |
| - LONGITUDIA       | 65.9     |                 |           | 3.0            | 126                 |             |                                         |       |                  |            | 0.222       |                 |                           |           |

### C66W CONFORMS TO THE REQUIREMENTS OF MACE MR0175-92

at the products covered by this report comply with the applicable requirements of ASTM and/or ASME specifications, as noted for each item.

Anily that the above figures are correct, as contained in the records of the Company.

Glinda Lantly



## HACKNEY, INC.

P.O. Box 568887 • 2525 Stemmons Freeway Dallas, Texas 75356-8887 • (214) 634-2850

| YOUR ORDER NUMBER | REFERENCE | CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPED |
|-------------------|-----------|--------------|-------------|--------------|--------------|
| 0099-001186       | C121252   | 454634       | 982719      | 01/20/94     | 01/20/94     |

OLD TO: M & M SUPPLY CO PO BOX 548 DUNCAN OK 75533

SHIP TO: M&M SUPPLY: CO 2512 NO. 4TH STREET ENID, OK

#### CERTIFIED TEST REPORT

| RI 414 (R 8/ | 91)           |          |        |         |          | <u> </u>   |            |            |             |         |        |         |   |          |
|--------------|---------------|----------|--------|---------|----------|------------|------------|------------|-------------|---------|--------|---------|---|----------|
| ITEM         | QUANTI        | TY       |        |         |          | _          | DESCR      |            | SPECIFICATI |         |        |         |   | EAT CODE |
| 1            |               | 8        | 6 1    | 50 RF   | NN S     | [ D        |            | A1         | 35-92 /     | SA105   |        |         |   | 1293LB   |
| '            |               |          |        | 5 01:4  |          |            |            | A S        | FORSED      |         |        |         |   |          |
| 10           |               | в        |        | TD LR   |          |            |            |            | 34-92A/     | SA234 1 | 47 B   |         | i | C67R     |
| 10           |               | - 1      |        | 68 09   |          | 7726       |            |            | RESS RE     |         |        | ON F    | 1 |          |
|              |               |          | WID    | 05 07   | , ,,     | ,,,,,,     |            | 31         | KEGG KE     |         | 7      |         |   |          |
|              |               | ļ        |        |         |          |            |            |            |             |         |        |         |   |          |
| 31           |               | 1        |        |         |          |            |            |            |             |         | i.     |         |   |          |
|              |               |          |        |         |          |            |            |            |             |         |        |         |   |          |
|              |               |          |        |         |          |            |            |            |             |         | 66     |         |   |          |
| ਕ ੇ ਤ        |               |          | 50.125 | 1       |          | 18.00      | CHE CHE    | MICAL      | NALYSIS     |         |        |         |   |          |
| 200          | CODE          | C        | Mn     | Р       | S        | 5          |            |            | Ao Cu       | Ni      | V      | Nb      |   | C.E. =   |
|              | 3LB           | -19      | 1.D    |         |          | 22 -       | 25 .0      | 7 _ 0      | 1 - 17      | -06     | - 02   | .00     |   | -40      |
| 127          | 565           | • ' '    | •      | -   ••  |          |            | 1          | · [.       |             | -,      |        |         |   |          |
| 6.67         |               | 4.2      |        | ,   _   | م اهم    | 0.5        | 25 .0      | 2 .0       | 1 - 01      | -02     | .00    | -00     |   | _33      |
| C67          | R             | -18      | _ 8    | 4   • 0 | 08  -0   | 05         | 25 .0      | 2 60       | 1 - 01      | -02     | - 00   | •00     |   | = 33     |
|              |               |          |        |         |          |            |            |            | ı           | 1       |        |         |   | i        |
|              |               |          |        |         |          |            |            |            | 1           | 1       |        | 1 1     |   |          |
|              |               | ]        |        |         |          | - 1        |            |            | - 1         |         |        | 1       |   |          |
|              |               |          |        |         | - 1      | - 1        | 1          |            | 1           |         |        | 1 1     |   | 1        |
|              |               | 1        | 1      |         |          |            |            |            |             |         |        | 1       |   |          |
| THE BUT      | ALC: A STATE  | Friedr.D | HV:CI  | CALPRO  | PERTIE   | 5.624      | <b>925</b> | Gullen Con | negle place | HU CHAR | PYRESU | LTS-6   |   | 1000     |
| CHE LANCE    | (\$14.6)#81 B |          |        | YIELD   | % Elong. | Hard-      | Size MM    | Temp.      |             |         | 1      | TERAL   |   |          |
| HEAT         | CODE          | TENSI    |        | KSI     | IN 2"    | ness<br>HB | x 10 mm    | •E         | FOOTP       | DUNDS   |        | PANSION | % | SHEAR    |
|              |               | KS       |        |         |          |            | 7 10 11111 |            |             |         |        |         |   |          |
| 129          | 3LB           | 88.8     |        | 1       |          | 187        |            | ]          |             |         |        |         |   |          |
|              |               | Z E.     | A -    | =63.4   | -        | MAX        |            |            | ļ           |         |        |         | ŀ |          |
| C 67         | 'R            | 71 -1    | L      | 46.5    | 37.0     | 153        |            | !          | ]           |         |        |         | 1 |          |
|              |               | 1        |        |         |          | 1          |            |            |             |         |        |         |   |          |
|              |               |          |        | 1       | Ì        |            |            |            | Į.          |         |        |         |   |          |
| 1            |               |          |        |         |          |            |            |            | 1           |         |        |         | 1 |          |

<sup>\*</sup>L = LONGITUDINAL, T = TRANSVERSE

#### 1293LBC67R CONFORM TO THE REQUIREMENTS OF NACE MR0175-92

e items were heat treated in accordance with the requirements of the specification to which they were manufactured. / that the products covered by this report comply with the applicable requirements of ASTM and/or ASME specifications, as noted for each item. We hereby certify that the above figures are correct, as contained in the records of the Company.

Slindal Xantiller

MILL TEST REPORTS FUNNISHED BY TEXAS, PIPE & SUPPLY CO., INC.

CUSTOMER POERTIFIED TEST REPORT INSSO MILL CADER ACTS
1 0-0017155-0 INSSH LOT NO.1 NSEH W/D MO. 1 CUSTOMER. CLISTOMER ORDER NO. 1 CLIBTONER SPEC. 1 Seamless Tubular Products NORTH STAR STEEL DRI LBG/FT PE 18.97 FRODUCT DESCRIPTION : 9LN 8Y0167 GRADE 14PI St. X42/B ő HEAT NO.1

| CONHENTS                                                      | This palaciet is also parelectured casts 4318 fev. 444 6613 4164 fev. 444 6206 5437-4 fev. 765 6306 54104-8 fev. 45 |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BOHANCAL PROPERTIES: LINGITUDINAL TIOND 1 STRENBIH ELINGHTION | 4225 22.3 32.9 50.3<br>4225 22.3 32.9 50.3                                                                          |

| •                    | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | T C P    | F-65-31-0-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91. 0<br>91. 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 5        | 1700°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B.4019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | , Cb : v | 7 2 4,000 34,076<br>5 5 6,060 30,475<br>5 6,060 30,476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.002                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | . no     | 11 : 0.07 : 0.03 : 0.45<br>11 : 0.07 : 0.03 : 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | מי נית י | 5.5<br>0 .7<br>0 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ដូងដ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1784                 |          | 121 5: 4.74 : 4.007 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : 0.523 : | 1,21 (28,77 ; 0,606 ; 0 | D.ZL STRAIN wave .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HEADON ANALYSIE DEGA |          | HEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRODUCT #2              | PRODUCE SALES STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STAT |

2660 IYDROBTATIC TEST (64)X

| If a providence of better the backs of the control of providence of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o | Appropriate an experience of the force is of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executive of the executiv | Commercial published the book beauti-<br>custed that these to reprovide the two meants of this<br>qualities to their appeals deviced that | · mes young a shalfful wrecom | 12-2-94 11 143 CD               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|
| RELARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : RB AVE RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                           | : FASSED                      | Selection NACE 178-01-75        |
| SUPPLEMENTAL VERY NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEROLINE X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHARLY THECT 151                                                                                                                          | FLATTEMING TEST: X :          | JCMINY HARDEN :<br>SHAIN BILE : |

W AND GLESCONDED TO BOTOKE ME

- PSK

HORYFIDED THE PROPERTY OF THE PARTY OF ATTIFICATE 16 NOTORIZED CARY
RECLIENTED

SEPORT OF CHEMICAL AHALYSIS AND PHYSICAL TEXTS

語が記る

NINTH & LOWELL STREETS • NEWPORT, KY, 41072 606-292-0000

HEAT

פֿן

F

ភូ

. 1800

"" 12/18/92 1288 13 menor months mron112/16/92 BANCE NUMBER 1995 Change persons culture PLOF LONG HUMAN B25404 TS694 C&O 356426

CENTIFICATION STATEMENT

MADE AND HANDFACTURED IN U.S.A. Proposed by the oritics of D. H. Maggard: Manager Man is correct as committed to the records of the such the described specific tight and at widow This is to overly that the product Described as an exist.

2/18/9

TS-11043 PM SHOULD AND SHOULD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND SHIELD AND TEXAS PIPE & SUFFLY, INC 2330 HOLHES ROAD HOUSTON 77051 т собять собять собять собят на представление собять представление представление поставление поставл TOURS OF CHECKS AND THE PARTY OF THE PARTY OF 1600 .0200 . 1000 121592D 2650 53300 64200 .... .0700 2000 . 1000 ..0060 - 0200 . 1500 .5390 . 1800 .0060 .0040 .0010 .0310 .1700 . 1000 . 1500 .0100 .0070 .5100 .0490 .0020 .0010 .0370 .0100 .0500 ... 121592D 37. 무 2650 X42 GRADE 64900 53200 ٦× .. 1000. \_1700 .0500 .0070 .5400 .0400 . 1600 .0120 .0100 .0010 .0010 .0360 CONTRACT BY WELLS, IN .1700: :0070 .1700 .0700 .1700 .0070 .0034 .0200 .0600 .5800 ...: 0340 0010 ..... .. PHYSICAL TESTS - .... 1215920 무 2650 37 54800 65500 -5.1700 .0070 ...5600 . 1600 .0040 .0600 .0090 .0700 . 1800 .0350 .0010 0200 PRINCESS PRINCESS CONTRACTOR ...0900 5000 1800 .0050 1500 .0040 .0300 .0054 .0010 0340 0100 0400 121592D 무 2650 85 55000 65900 4900 1600 ..0900 .0070 . 0400 .0040 0300 .1900 4-1/2 .0043 .0100 .0310 .0010 TEXAS PIPE & SUPPLY INC. TRACK SPIN 774190 HOUSTON, TEXAS. MUNICIPAL ALL DEED .... . VERCE: IENVOL 3100 37.3000 .5000. 34900 .0900- --- 0900 .1700 | | 1400 .0070% | Eg. 0080% | political or .0070 | 35.00BOS .0600 ...0700 . 1900 | 1.1900; .0300 .0042 : |:::.0029.. .0010 .0330 121592D <u>ر</u>ز در 2650 웃 65900 80500 100E0 .... ...0350 自然品於 .0010 ì ij を は は 6 .; 

ç ĭ

.0600 -.2000 .. 'n

'n ø,

.0040

.0060 .5200



FLAT

무

1621 1631 ELO AIELD

39

151

SHI

ō

.0040

< ≥ Ϋ́ Õ

.0010 .0290



1



KOPPEL DIVISION AMBRIDGE DIVISION PHONE: 412-843-7100 VAX: 412-847-4071

TUBULAR

TETRHPORT

ORDER HO: 13334

SOLD TO: TEXAS PIPE & BUPPLY CO., INC. ATTH: PURCHASING DEPARTHENT 2330 BOLNES ROAD HOUSTON, TX 77051 BHIP TO:
TEXAS PIPE & SUPPLY CO., INC.
HOUSTON, TX SPIN 774190
S. PIERCE JUNCTION TEAM
TRACK

79335 E

SPECIFICATION(S) (ASTH ASKE SA/A53-93% SA/A106-93/API SL GR B/X42

| 0.D.  | WALL<br>1216 | HT/FT<br>7.58 | GRADE QUALITY 1023K BEAMLESS HOT FINISH |
|-------|--------------|---------------|-----------------------------------------|
| 20000 |              |               |                                         |

### CONDITION (SPECIAL):

| 19/10/2019/20                         |                                          |                                              |                  | 23                                        |                                      |             |              |               |                              |
|---------------------------------------|------------------------------------------|----------------------------------------------|------------------|-------------------------------------------|--------------------------------------|-------------|--------------|---------------|------------------------------|
| · · · · · · · · · · · · · · · · · · · | Ç Xn                                     | B P                                          | gi .             | Cr Ni                                     | No C                                 | u <b>11</b> | SN           | CB            | A CY                         |
| 414640 L                              | ,19 .51<br>.19 .51<br>.19 .51<br>.19 .51 | .013 .01<br>.014 .01<br>.013 .00<br>.012 .01 | 0 .24 .          | 12 10<br>12 10<br>12 10<br>12 10<br>12 10 | .02 .1<br>.02 .1<br>.02 .1<br>.02 .1 | 9,024       | 65           |               | .007<br>.003<br>.007<br>.052 |
| LOT                                   | SPECIMEN                                 | YIELD                                        | TENBILI<br>KBI-: | E ELONG                                   | R\A                                  | ина         | ROCK<br>MELL | GRAIN<br>SIZE | HULGRILFLU.<br>F 8           |
|                                       | 750 H STR                                | 49.4                                         | 71.2             | 36                                        | <i>1</i> 0                           | •           |              | 7             |                              |
|                                       |                                          |                                              | e 94             |                                           |                                      |             |              | j             |                              |

HATERIAL MELTED AND HANUFACTURED IN UEA

CTHER

•

E S

HYDRO -- 3000 PST. 5 SEC HOLD FLATS - OK CERTIFIED NACE MR0175

MILL TEST REPORTS FURNISHED BY

TEXAS PIPE & SUPPLY, CO. INC. CUSTOMER

CUSTOMER PO#

7-26

QUALITY ASSURANCE

HATERIAL WAS NOT EXPOSED TO MERCURY DURING PROCESSING.

HO WELDING OR WELD REPAIR PERFORMED ON THIS MATERIAL.

TEST REPORT

Koppel Siesi Corporation

Ambridge Tupe Operations F.D. Box 410 / Ambridge, FA-14003 Koppel Steel Operations/General Diffuse P.O. Box 780 Begrey Falls, PA 16019 Phone 818-845-7100, Pps 418-647-CISE

330W 412-347-6256

57-26-94 10:00 AK

الهزائياته

MILL TEST REPORTS FURNISHED BY TEXAS PIPE & SUPPLY CO., INC. CUSTOMER. CUSTOMER PO 井. A Subsidiery of his Droug los. MOIBIVID KOPPEL AMBRIDGE DIVISION PHOMB: 412-843-7100 PAX: 412-847-4071 TUBULAR TESTREPORT ORDER NO: FAXI HHIP TO: FOLD TO: TIDAS PIPE & SUPPLY CO. PURCHASING DEPARTMENT RAIL SPIN NO. 774190 ATTN: PURCHABIA HOUSTON, TX HOUSTON, TX 77051 SPECIFICATION(S) LASTH RENE SA/A53-93% SA/A196-93/API SL GR B/X42 CERTIFIED HACE MR0175

GRADE

CONDITION (EPICIAL):

Q.D.

3.5000

WALL

,216

AI/SI

7.58

| HEAT   | -           | c                        | Xn.                        | 8 ⊹.                         | è     | Si           | cr                | Hi       | Ho                       | ្តប្រ                    | λ1                           | 84   | CB   | Y    | CR         |
|--------|-------------|--------------------------|----------------------------|------------------------------|-------|--------------|-------------------|----------|--------------------------|--------------------------|------------------------------|------|------|------|------------|
| 416413 | A d ta lo F | .20<br>.19<br>,18<br>.19 | .51 ·<br>.49<br>.49<br>.50 | .011<br>.009<br>.010<br>.009 | .006  | .25          | .07<br>.08<br>.08 | .07      | .01<br>.01<br>.01<br>.01 | .15<br>.15<br>.15<br>.15 | .021<br>.020<br>.020<br>.020 | 53   |      | .001 |            |
| LOT #  |             | 1                        | TMEN                       | AIK                          |       | TENSI<br>KSI |                   | ELONG 2" | R\A                      | =                        | KHB                          | ROCK | GRAI |      | HAFLU<br>B |
|        | 1.          | 750                      | n any                      | 51.<br>52.                   | 8 7.0 | 72.8         |                   | 36       | · (200                   |                          |                              |      | 7    |      |            |
|        |             |                          |                            | }                            | - }   |              |                   | 100      |                          |                          |                              |      |      |      |            |

GRADE COLLITY STATUTES HOT FIXISH

MATERIAL HELTED AND HAMUTACTURED IN USA

OTHER

- 3000 PSI 5 BEC HOLD HYDRO

PLATS

1b

DATE

QUALITY ASSURANC

T3561

CUST P.O. 2047711

NATERIAL WAS NOT EXPOSED TO MERCURY DURING PROCESSING.

HO HELDING OR WELD REPAIR PERFORMED ON THIS HATERIAL. 

TEST REPORT

Koppel Steel Corporation

Ambition Tube Operations P.O. Box 410 Ambridge, PA 16003

Koppel Syall Oyerstens/General Offices P.O. Box 753 Beever Fells, PA 15010 Phone 412-645-7100, Fex 412-647-4365

1 8 0 1 4 1 2 - 9 4 7 5 6 5 8

10-11-94 10:88 AX

163

| -)                  | MA<br>SO                                 | )/<br>ITH               |                               |      | ජ                              |       |                 |                   | BENO                                         |                       | ž Aventa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |
|---------------------|------------------------------------------|-------------------------|-------------------------------|------|--------------------------------|-------|-----------------|-------------------|----------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | HEREIN I                                 | Z.Z                     | NI 9                          |      | R. MET.<br>PRUDUCIS            | . ·   | By<br>IN C      | (A)               |                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Tr.C.2            | SED T                                    | CCORDANCE               | TION AND                      | FICE | AF A                           |       | MISHED<br>7 CO. | 00                | A CAOE                                       | 1000年                 | 0.15-75 0.<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | (6) 0 /2 - 1 /2 /<br>0 0 0 0 - 1 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10.41               | TO CEL                                   | N I I                   | N E C A                       | حدد  | DABKCMSKI<br>U <u>SO</u> TUBUL | 02/23 | FFUPUS<br>SUPPU |                   | ELONG TO                                     | E C M S               | 0.02122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | HAR HE HE HE HE HE HE HE HE HE HE HE HE HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 48M                 | 18 18                                    |                         | E GPECI<br>LFILLE,<br>GL SEBO | . Q  |                                | •     | PE &            | PO#               | BIR BIR                                      | 31.46                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8        | Polikit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7                   | THIS                                     | MFG<br>9.0              | 1 TUT (                       | 2 C  | ₩ < .                          | DATE  | TEST TO         | STO LER PO        | IA. A. IEN                                   | 4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D II     | L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PORT                |                                          | o.                      | ,                             |      |                                | J ,   |                 | 3 0               | MELDS                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a        | HI THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH |
| t test neport       | 4.4                                      | HIYONCE RIO             |                               | ÷    | • • 8                          | -     |                 |                   | MIN WA                                       | 18d't-5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | У.       | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| icoligism           | 1.00 m                                   | 50                      |                               |      |                                |       |                 |                   | HEAT!                                        | or to                 | (00.2)<br>(00.2)<br>(01.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 AL     | 0 N L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What william        |                                          | U PROFIL NO             |                               | •    | ·.·                            |       |                 | 14 <u>2 4 4 1</u> |                                              | X                     | 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO BH    | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | שלים וליים ליים ליים ליים ליים ליים ליים | 7 - 1<br>7 - 1<br>7 - 1 | 2240                          |      |                                |       |                 |                   |                                              | <i>y</i><br>V<br>V    | X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . CA     | 000<br>11000<br>11000<br>11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                                          | 13023                   | ř LIS                         |      |                                |       |                 | e de la           |                                              | ::: 301               | ACS-908GR.E.AGNE S<br>89ED. 91 ADD ASTWA<br>ADD. ACT SENGE.E.<br>ED. 11/92 SSNE S<br>ACS-9086.E ASNE S<br>89ED. 91 ADD ASTWA<br>E ASNE SAJOG GR.E<br>ADD. ATT SE.GR.E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO NI    | D2 01<br>D2 01<br>O2 01<br>O2 01<br>TNG AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | P.O. DATE                                | Surprins no             |                               | •    |                                |       |                 |                   | 10年間の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の | SPECIFICATION A GRADE | GR. BY<br>CATO<br>CATO<br>GA. B<br>GA. B<br>GA. D<br>GA. D<br>GA. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SI       | 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nest                |                                          |                         | . 33                          |      |                                |       |                 |                   | MPTION                                       | SPECIFIC              | ASTM ACS-908G<br>38.B 89E0.81<br>91.6A.B ABB. AC<br>40TH ED.11/92<br>45TM ACS-90E6<br>88.B 89ED.91<br>91.GR E ASEC<br>10.91 ADD. AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P S      | 005 007<br>008 007<br>011 01-1<br>007 012<br>007 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                          |                         | *** *                         |      |                                |       | 6               |                   | TERIAL DESC                                  | 10.00kg               | 5 4 6 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NW       | 0000 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| or USA Collegations | ·                                        | TUBULAN PRODUCTE        |                               |      |                                |       |                 |                   | A STATE OF THE MATERIAL DESCRIPTION (1)      | WALL:                 | 4.5.7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 34     | 8 6 7 7 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| or US               |                                          | JLAIR FR                |                               |      |                                |       |                 |                   |                                              |                       | Charles and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr | 34YF     | HEAT PRODITA THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |
| 1                   | ₹<br>2×10                                |                         |                               |      |                                |       |                 |                   |                                              | 3.7 51ZE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEAT NO. | N66003<br>N66011<br>N66011<br>N66011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3)                  | CONTRACT HE                              | ກຂອ                     |                               |      |                                |       |                 |                   |                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 2 3 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

MILL TEST REPORTS FURNISHED BY TEXAS PIPE & SUPPLY CO., INC.

CUSTOMER. 7 7 See CUSTOMER PO # KOPPEL DIVIBION AMBRIDGE DIVISION PHONE: 412-341-7100 A Tybellery of the Creep line. TUBULA 412-847-4071 PAXI TESTERORT ORDER HO: T3554 SOLD TO: SHIP TOI CUST P.O. TEXAS PIPE & SUPPLY CO., INC. RAIL SPIN 774190 TEXAS PIPE & SUPPLY CO., INC. 8C477H ATTHE PURCHASING DEPARTMENT 2330 HOLHES ROAD HOUSTON, TX BOURTON, TX SPECIFICATION (B) : ASTH ASNE \$2/A53-93a/82/A106-93/API 5L GR B/X42 . O.D. WT/TT HALL GRADE QUALITY 2.3750 .154 3.65 SEXMLESS HOT FINISH 1023K COMDITION (SPECIAL) ( HEAT # C Hл B P Si Ni CT Mo Cri Al SH CB 1 4 CA 418827 .006 .19 . 52 009 . 29 . 09 . 09 .02 .18 .018 .19 .28 .53 .006 410 .020 .010 .09 .02 .18 .010|.006 .09 .02 .019 .09 - 19 ,010 .006 ,09 P ,18 . 27 .09 . 53 .03 .18 .018 ,020 .52 .010 .19 .005 , 28 .09 ,09 .02 .18 tor # **APECIMEN** YIELD GRAIN MAGNAFLUX TENSILE ELONG K/R BHN ROCK KSI KSI **2** H WELL SIZE .750 \* STR 54,9. 73.B 33 54.4 73.1 38 HATERIAL MELTED AND MANUFACTURED IN USA OTHER "HYDRO - JOOO PSI 5 SEC HOLD BENDE - OK CERTIFIED NACE HR0175 I WILL TEST REPORTS FURNISHED BY TEXAS PIPE & SUPPLY, CO. INC. CUSTOMER QUALITY ASSURANCE CUSTOMER PO# KATERIAL WAS NOT EXPOSED TO MERCURY DURING PROCESSING.

HO WELDING OR WELD REPAIR PERFORMED ON THIS HATERIAL.

TESTREPORT

Koppel Steel Corporation

Ambridge Tube Operations
P.O. Bee 410
Ambridge, PA 18003
Phone 844 049 0415

Roppel Stret Operations/Congret Officer F.O. Box 780 Beaver Falls, FA 18050

TOTAL F.02

## 19 41 . 1947 titte ...

4 4-41 -64 No 36 am



P.O. Box 568887. • • 2525 Stemmons Freeway

Dallas, Texas 75356-8887 • (214) 634-2850

| YOUR ORDER NUMBER | 3.7 | REFERENCE CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPE |
|-------------------|-----|------------------------|-------------|--------------|-------------|
| 0099-002979       |     | C139654 454634         | 819873      | 12/02/94     | 12/02/9     |

SOLD TO: H & H. SUPPLY CO PD BDX 548 DUNCAN DK 75533 SHIPTO: M & M SUPPLY 3923 OKLAHOMA AVE 73801 HODDHARD, DK

# CERTIFIED TEST REPORT

| 7TRI 414 (R 12/93)                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LE                            |           | 110/1     |      |                |                 |              |                |          | HEAT COST |
|---------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|-----------|------|----------------|-----------------|--------------|----------------|----------|-----------|
| ITEM QUANTI                           | TY                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | DE        | SCRIPTION |      |                |                 |              |                | <u> </u> |           |
| 3D:                                   | 3X1                   | STD CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 5         | A 2       | 34-9 | 24/54          | 1234 H          | IPB          |                |          | XCJ       |
| 31 1                                  | 2 3X2                 | 6B 09 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iC                            | w 4.      | A 2       | 34-9 | 2A/S/          | 4234 h          | IPB<br>AT 12 | 00 =           |          | LYKI      |
| .32                                   | 6 4X2                 | STD COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IC .                          |           | AZ        | 34-9 | ZA/SI          | A234 F          | 1PB          |                |          | HAL1      |
| 33 1                                  | 2 4X3                 | 6B 09 /-<br>STD COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NC ( )                        |           | A         | 234- | 92A/5<br>S"REL | AZ34 )<br>Teved | AT 12        | 00 F           |          | MAL1      |
|                                       | ALU                   | Property and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont | C1000                         | 12000     | HEMICAL   |      |                | a Special       | Majerier-    | y - 12,121 " " |          |           |
| AND THE STATE OF                      | Photographic in South | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                             | Si        | Cr        | Mo   | Cu             | Ni              | v            | Nb             |          | CE =      |
| AGJ:                                  | .1B .8                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           |           | 01   | -01            | -02             | - 00         | .00            |          | .33       |
| LYRI                                  | .18                   | 3 .011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .004                          | . 26      | .06       | 2    | 03             | .02             | .00          | .00            |          | .34       |
| MAL1                                  | .18 .7                | 8 .010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .010                          |           |           | 01.  | .01            | .00             | .00          | .00            |          | .32       |
| MALL                                  | .18 .7                | 8 .010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .010                          | -24       | .03       |      | .01            | .00             | .00          | .00            |          | .32       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A PHYSI               | CAL PROPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RTIES                         | - 05, 590 |           |      |                | - CHARI         | Y RESUL      | TS             |          |           |
| HEAT CODE                             | TENSILE *             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | long. Hard<br>ness<br>1 2" HB |           |           | F    | OOT POL        | JNDS            |              | PANSION        |          | % SHEAR   |
| XGJ<br>LYH1<br>MAL1<br>MAL1           | 67.80L                | 45.3 37<br>42.5 26<br>47.7 31<br>47.7 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0 125                        |           |           |      |                |                 |              |                |          |           |

<sup>\*</sup>L = LONGITUDINAL, T = TRANSVERSE, R = ROUND, S = STRIP

HACKNEY is a domestic manufacturer, and these items conform to the following specifications as they apply:

ASTM A234 WPB, ASME SA234 WPB, ANSI B16.9, B16.28, AND NACE MR01-75. FITTINGS:

FLANGES: ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

Were heat treated as required by the applicable specification. They also conform to the requirements of Parts 192 and 195. Title 49. Code of Federal ons. All welded littings are welded by certified welders to ASME Section X, and 100% radiographically examined per Anicle 2, ASME Section V. All the ce with the requirements of Paragraph UG-11, Section VIII, Division 1 of the ASME code. Hackney weld caps meet ASME Division 1, Section VIII Fresc Vessel Code Requirements, Paragraph UCS-79d. We certify these flanges and littings capable of passing a hydrostatic test compatible with their rating, and tist above figures are correct as contained in the records of the Company. Hardness testing and stamping are per NACE MR01-75. 400

6.4. A. 1 Ve

101



A DIVIBION OF TRINITY INDUSTRIES 🗘 P.O. Box 568887 • 2525 Stemmons Freeway Dallas, Texas 75356-8887 • (214) 634-2850

| YOUR ORDER NUMBER | REFERENCE | CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPEL |
|-------------------|-----------|--------------|-------------|--------------|--------------|
| 0099-002979       | C139654   | 454634       | 819873      | 12/02/94     | 12/02/94     |

SOLD TO:H & H SUPPLY CO PD BDX 548 DUNCAN DK 75533 SHIPTO: M & M SUPPLY 3923 DKLAHOMA AVE HODDHARD, OK 73801

## CERTIFIED TEST REPORT

| TRI 414 (R 12/93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                | UL            |        | ESCRIPTIO                              |              |         |                           |          |               |      | REAT CODE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|---------------|--------|----------------------------------------|--------------|---------|---------------------------|----------|---------------|------|-----------|
| ITEM QUANTIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                |               |        |                                        |              |         |                           | 100      |               |      | AZKO      |
| 2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                | 11.           |        |                                        | 234-         | 92A/SI  | 1254 1                    | 1PB      |               |      | ALKS      |
| * 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         | 6-70 TU        | ISCF. 2E      | 39201  | .6                                     |              |         |                           | ID D     |               |      | AZJII     |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | STD HC         |               |        |                                        | 234-         | 92A/S   | AZ34 1                    | 475      |               |      | AZUN      |
| 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 6-70 TL        |               | 3920   | 16                                     |              | 001.46  |                           | 100      |               |      | XCV       |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | STD CO         |               |        | A                                      | 234-         | 92A/S   | A234 I                    | פאא      |               | 1    | 701       |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 6B. 09. 1      |               | 76     | n n 10                                 | 0.24         | 00146   |                           | 100      |               |      | xcc       |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | STD: CE        |               |        | 3.4                                    | 2347         | 92A/S   | A254                      | MPB      |               |      | 700       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A10       | 6B 15.         | <u> </u>      | 5      | in the state of the                    | AZ ATATI ATI | Weleks  | <u>ئا ئىجى ئەتلىرى</u> تى | enashie. | 7,110,110,000 | 5-2  | +0.0      |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | <b>经企业的基本部</b> | 1700 0.000    |        | CHEMICA                                | Mo Mo        | Cu      | Ni                        | l v      | l Nb l        |      | C.E. =    |
| CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C M       |                | S             | Si     |                                        |              |         |                           | - 00     | .00           |      | . 43      |
| "ALKD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24: 1.0   | 7 .02          | 009           | 22     | 03                                     | 00           | . 03    | .02                       | - 00     | 1.00          |      | • • •     |
| a . × 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | _              | 1400417       | 2.3    | 70 WORL                                |              | 03      | .02                       | 00       | .00           |      | .43       |
| HLZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .24 1.0   | 17. 02         | 0 • 009       | .22    | •03                                    | 00           | .03     | .02                       | . 00     | 1 .00         |      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 . 1     | _              |               |        | - 10                                   | 01           | .02     | .02                       | .00      | 00            |      | .36       |
| XCV'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 1.0    | 13   -00       | 4 - 003       | - 22   | • 04.5                                 | 01           | .02     | . 02                      | . 00     | 1.00          |      | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | _              | 4             |        |                                        | 0.12         | -01     | .00                       | - 00     | -00           |      | .35       |
| XCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .19 1.0   | 00   •02       | 6 .009        | - 27   | .01                                    | 01           | 1.01    |                           | - 00     | 1.00          |      | ""        |
| 444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V. PHYS   | ICAL BROD      | EDTIES        | -1.07a | अध्यक्षका <u>त</u> ्र                  | esta La      |         | CHAR                      | PY RESU  | LTS           | S as | •         |
| and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |           |                |               |        | e MM Temi                              | . 1          | 7.7     | 45.7                      |          | ATERAL        |      | SHEAR     |
| HEAT CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TENSILE * | YIELD 9        |               | SS J.  | 0 mm                                   |              | FOOT PO | JNDS                      | EX       | PANSION       |      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -              |               |        | 25                                     |              | N .     | 150                       |          |               |      |           |
| AZKD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.1-T    | 55.7 3         |               | -      |                                        | 27           |         |                           |          |               |      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | AM C          | - 1    |                                        | i            |         |                           |          |               | į.   |           |
| AZJH :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.0 T    | 58.6 3         | 2.0 19        |        |                                        | - 23         |         |                           | 1        |               | 1    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L         |                | MA            |        | ************************************** | 2            |         | 2010                      |          |               |      |           |
| XCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.4.L    | 48.1 3         |               |        | **                                     | 1            | 1       |                           |          |               |      |           |
| w==5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 ( )    |                | MA<br>1 D Z G |        |                                        |              |         |                           |          |               |      |           |
| XCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.4 L    | 51.5           |               |        | 41                                     |              | 1       | 4                         |          |               |      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | <u> </u>       | H A           |        |                                        |              |         |                           | <u> </u> |               |      |           |

L = LONGITUDINAL, T = TRANSVERSE, R = ROUND, S = STRIP

Lyder State of HACKNEY is a domestic manufacturer, and these items conform to the following specifications as they apply:

FITTINGS:

ASTM A234 WPB, ASME SA234 WPB, ANSI B16.9, B16.28, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

were heat treated as required by the applicable specification. They also conform to the requirements of Parts 192 and 195. Title 49. Code of Federal ns. All welded fittings are welded by certified welders to ASME Section X, and 100% radiographically examined per Article 2, ASME Section V. All are in e with the requirements of Paragraph UG-11, Section VII, Division 1 of the ASME code. Hackney weld caps meet ASME Division 1, Section VIII Fresho /essel Code Requirements, Paragraph UCS-79d. We certify these flanges and fittings capable of passing a hydrostatic test compatible with their rating, and that shove figures are correct as contained in the records of the Company, Hardness testing and stamping are per NACE MR01-75.



A DIVIBION OF THINITY INDUSTRIES 🙃 P.O. Box 568887 2525 Stemmons Freeway Dallas, Texas 75356-8887 . (214) 634-2850

| ſ | YOUR ORDER  | NUMBER | · REFERENCE · | CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPE! |
|---|-------------|--------|---------------|--------------|-------------|--------------|--------------|
|   | 0099-002979 |        | C139654       | 454634       | 819873      | 12/02/94     | 12/02/94     |

TO HEETH SUPPLY: CD PD BOX 548 DUNCAN OK 75533 SHIP TO: M & M SUPPLY 3923 OKLAHOHA AYE HOODHARD, DK 73801

## CERTIFIED TEST REPORT

| TRI 414 (R 1 | 2/93)    |                               |              |              | C      | ER                    | TIF              | EIE   | D.T  | ES      | TRE          | PORT         | Γ        |                  | _       |           |
|--------------|----------|-------------------------------|--------------|--------------|--------|-----------------------|------------------|-------|------|---------|--------------|--------------|----------|------------------|---------|-----------|
|              |          | TY Week                       |              |              | 9.00   | 8 .                   | DE               | SCRIF | TION | SPECI   | FICATIO      | N            |          |                  | •       | HEAT COUL |
| 245          | 1,11     | 6 . 3<br>A1                   | 600.         | RF. B        | LIND   | 7                     |                  |       | A1   | 05-     | 93B/S        | A105         | 450 E    |                  |         | 03940     |
| 25           |          | 6 2                           | STD          | HC :         | 1010   | 354                   | 2                |       | A 2  | 34-     | 92A/S        | A234         | HPB      |                  |         | AZFO      |
| 26           |          | 6 2<br>A5<br>5 3<br>A5<br>5 6 | STD          | 3H<br>       |        | 084                   | В                |       | A2   | 34-     | 92A/S        | A234         | WPB      |                  |         | AZHP      |
| 27           |          | 5 6<br>A5                     | 5TD:<br>16-7 | и/С<br>70 TU | 2rr    | 002                   | 2101             | 0.0 : | 100  | 122.542 |              | 1.1.         |          |                  | :       | AZJM      |
|              | T. 4-765 |                               | 等新用          | 2. 信息        |        |                       |                  |       |      |         |              |              |          |                  | AMIR IN | 1.        |
|              |          | ) C 中 デリ                      |              |              |        |                       |                  |       |      |         | ਸ਼ੇ⊀ਾਂ Cu ੀਨ |              | V        | Nb               |         | C.E. 4    |
| ال د با      | 4 CE     | .25-1.                        | 04           | .015         | • 02   |                       | 26               | 08    | 0 2  | 3       | .28          | .08          | • 00     | .00              |         | .47       |
|              | 0        | .17 1.                        | 01           | .027         | . 01   | 0                     | 27               | 09    | 0    | 0       | .03          | .11          | .02      | .00              |         | .37       |
| AZH          |          | .15 1.                        | 80           | 010          | • 00   | 9                     | 31               | 06    | C    | 1:      | .03          | -09          | . 01     | -00              |         | .35       |
| AZJ          |          | .26 1.                        | 19           | .013         |        |                       |                  | .01   | .0   | 1       | .02          | D 2          | • 00     | .00              |         | .46       |
|              |          | WEST PHY                      |              |              |        |                       | 11000            |       | -    | ace i   |              |              | PY RESUI | TS-              | 3549    | 三, 注      |
| HEAT         | CODE :)  | TENSILE.<br>孫 KSI年            | YIE<br>K     | LD %         | Elong. | Hard-<br>ness :<br>HB | Size N<br>x 10 n | AM S  | emp. |         | OOT POU      | NDS          | _        | TERAL<br>PANSION | ç,      | SHEAR     |
| 089          | 4CE      | 93.5.<br>% R.A.               | 55.<br>=5    | 6 27<br>4.0  | 0 - 1  | 59                    | 3.14             | T. S  |      |         |              | 1. 1. 4      |          |                  |         |           |
| AZF          | D        | 73.7:1                        | 54           | 0 29         | 0 1    | 9.7                   | 2.34             |       |      |         |              | 0,1<br>10:73 | 1        |                  |         |           |
| AZH          | IP.      | 73.9 1                        | 54           | .3 29        | 0.     | 97                    |                  |       |      | 1       |              |              |          |                  |         | . 80      |
| AZ           | INSTAR   | 79.1                          | : 152.       | . 1  33      | 0      | 9.7                   |                  |       |      |         |              |              | 15       |                  |         |           |

L = LONGITUDINAL T = TRANSVERSE R = ROUND S =

· VI · YSA (TY) PKS

-ACKNEY is a domestic manufacturer, and these items conform to the following specifications as they apply:

FITTINGS:

ASTM A234 WPB, ASME SA234 WPB, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A234 WPB, ASME SA234 WPB, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, AND NACE MR01-75.

ASTM A105 AND A516-70, ASME SA105, ASME SA105, ASME SA105, ASME SA105, ASME SA105, ASME S 



P.O. Box 568887 - 2525 Stemmons Freeway
Dallas, Texas 75356-8887 • (214) 634-2850

|     | YOUR ORDER | NUMBER . | REFERENCE | CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPE |
|-----|------------|----------|-----------|--------------|-------------|--------------|-------------|
| 009 | 9-002979   | 1. 1. 1. | C139654   | 454634       | 821782      | 12/16/94     | 12/16/9     |

TO HEE HESUPPLY CO PO BOX.548

DUNCAN OX: 75533

SHIP TO: H & M SUPPLY 超3923 OKLAHOHA AVE 73801 HOODWARD, OK

|     | QUANTITY |        | Testing to Testing Description/Specification()                | HEAT CODE |
|-----|----------|--------|---------------------------------------------------------------|-----------|
| 42. | 100      | 3 STD  | LR: 90 A234-92A/SA234 HPB                                     | LZA1      |
| 51  | 3        | 8. STD | 09 / L82412 STRESS RELIEVED AT 1200<br>TEE A234-92A/SA234 HPB |           |
| 53  | 6        |        | LR 90 A234-92A/SA234 WPB                                      | MCY1      |
|     |          | 1      | STRESS RELIEVED AT 1200                                       | F         |

| W. C. C. C. C. C. C. C. C. C. C. C. C. C. | 1 to 0 to |      |        | CYMI A |      | CHEMICA   | NEAN | ALYSI | Sin |        |             |     | Ageida Field Faren abilitar | A Same |
|-------------------------------------------|-----------|------|--------|--------|------|-----------|------|-------|-----|--------|-------------|-----|-----------------------------|--------|
| CODE                                      | C         | ∴ Mn | P##(3) | 3115 S | Si   | (S) Cr/Fa | ₩.Mo | K. HO | 100 | < ∶ Ni | og <b>V</b> | Nb  |                             | C.E. = |
| Lall                                      | .19       | .80  | .011   | -009   | . 26 | .042      | 01   |       | 25  | .02    | •00         | -00 |                             | - 34   |
| LZE1                                      | .14       | . 70 | .006   | .007   | 17   | 094       | 02   |       | 8   | .09    | .00         | .00 |                             | .30    |
| HCY1                                      | .17.      | -78  | -012   | -010   | . 23 | .03       | .01  | - 0   | 1   | .01    | -00         | -00 |                             | .31    |
|                                           | g (8      |      |        |        |      |           |      |       |     |        |             |     |                             |        |

|       |           | <b>等於PHYSI</b> | CAMPROPERT                 | ES语程                | 12.16.2            |       | SECHAR      | PY R | ESULTS: AMARIAN      |         |
|-------|-----------|----------------|----------------------------|---------------------|--------------------|-------|-------------|------|----------------------|---------|
|       | HEAT CODE | TENSILE *      | YIELD, % Elon<br>KSI IN 2' | Hard-<br>ness<br>HB | Size MM<br>x 10 mm | Temp. | FOOT POUNDS | 12   | LATERAL<br>EXPANSION | % SHEAR |
| 4-1-5 | LZA1:     | 7. *           | 45.1 26.0<br>46.9 36.0     | 127<br>114          |                    |       |             | ţ    |                      |         |
| 35    | HCY1      | 70.2 L         | 51.9 32.0                  | 137                 |                    |       |             | .31  | sc                   |         |

L = LONGITUDINAL, T = TRANSVERSE, R = ROUND, S =

ACKNEY is a domestic manufacturer, and these items conform to the following specifications as they apply:

FITTINGS:

ASTM A234 WPB, ASME SA234 WPB, ANSI B16.9, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

Were heat treated as required by the applicable specification. They also conform to the requirements of Parts 192 and 195, Title 49, Code of Federal as All welded littings are welded by certified welders to ASME Section X, and 100% radiographically examined per Article 2, ASME Section V. All are a with the requirements of Paragraph UG-11, Section VII, Division 1, of the ASME code, Hackney weld caps meet ASME Division 1, Section VIII Press essel Code Requirements, Paragraph UCS-79d, We certify these flanges and fittings capable of passing a hydrostatic test compatible with their rating, and that pove figures are correct as contained in the records of the Company. Hardness testing and stamping are per NACE MR01-75. 



P.O. Box 568887. 2525 Stemmons Freeway Dallas, Texas 75356-8887 . (214) 634-2850

|   |                   |   |                        |             | A Company and an address of the company and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and |              |
|---|-------------------|---|------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Ī | YOUR ORDER NUMBER | i | REFERENCE CUSTOMER NO. | INVOICE NO. | INVOICE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DATE SHIPPED |
|   | 0099-002979       |   | C139654. 454634        | 824237      | 01/12/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01/12/95     |

TO:M & H SUPPLY CO PD. BOX 548 DUNCAN OK 75533 SHIP TO: M & M SUPPLY 3923 OKLAHOMA AVE 73601 HODDHARD, OK

## CERTIFIED TEST REPORT

| 414 (R 12/93) |           | 1 Maria San      |                   |                   |                        |               |        |            |                                         |
|---------------|-----------|------------------|-------------------|-------------------|------------------------|---------------|--------|------------|-----------------------------------------|
| EME QUANTITY  |           |                  |                   |                   | SPECIFICATIO           |               | *      |            | HEAT CODE                               |
| 51 44 12      | 6X4 S     | TD CONC          | ESTATE TO SERVICE | 7-17-A2           | 34-92A/S               | A234 F        | IPB    |            | MCAl                                    |
|               | A106B     | 07 / H9          | 0368              | ST                | RESS REL               | IEVED         | AT 12  | 00 F       |                                         |
| 1 80          | 2 STD     | LR 90            | - 1               | AZ AZ             | 34-92A/S               | A234 F        | 1PB    |            | KCK1                                    |
| 5 18          | . A106B   | LR 90<br>09 / L8 | 2414              | ST ST             | RESS, REL              | IEVED         | AT 12  | 00 F       | 2 200                                   |
| 5 18          | 3 510     | TEE              | 12 112 1123       |                   | 34-92A/S               | A234 F        | 4PB    | 10 102     | LZA1                                    |
|               | A106B     | 09 / L           | 82412             | ST                | 34-92A/S<br>RESS REL   | IEVED         | AT 12  | 00 F       |                                         |
| 6 18          |           | ICC              |                   |                   | 34 .7 EAT.3            | MEDT !        | 11.5   |            | MCO1                                    |
| the Asian C   | A106B     | 09-/ X8          | 5246              | THE ST            | RESS REL               | IEVED         | AT 12  | 00 F       | 10 Claus & 14 Com 1 1 10 2              |
|               | V         |                  | No. Comment       | CHEMICAL          | ANALYSIS               | List Ni       | A      | Nb Nb      | C.E                                     |
|               | C Mn      |                  |                   |                   | Mo S Cu                |               | .00    | .00        | •25                                     |
| neal R .1     |           |                  | 06 .21            | 08#7.0            | 21-1-14                |               | . 00   | 1.00       | .23                                     |
| ucui i        | 7 .50     | 010.0            | 00 24             | 505               | 0.2                    | 1.5 %         | .00    | .00        | .32                                     |
|               | 2 2 27 1  | -010             | 2                 | .05 .0            | 1. 02                  |               |        |            | 1.56                                    |
|               | 9 .80     | 011              | 09 26             | 04                | 1 02                   | .02           | .00    | .00        | .34                                     |
|               |           |                  |                   |                   |                        | 20            |        |            |                                         |
| MCO1 . 1      | 5 .78     | .014 .0          | 07 .22            | .03 .0            | 1. 01                  | .01           | .00    | 1.00       | .32                                     |
| Frederica:    |           | 1000             | -                 | THE PERSON OF THE | ATT - 1200 -           | 13.50         |        |            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|               | ZPHYSICA: | ERROPERTIE       |                   |                   |                        |               | Y RESU | LTS MARKET | न्त्रकार्यसम्बद्धाः स्टब्स्             |
|               |           | ELD % Elong.     | Hard- Size        | ММ Тетр           | FOOT PO                | UNDS          | 1,500  | ATERAL     | % SHEAR                                 |
| a company to  |           |                  | HB x 10           | mm 15 F.          | <b>中央的政治的政治</b>        | April 183     | EX     | PANSION    |                                         |
| MCA1 62       | 2.6 L 43  | .7 38.0.         | 107               | 10                |                        | At the second | 10     |            | 1                                       |
|               |           | 7.734            | 144               |                   | 25 579                 |               |        |            |                                         |
| MCW1 70       | 0.2 L 45  | .9 35.5.         |                   | 是不是特別             | distribute of          |               |        |            |                                         |
| 7.13          | 7 = 1 / = | 1 24 0           | MAX               |                   |                        |               |        |            |                                         |
| LZA1 6        | 7.5 L 45  | .1 26.0          | 127               |                   | 30                     | S. A. '       |        |            |                                         |
| HCD1: 6       | B.1 L 46  | .7 47.6          | 107               | 海 等               | · Saista               | 1.24          |        |            |                                         |
| ncu1.         |           | 7 41.00          | 1 7 1 1 17 2      | 19 18 MILE W. 18  | 48" 1 A . TA . TA . TA | 7 74          | 1      |            | 1                                       |

= LONGITUDINAL, T = TRANSVERSE, R = ROUND S = STRIP

学习的校心的 机自己的

ACKNEY is a domestic manufacturer, and these items conform to the following specifications as they apply:

FITTINGS:

ASTM A234 WPB, ASME SA234 WPB, ANSI B16.3, B16.28, AND NACE MR01-75.

FLANGES:

ASTM A105 AND A516-70, ASME SA105, ANSI B16.5, and NACE MR01-75.

It ivere heat treated as required by the applicable specification. They also conform to the requirements of Parts 192 and 195. Title 49. Code of Federal e. All welded littings are welded by certified welders to ASME Section X, and 100% radiographically examined per Article 2, ASME Section V. All are in with the requirements of Paragraph UG-11, Section VII, Division 1 of the ASME code, Hackney weld caps meet ASME Division 1, Section VIII Pressure essel Code Requirements, Paragraph UCS-79d. We certify these flanges and fittings capable of passing a hydrostatic test compatible with their rating, and that the bove figures are correct as contained in the records of the Company, Hardness lesting and stamping are per NACE MR01-75.



P.O. Box 568887 2525 Stemmons Freeway Dallas, Texas 75356-8887 (214),634-2850

|                   |           |              | ,           |              |              |
|-------------------|-----------|--------------|-------------|--------------|--------------|
| YOUR ORDER NUMBER | REFERENCE | CUSTOMER NO. | INVOICE NO. | INVOICE DATE | DATE SHIPPEL |
| 0099-002979       | C139654   | 454634       | 826204      | 01/25/95     | 01/25/95     |

SME H SUPPLY CO PO: BOX 548 DUNCAN OK 75533 ETO: M & M SUPPLY 3923 OKLAHOMA AVE HOODHARD, OK 73301

CERTIFIED TEST REPORT

| CENTIFIED TESTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . HEAT CODE |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| OCS   6   2   150 RF SD   A105   938/SA105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1194Ck      |
| A105 26 / 494-3223 AS FORGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| A234-92A/SA234 WPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MCAI        |
| STRESS RELIEVED AT 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [·          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| CHEMICAL ANALYSIS TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPE         |             |
| **CODEや R C n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C.E. =      |
| 194CR 19 83 .019 .029 21 .05 02 22 10 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .35         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| MCA1: - 14 64 .007 .006 .21 .08 .02 .14 .09 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .23         |
| GA1: 14 .64 .007 .006 .21 .08; .02 .02 .09 .00 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| CHARPY RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S         |             |
| HEAT CODE: TENSILE YIELD % Elong, Hard Size MM Tempo FOOT POUNDS EXPANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| 1194CR* 80.4** 46.5 B100 U35 T24 U35 T24 U35 T24 U35 T24 U35 T24 U35 T24 U35 T24 U35 T24 U35 T24 U35 T24 U35 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | },          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| MCA123: 62.6 C: 43.7 38.0 L07 FT 92.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W.          |
| <ul><li>このは「おおいか」を持ちます。</li><li>このは、これは「おいかない」を持ちます。</li><li>「おいかない」はないがられるとはなるない。</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この」</li><li>「この</li></ul> |             |

- LONGITUDINAL T - TRANSVERSE R - ROUND, S - STRIES

HACKNEY is a domestic manufacturer, and these flems conform to the following specifications as they apply:

FITTINGS:

ASTM A234 WPB, ASME SA234 WPB, ANSI, B16.9, B16.28, ANDINACE MR01.75.

FLANGES:

ASTM A105 AND AS16-70. ASME SA105 ANSI, B16.5, and NACE MR01.75.

Were heat treated as required by the applicable specification. They also conform to the requirements of Parts 192 and 195. Title 49. Code of Federal were heat treated as required by the applicable specification. They also conform to the requirements of Parts 192 and 195. Title 49. Code of Federal were heat treated as required by the applicable specification. as All welded filtings are welded by certified welders to ASME Section X, and 100% radiographically examined per Anicle 2. ASME Section V. All are in the requirements of Paragraph UG: 11. Section VIII. Division 1. Of the ASME code Hackney weld caps meet ASME Division 1. Section VIII Pressures of Paragraph UG: 12. Section VIII Pressures Code Requirements, Paragraph UCS-79d. We certify these flanges and fittings capable of passing a hydrostatic test compatible with their rating, and that it above figures are correct as contained in the records of the Company Hardness testing and stamping are per NACE MR01-75. GRIHNELL SUPFLY CO.

-maga56

P. 02



# HACKNEY, INC.

A DIVISION OF TRINITY INDUSTRIES OF P.O. Box 566687 • 2525 Statutions Freeway Daffas, Texas 75356-6587 • (214) 634-2850

| Γ | YOUR ORDER NUMBER | REFERENCE | CUSTOMER VO. | INVO-CE NO. | INVOICE DATE | DATE SHIPPED |
|---|-------------------|-----------|--------------|-------------|--------------|--------------|
|   | 0026948           | C116345   | 297193       | 974358      | 11/16/93     | 11/16/93     |

LD TOUR INNELL CORF.
4118 SOUTH 7CTH AVE.
TULSA OK 74145

SHIP TO: GRINNELL CORP 4118 SOUTH 70TH EAST AVE-TULSA, OK 74145

CERTIFIED TEST REPORT

| :4 (F 6/91) | UENI                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | ,, , , , <u></u> , , , , , , , , , , , , , , , , , ,     | DESCRIPTION/SPECIFICATION                     | 7-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEAT CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7 QUANTITY  | 6 15C RF WN STD<br>A105 26 / 493-1631<br>6 15C RF WX STD | A105-92 /SA105<br>AS FORGED<br>A105-92 /SA105 | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G593CA<br>G593AX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | A105 26 / 493-1247                                       | AS FORGED                                     | 2 867.8777.578.4877.0793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1           |                                                          |                                               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |

|       |       | 100     |          | 501 (456) | CHENNY                               | AL AMA                                       | 7815                                               |                                  | . A W                                                            |                                                                     |                                                                          |                                                                       |
|-------|-------|---------|----------|-----------|--------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|
| T c   | Mn    | Р       | <u> </u> | Şi        | Cr                                   | Mo                                           | Cu                                                 | 21                               | ii v                                                             | NE                                                                  |                                                                          | C.E.=                                                                 |
| • 5.5 | - 34  | • 050   | .023     | .23       | .07                                  | 52                                           | - 27                                               | -09                              | Fco                                                              | -00                                                                 | 1                                                                        | -40                                                                   |
| -25   | . 83  | . 034   | .029     | .24       | -12                                  | 52                                           | -34                                                | .09                              | 2:3                                                              | .co                                                                 | :                                                                        | -45                                                                   |
|       |       | }       |          |           |                                      |                                              |                                                    |                                  |                                                                  | 4                                                                   | •                                                                        | i                                                                     |
|       |       |         | 5-1      |           | i<br>i                               | -                                            |                                                    |                                  | 1                                                                |                                                                     | <u> </u>                                                                 | İ                                                                     |
| 1     |       | İ       |          |           | ļ                                    |                                              |                                                    |                                  |                                                                  | ĺ                                                                   | i                                                                        |                                                                       |
|       | . 2.5 | .22 .34 | C Min P  | C Mn P S  | C Mn P S Si<br>.22 .34 .020 .023 .23 | C Min P S Si Cr<br>.22 .34 .020 .023 .23 .07 | C Mn P S Si Cr Mo<br>.22 .34 .020 .023 .23 .07 .02 | 22 -34 -020 -023 -23 -07 -02 -27 | C Mn P S Si Cr Mo Cu Mi<br>.22 .34 .020 .023 .23 .07 .02 .27 .09 | C Min P S Si Cr Me Cu Mi V 22 .34 .020 .023 .23 .07 .02 .27 .09 .00 | C Mn P S Si Cr Mo Cu M V NE 22 .34 .020 .023 .23 .07 .02 .27 .09 .00 .00 | C Mn P S Si Cr Mo Cu Ni V Nt 22 .34 .020 .023 .23 .07 .02 .27 .09 .00 |

|            | PHYSI                    | CALIPRO | PERTIE   | 5   |                     | Est          | ARSEO.      | Y APSUCTS            |         |
|------------|--------------------------|---------|----------|-----|---------------------|--------------|-------------|----------------------|---------|
| TEAT CODE  | TENSILE *                |         | % Eleng. |     | Size MIA<br>x 10 mm | 500          | FOOT FOUNDS | LATEMAL<br>EXPANSION | % SHEAR |
| 3573CA     | 74 = 4                   | I       |          | 150 |                     |              |             |                      |         |
| 0593AX     | X R.A.<br>34.3<br>X R.4. |         | 28.0     | 155 |                     |              | <br> <br>   |                      |         |
| 201<br>11* |                          |         |          |     | İ                   | <u> </u><br> | t<br>t      |                      |         |
|            | ै                        |         |          |     |                     |              | į           |                      |         |
|            | Ì                        | 1       |          | 1   |                     | ļ            |             | 576.0                |         |

<sup>.</sup> LONGITUDINAL, T - TRANSVERSE

593CAD593AK CONFORM TO THE REQUIREMENTS OF NACE MRD175-92

able liters were best treated in accordance with the requirements of the specification to which they were manufactured.

Tentity that the products covered by this report comply with the appricable requirements of ASVIII and or ASVIE specifications, or nateuror each item, hereby certify that the above figures are correct, as contained in the records of the Company.

Tank Corrosion Protection



## PROTECTIVE MAINTENANCE COATINGS DATA

For Industrial Use and Professional Application Only Rust Inhibitive Polyamide Epoxy Coating

# GLID-GUARD® Corrosion Resistant HS Epoxy No. 5465 Series

For Interior-Exterior Metal

Read Label and Material Safety Data Sheet Prior to Use. DSF1-0690 See other cautions on last page.

## PRODUCT DESCRIPTION

GLID-GUARD Corrosion Resistant HS Epoxy is a low VOC, high solids, two package polyamide epoxy coating intended for direct application to interior and exterior metal. It is rust inhibitive and resistant to moisture and many chemicals. The product's excellent penetrating properties result in superior adhesion.

This product is an excellent choice for application to metal when surface preparation is limited to Hand Tool or Power Tool Cleaning. It is also suitable for use as a high build intermediate coat in heavy-duty industrial systems and may be used as a topcoat when the color and sheen are acceptable.

Like most epoxy coatings, GLID-GUARD Corrosion Resistant HS Epoxy will chalk and lose gloss on exposure to direct sunlight but will maintain excellent film integrity and continue to provide excellent protection to the substrate.

## PRODUCTS AVAILABLE

LID-GUARD Corrosion Resistant HS Epoxy Red No. 5465 (Component A) GLID-GUARD Corrosion Resistant HS Epoxy Gray No. 5466 (Component A)
GLID-GUARD Corrosion Resistant HS Epoxy White No. 5467 (Component A) GLID-GUARD Corrosion Resistant HS Epoxy Aluminum Mastic No. 5468 (Component A)

GLID-GUARD Corrosion Resistant HS Epoxy Curing Agent No. 5469 (Component B)

NOTE: Refer to Protective Maintenance Coatings Data sheet Section 8 No. 29 for detailed information on Aluminum Mastic No. 5468.

## TYPICAL USES

Ideal for use as a primer and intermediate build coat on storage tanks, structural steel, machinery and equipment in the food processing industries, chemical industries, petroleum retineries, paper mills, marine structures, mining industries, waste water treatment facilities, and general industrial buildings.

## PRODUCT ADVANTAGES

- Low VOC
- Rust inhibitive
- Tolerates surface moisture during application
- Long term flexibility—does not become brittle with age
- Hard, tough film
- Free of toxic amine curing agents
- Excellent alkali and solvent
- resistance High film build
- Protection in fresh or salt water immersion
- Lead and chromate free
- Simple 1 to 1 mixing ratio

## SERVICE CONDITIONS

Do not use for potable water or direct food contact service. Do not use on unprimed wood or unprimed gypsum wallboard. Do not use on surfaces that may be subjected to severe abrasion.

Will withstand 250°F, continuous and 300°F, intermittent dry heat. The color may change as these limits are approached, but the film will remain intact.

## REGULATORY RESTRICTIONS

The application VOC of this product may be restricted by law in some locations. Application VOC is increased by thinning with solvent. If the application VOC is restricted to 420 gm/liter (3.5 lbs/gal.), thinning must not exceed 7% by volume (9 fl.oz./gal.) with GLID-GUARD Epoxy Solvent No. 5568. If the application VOC is restricted to 450 gm/liter (3.75 lbs./gal.) or higher or is not restricted, thinning with up to 10% (12 fl.oz./gal.) is permissible.

## TECHNICAL DATA

All data shown is for a mixed (converted) gallon unless otherwise noted

Product No. - 5467/5469 Generic Type — Polyamide epoxy

Color—White Gloss-Approximately 30 @ 60°

Percent Solids by Weight - 71% ± 1% Percent Solids by Volume - 54% ± 1% Theoretical Coverage per 1.0 dry mil (1.9

mils wet) - 866 sq.ft./gallon \*\*Recommended Film Build/Coverage

(theoretical, unreduced)

Minimum -3.0 mils dry (5.5 mils wet)

289 sq.ft./gallon

Typical-5.0 mils dry (9.5 mils wet) 173 sq.ft./gallon

Maximum - 8.0 mils dry (15.0 mils wet) 108 sq.ft./gallon

(wet mil figures rounded to the nearest 0.5 mil)

When computing working coverage, allow for application losses, surface irregularities, any solvent addition, etc.

Percent Vehicle (Solids) by Weight — 28%

± 1% Percent Pigment by Weight —43% ± 1% Percent Solvent by Weight —29% ± 1%

Viscosity - 95-100 KU Weight per Gallon-11.1 lbs.

Flash Point (Closed Cup) - Base No. 5467-46°F. Curing Agent No. 5469-43°F.

VOC-3.24 lbs/gallon (388 gm/liter) unreduced

3.48 lbs/gallon (417 gm/liter) reduced 7% by volume with No. 5568

3.56 lbs/gallon (427 gm/liter) reduced 10% by volume with No. 5568

Drying Time (70°F., 50'Relative Humidity)

Touch — 1-2 hours Handle — 7 hours

Recoat - 7 hours

Full Cure - 7 days Reduction Solvent – GLID-GUARD Epoxy Solvent No. 5568 (10% maximum) Clean-Up Solvent-GLID-GUARD Epoxy

Solvent No. 5568 or MEK Type of Cure — Converted

Mixing Ratio (Base/Curing Agent) by Volume -- 1 to 1

Induction Before Use-30 minutes @ material temperatures >70°F.

60 minutes @ material temperatures 60°-70°F.

Pot Life - 4 hours @ 70°F. Tinting—DO NOT TINT

\*Compositional data for other products in this series may differ slightly.
\*\*As measured over the peaks of any surface projec-

tions or blast profile.

# GLID-GUARD Corrosion Resistant HS Epoxy (Continued)

## MATERIAL PREPARATION

o not add unspecified curing agents or solvents or mix with other paints. Do not tint.

Thoroughly mix the selected GLID-GUARD Corrosion Resistant HS Epoxy (Component A) and Corrosion Resistant HS Epoxy Curing Agent No. 5469 (Component B) separately, then combine the two components in equal parts by volume using power agitation. If agitation equipment is not explosion proof, provide good ventilation to prevent build up of vapors. Allow the combined material to stand 30 minutes before use. Extend this induction (standing) time to 60 minutes if the surface or material temperature is 60° – 70°F. After the induction period has elapsed, add up to 10% by volume GLID-GUARD Epoxy Solvent No. 5568 (12 fluid ounces per gallon of combined material) if necessary for application and mix thoroughly (see "Regulatory Restrictions" above). Pot life is 4 hours at 70°F., less at higher temperatures.

## SURFACE PREPARATION

All surfaces should be clean, dry and free of all contaminants.

## Metal Surfaces

#### Ferrous Metal

Surface preparation is dependent upon service conditions as follows:

## TYPE A - AGGRESSIVELY CORROSIVE

This exposure is an area characterized by aggressive chemical fumes, mists or dusts or other chemical contaminants that combine with high humidity and condensed moisture to corrode zinc at rates greater than one mil per year. The need to limit air pollution and protect personnel generally confines chemical concentrations of such an aggressive nature to within a radius of about 50 yards from the source of contamination. For Type A environments and all immersion exposures, White Metal Blast Cleaning (SSPC-SP5-82 and SSPC-SP-COM) is recommended. For splash and spillage, Near-White Blast Cleaning (SSPC—SP10-82 and SSPC-SP-COM) is satisfactory.

#### TYPE C - CORROSIVE

This exposure is less destructive than Type A exposure and is characterized by moderately aggressive chemical fumes, mists, or dusts that combine with moisture and high humidity to corrode zinc at rates less than one mil per year. Type A exposure may, in many instances, become Type C exposure outside of a radius of about 50 yards from the source of contamination for a limited further distance. For Type C environments, Near-White Blast Cleaning (SSPC-SP10-82 and SSPC-SP-COM) is recommended.

#### TYPE M-MODERATE

This exposure is generally outdoors and is characterized by normal atmospheric weathering and/or light or moderate concentrations of chemical fumes that combine with humidity and condensed moisture to corrode carbon steel at rates less than three mils per year. Zinc in this exposure is virtually free of corrosion. Light to moderate chemical fume concentrations in indoor areas without excessive humidity may produce similar conditions. For Type M environments, Commercial Blast Cleaning (SSPC-SP6-82 and SSPC-SP-COM) is recommended. Where exposure is normal weathering only, Brush-Off Blast Cleaning (SSPC-SP7-82 and SSPC-SP-COM), Power Tool Cleaning (SSPC-SP3-82 and SSPC-SP-COM), or Hand Tool Cleaning (SSPC-SP2-82 and SSPC-SP-COM) will provide excellent service.

## TYPE P-PROTECTED (ARCHITECTURAL)

In this category, surfaces are generally indoors and are not subjected to high humidity or chemical contaminants that will attack paint or steel. For Type P environments, Brush-Off Blast Cleaning (SSPC-SP7-82 and SSPC-SP-COM), Power Tool Cleaning (SSPC-SP3-82 and SSPC-SP-COM) will provide the sound substrate needed for proper adhesion.

## Galvanized and Aluminum

Sandblasting is unnecessary. Remove oil, grease, dirt, dust and chemical contaminants using the prescribed cleaning methods.

#### **Poured Concrete**

Verify that all surface projections have been leveled. Remove all oils, grease, dust, dirt and chemical contaminants with the prescribed cleaning methods. Remove weak or powdery surfaces by acid etching or brush abrasive blasting. Dull very smooth concrete by similar means. Prime with this product thinned 10% by volume with GLID-GUARD Epoxy Solvent No. 5568 (see "Regulatory Restrictions" above).

## **Previously Painted Surfaces**

The performance of this coating over previously painted surfaces is directly influenced by the type, age and condition of the old finish. For best results in immersion situations, completely remove any old coating and prepare as for new surfaces. For non-immersion service, remove all blistered, loose or peeling old coating. Hard or glossy finishes should be dulled by sanding or other abrasive means. Apply to a test area; if wrinkling or lifting occurs after overnight drying, remove the old coating.

## **APPLICATION**

Do not apply when air or substrate temperature is below 60°F.

For best appearance, primary application should be by airless or conventional spray. Use brush or roller application for small areas only—flow and leveling will be limited. Spray application is required to obtain 5.0 mils dry in a single coat. Application by brush or roller will limit the film thickness to 3.0-4.0 mils dry per coat.

## SPRAY APPLICATION

## Airless Spray

Glidden equipment is specified. Fluid Tip: 315-619 Gun: ASM 400

Pump: GLIDDEN 500™, GLIDDEN 750™, GLIDDEN 750GE™, GLIDDEN FORMULA ONE™

Pressure: 2000-2500 psi

NOTE: All pumps must be kept well away from areas where vapors from this product may collect.

## Conventional Spray

Gun: Binks Model 18, Binks 2001, or equivalent Needle: Binks Model 63A or equivalent Fluid Nozzle: Binks Modes 63PB or equivalent Air Cap: Binks Model 63B or equivalent

## COVERAGE

Typical coverage (calculated, unreduced) is 173 sq.ft./gallon at 5.0 mils dry (9.5 mils wet). Minimum film thickness is 3.0 mils dry (5.5 mils wet) 289 sq.ft./gallon, maximum is 8.0 mils dry (15.0 mils wet) 108 sq.ft./gallon. All wet mil figures are rounded to the nearest 0.5 mil. When computing working coverage, allow for application losses, surface irregularities, any solvent addition, etc.

#### DRYING

Dries to touch in 1-2 hours, to handle in 7 hours, to recoat in 7 hours, to full cure in 7 days at 70°F., 50% relative humidity. Allow longer drying times under cooler or more humid conditions.

## CLEAN-UP

Clean all equipment immediately after use with GLID-GUARD Epoxy Solvent No. 5568 or methyl ethyl ketone.

## TOPCOATS

#### SOLVENT EPOXY FINISHES

GLID-GUARD Corrosion Resistant HS Epoxy No. 5465/5469 series

GLID-GUARD Commical Resistant Epoxy No. 5240/5242 series
GLID-GUARD High Solids Epoxy No. 5430/5434 series
GLID-GUARD® DURAMASTER™ High Solids Epoxy No. 5295/5299 series
GLID-GUARD® METALLITE™ High Build Epoxy No. 5475/5476

GLID-GUARD Cold Cure Epoxy No. 5281/5265

GLID-GUARD Coal Tar Epoxy No. 5270/5271

GLID-GUARD Hi-Build Coal Tar Epoxy No. 5273/5274 GLID-GUARD® GLID-TILE™ Epoxide No. 5550/5552 series

NU-PON\* COTE Color Coat No. 7240/7200 series

#### WATER-BORNE EPOXY FINISHES

GLID-GUARD Acrylic Epoxy No. 5277/5278

GLID-GUARD Amine-Adduct Epoxy No. 5585/5586 series

#### **POLYURETHANE FINISHES**

GLID-THANE™ ONE Moisture Cured Polyurethane No. 6100 series

GLID-THANE II Acrylic Polyurethane No. 6200/6252 series GLID-GUARD High Solids Acrylic/Polyester Urethane No. 5410/5414 series

#### SOLVENT VINYL FINISHES

GLID-GUARD Double Build Vinyl No. 5514 GLID-GUARD® VINYL-COTE™ High Build No. 5522

#### WATER-BORNE ACRYLIC FINISHES

LIFEMASTER™ PRO Hi Performance Acrylic No. 6900 series

LIFEMASTER PRO HB Acrylic No. 5440 series



# o grigging

The Sherwin-Williams Company Cleveland, OH 44115

| "   " " " " " " " " " " " " " " " " " "       |                           |
|-----------------------------------------------|---------------------------|
| Hi-Mil She                                    | -Tar™ Epoxy               |
| Description                                   | <u></u>                   |
| Hi-Mil Sher-Tar Epoxy is a high build,        | polyamide cured           |
| spoxy coal tar coating. Can be applied at hig | h film thicknesses        |
|                                               |                           |
| in one coat.                                  |                           |
| Characteristics                               |                           |
| Color:                                        | Black                     |
| Coverage:                                     | 1                         |
| Recommended:                                  | 45-68 sq. It./gal.        |
| 24-35 mils v                                  | ret; 16-24 mils dry       |
| Theoretical, no loss: 1090 sq. ft./           | gal. @ 1.0 mil dry        |
| Curing Machanism: Crossli                     | nk Polymerization         |
| Drying Schedule: (temperature & humid         | ity dependent)            |
| @ 77°F & 50% RH @ 29 mlls wel:                | 1 1                       |
| To Touch:                                     | 8-10 hours                |
| Tack Free:                                    | 1 10000                   |
| To Recoat: Minimum                            | Maximum<br>72 hours       |
| @50-60°F 24 hours                             | 48 hours                  |
| @60-80°F 16 hours                             | 16 hours                  |
| @80-100°F 8 hours                             | 6 hours                   |
| @100-120°F 1 hour                             | Semi-Gloss                |
| Finish:                                       | artens Closed Cup)        |
| Patiels                                       | 2 (3:1)                   |
| Number of Components (Hatto):                 | 4 hours @ 77°F            |
| Sweat-In time:                                | 30 minutes @ 77"F         |
| Solvent/Reducer:                              | Reducer #54               |
| Wahlala Type:                                 | Polyamide Epoxy           |
| VOC: 306 gram                                 | s/liter: 2.55 lbs /gal    |
| Volume Solids:                                | 68 ± 2%                   |
| Weight Solids:                                | 77 ± 2%                   |
| Weight per Gallon:                            | 10.3 ± .3 lbs             |
|                                               | .                         |
| Application                                   |                           |
| Application Conditions                        |                           |
| Temperature (air, surface, material):         | 50-100°F                  |
| (surface temp. at least 5°F above dew         | point)                    |
| the letter describite                         | 90% max. [                |
| Brush No reduction required. Use a n          | atural bristle brush. j   |
| Roller: No reduction required. Use a 3        | 3/4" woven nap with       |
| shapolic core.                                |                           |
| Small areas may be brushed or rolled, but     | film build will be lower. |
| Alriess spray:                                | 1                         |
| Pump                                          | 30:1                      |
| Pressure                                      |                           |
| Пр                                            | 0.00 1.01 D               |
| Hose                                          | 3/8" • 1/2 1.D.           |
| Filtor                                        |                           |
| Hose                                          | oi catalyzeo materiai     |
| Conventional spray:                           | Diale 10 aug              |
| Gun                                           | DINKS TO GUIT             |
| Air Pressuro                                  | 10 ps                     |
| Fluid Pressure                                | 40 psi                    |
| Fluid/Air Nozzla                              | סטיטט דם                  |

## Specifications

-B69B40/B60V40

| Substrate                                          | Surface Preparation (See pages 2 through 5) |
|----------------------------------------------------|---------------------------------------------|
| Aluminum, atmospheric of No primer needed Concrete | spr additional details) Page # only         |
| 1                                                  |                                             |

# Performance Specifications

|     | • •                                                                                                                                                                                                                                                                                                                  |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | Physical Properties:                                                                                                                                                                                                                                                                                                 |        |
| F   | Abrasion Resistance (ASTM D4060, 1000 cycles) 101 mg                                                                                                                                                                                                                                                                 |        |
| 0   | Direct Impact (ASTM G14)                                                                                                                                                                                                                                                                                             | 1      |
| ) ا | Dry Heat Resistance (ASTM D2485)                                                                                                                                                                                                                                                                                     | ١      |
| ١,  | Elcometer Adhesion (ASTM D4541) 600 psi                                                                                                                                                                                                                                                                              | 1      |
| ۱   | Flexibility (ASTM D522, 180° bend)                                                                                                                                                                                                                                                                                   |        |
| l   | Moisture Condensation Resistance (ASTM 04585) 1000 hours                                                                                                                                                                                                                                                             | 1      |
| l   | Pencil Hardness (ASTM 03363)4H                                                                                                                                                                                                                                                                                       |        |
|     | Salt Fog Resistance (ASIM BITT)                                                                                                                                                                                                                                                                                      | 1      |
|     | Thermal Shock (ASTM D2246) 250 cycles                                                                                                                                                                                                                                                                                | 1      |
|     | Wet Heat Resistance (not immersion) 120° F                                                                                                                                                                                                                                                                           |        |
|     | Resistance Guide: (Resistance to tumes, splash and spillage - not immersion-ASTM D3912) Acid Salt Solutions Severe Aliphatic Hydrocarbons Severe Alkalies Severe Alkali Salt Solutions Severe Aromatic Hydrocarbon Solvents Moderate Chlorinated Solvents Moderate Fresh Water Immersion Salt Water Immersion Severe |        |
|     | Inorganic Acids                                                                                                                                                                                                                                                                                                      | e<br>e |

## WISco, INC.

11811 North Fwy., Suite 670 Houston, Texas 77060 (713) 820-8066

 Page 1 of
 1

 Report Date
 11/25/93

 Report No.
 002

| Order No. 12418-30-46 Dated                                                                          | Attn: _Bnice Patterson Rev Dated Req. Date Req. Date Changed from Order is90 percent completed Order No Dated Phone817-562-5526 Shop Order _TKEB2 & TKEF4 |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| MATERIAL DESCRIPTION:                                                                                |                                                                                                                                                           |
| Two (2) tanks - one 6' 4" OD x 12' 0" high; one 5' 0" OD X 1  To specifications of USPCI and API 650 |                                                                                                                                                           |

STATUS OF ORDER: Engineering, Materials, Fabrication, Inspection, Completion

Writer's visit to vendor on Wednesday, 11/24/93, was to witness sandblast, initial paint coating and first coat of Sher-Tar epoxy.

Sandblast was verified to be as required SSPC-SP6, but due to immediate change in weather conditions, writer informed vendor's Mr. Billy Lide, that painting and/or epoxy coating at this time was not recommended. He also agreed. Items are to be reblasted and inspection of first coatings is to be on Monday, 11/29/93 or Tuesday, 11/30/93, weather permitting.

A spark or holiday test is to be performed on Sher-Tar epoxy along with micro-test of same and external coating of Glidden epoxy #5466-3 to 4 mils. A requirement of 7 mils on Sher-Tar epoxy will also be verified.

Description of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co

INSPECTOR: INSPECTION ORDER:

Dub Greer 1000 12418-30-46

| st-It* brand fax transm |                       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | , INC.         |               |                          |           |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--------------------------|-----------|
| BRUCE PATIETES          | N Co. Lua             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70             |               | Does 1 of                | 1         |
| pt.                     | Phone #               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | Page 1 of<br>Report Date | 12/3/93   |
| (#                      | Fax #                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ,             | Report No.               | 003       |
|                         | 8.08. Webs            | California and California and California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |               |                          |           |
| Customer <u>USPCI</u>   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Bruce Pat     |                          |           |
| Order No. 12418-30      | -46                   | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d              |               | Rev D                    | ated      |
| Mat'l Destination _I    | one Mt. Facility, W   | aynoka, OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |               | Req. Date                |           |
| Shinment Date is no     | w <u>ready now</u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | As of          | 12/3/93       | Changed from             | 1         |
| Inspector estimated s   | hipment date _ reac   | γ ποιν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Order          | is <u>100</u> | percent o                | combieted |
| Vendor Delta Tanl       | c Co                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | Dated _                  |           |
| Manufacturer Lide       | Tank Co.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 817-562-      |                          |           |
| Shop Location Men       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | E-B2 & TKE-F4            |           |
| Inspector's Contact     | Mr Billy Lide         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | on Vice Pr    |                          |           |
| Report is: Inte         | rim x Final           | Regarding: x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inspection .   | Exped         | iting Status             |           |
| MATERIAL DESCI          | RIPTION:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |                          |           |
|                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90             |               |                          |           |
| Two (2) tanks - one     | 6' 4" OD x 12' 0"     | high; one 5' 0" O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D X 12' 0" ł   | nigh          |                          |           |
| To specific             | ations of USPCI ar    | d API 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |               |                          |           |
| STATUS OF ORDE          | R: Engineering Materi | ils, Fabrication, Inspecti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on, Completion |               |                          |           |

Writer's visits to vendor on Tuesday, 11/30/93, and Friday, 12/3/93, inspection functions were performed as follows:

## 11/30/93

First coat of Sher-Tar epoxy (internally) was micro-tested. Results were noted to be acceptable with an average of 3.5 mils.

Sandblast was verified to be SSPC-SP-6 with anchor pattern of 3.5 to 4.0. A Keane-Tator surface comparator was used to verify anchor pattern on each vessel.

## 12/3/93

Writer verified Sher-Tar epoxy to have mil thickness ranging from 7.2 to 14.8 on each vessel.

External gray primer paint range from 3.5 to 6.5 on each vessel.

A holiday test was performed internally on each vessel and found to be satisfactory. Items were released for shipment.

INSPECTOR: INSPECTION ORDER:

Dub Greer 12418-30-46

Piping Corrosion Protection



The Sherwin-Williams Company Cleveland, OH 44115

# Kem Kromik Universal Metal Primer-B50Z Series

| Ke                               | m Kro                                                    | mik       | Uni       | versal              | Me     |  |  |  |  |  |
|----------------------------------|----------------------------------------------------------|-----------|-----------|---------------------|--------|--|--|--|--|--|
|                                  | Descrip                                                  | tion      |           |                     |        |  |  |  |  |  |
| Kem Kromik Univer                | Kem Kromik Universal Metal Primer is a low VOC, modified |           |           |                     |        |  |  |  |  |  |
| alkyd resin primer o             | designed (                                               | or use (  | over iro  | on and ste          | el     |  |  |  |  |  |
| substrates. Can be u             | sed as a "                                               | universa  | l" primi  | er under hig        | gh i   |  |  |  |  |  |
| performance topcoat              | s and is als                                             | o suitab  | le as a   | "barrier" co        | at     |  |  |  |  |  |
| over conventional co.            | atings which                                             | h would   | normali   | y be attacke        | ed     |  |  |  |  |  |
| by strong solvents in            | high perfo                                               | rmance    | coaling   | gs.                 |        |  |  |  |  |  |
|                                  | Characte                                                 |           |           |                     |        |  |  |  |  |  |
|                                  |                                                          | Braum     | OII W     | hile, and Bu        |        |  |  |  |  |  |
| Color:                           |                                                          | Brown     | Oll TV    | inte, and be        | ~"     |  |  |  |  |  |
| Coverage:<br>Recommended         |                                                          |           | 204-2     | 73 sq. ft./ga       | al.    |  |  |  |  |  |
| Hecommended                      | •                                                        | 6-8 n     |           | ; 3-4 mlls d        |        |  |  |  |  |  |
| Theoretical, no                  | loss:                                                    |           |           | @ 1.0 mil d         |        |  |  |  |  |  |
| Curing Mechanism                 |                                                          |           |           | Oxidatio            |        |  |  |  |  |  |
| Drying Schedule:                 | <br>Itemperatur                                          | e & hum   | nidity d  | ependent)           | 200    |  |  |  |  |  |
| @ 6 mils wet,                    | 50% R. H.                                                | and:      |           |                     | -      |  |  |  |  |  |
|                                  | @ 40°F                                                   | @77:      | F         | @110° F             |        |  |  |  |  |  |
| To Touch:                        | 2 hours                                                  | 30 m      | nules     | 15 minules          |        |  |  |  |  |  |
| Tack Free:                       | 21/2 hours                                               | 1 hou     | ır        | 20 minute:          | s      |  |  |  |  |  |
| To Recoal with                   | <b>)</b> :                                               |           |           |                     | 1      |  |  |  |  |  |
| alkyds                           | 21/2 hours                                               | 1 hou     | ır        | 45 minute           | s      |  |  |  |  |  |
| ероху                            | 36 hours                                                 | 16 hd     |           | 16 hours            | - 1    |  |  |  |  |  |
| urethane                         | 36 hours                                                 | 16 h      |           | 16 hours            | .50    |  |  |  |  |  |
| Finish:                          |                                                          | -         |           | 10 units Ø (        | 1      |  |  |  |  |  |
| Flash Point:                     | 80°F (                                                   | Pensky-   | малеп     | s Closed Ce<br>Xyle |        |  |  |  |  |  |
| Solvent:                         |                                                          |           |           | Phenolic All        |        |  |  |  |  |  |
| Vehicle Type:                    |                                                          | 415 ara   |           | ; 3.45 lbs./        | -      |  |  |  |  |  |
| VOC:                             |                                                          | 415 GIB   | Historica | 51 +                |        |  |  |  |  |  |
| Volume Solids:<br>Welght Solids: |                                                          |           |           | 72 ±                | 2%     |  |  |  |  |  |
| Weight per Gallor                | 1:                                                       |           |           | 12.5 ± .35          | lbs    |  |  |  |  |  |
| Meets the perfor                 | mance rea                                                | quireme   | nts, n    | ot necessa          | rily   |  |  |  |  |  |
| composition, of F                | ederal Spe                                               | cificatio | n: TT-    | P-664D              |        |  |  |  |  |  |
|                                  |                                                          |           |           |                     | -      |  |  |  |  |  |
|                                  | Application                                              |           |           |                     |        |  |  |  |  |  |
| Application Con                  |                                                          |           |           | 40.40               | 100E   |  |  |  |  |  |
| Temperature (air.                |                                                          |           |           |                     | 20-7-  |  |  |  |  |  |
| (surface temp. at                | least 5°F a                                              | ipove de  | w poin    | l)                  |        |  |  |  |  |  |
| Relative humidity                |                                                          |           |           | 85% maxim           | וטווו. |  |  |  |  |  |
| Brush: No reduc                  | tion require                                             | d. Use a  | natur     | el Drišlje bri      | ışn.   |  |  |  |  |  |
| Roller: No reduct                | tion require                                             | d. Use a  | 3/8" v    | voven nap v         | AIED   |  |  |  |  |  |
| phenolic core.                   |                                                          |           |           |                     |        |  |  |  |  |  |
| Alriess spray:                   |                                                          |           |           |                     |        |  |  |  |  |  |
| Pressure                         |                                                          |           |           |                     |        |  |  |  |  |  |
| ТІр                              | **********                                               |           |           | 015"                | 019"   |  |  |  |  |  |
| Hose                             | *************                                            |           |           | 1/4                 | I.D.   |  |  |  |  |  |

## Specifications Surface Preparation Substrate (See pages 2 through 5) Steel .....SSPC SP2/ SW-14 2 topcoats are recommended over all primers/substrates. Suggested topcoats ...... Page A-100 Exterior Latex Finishes ......24-26 DTM Acrylic Coatings ......34 Heavy Duty Epoxy ......49 Hi-Bild Aliphatic Polyurethane ......50 Hi-Solids Polyurethane ......53 Industrial Enamel HS .......55 Metalatex Semi-Gloss Coating ......64 ProMar Interior & Exterior Alkyd & Latex Topcoats ... 73-95 Sher-Tile Epoxy ......100 Tile-Clad High Solids Epoxy ......108 Water Based Catalyzed Epoxy ......111

## Performance Specifications **Physical Properties:** Abrasion Resistance (ASTM D4060, 1000 cycles) ......250 mg Direct Impact (ASTM G14) ......70 inch lbs. Dry Heal Resistance (ASTM D2485) ...... 200° F Elcometer Adhesion (ASTM D4541) .......260 psi Flexibility (ASTM DS22, 180° Lond)...... 1/4° mandrel Moisture Condensation Resistance (ASTM D4585)..... 500 hrs. Pencil Hardness (ASTM D3393) ......H Salt Fog Resistance (ASTM B117)......500 hours Thermal Shock (ASTM D2246) ...... 5 cycles Resistance Guide: (Resistance to fumes, splash and spillage - not immersion-ASTM D3912). Acid Salt Solutions ......Moderate Aliphatic Hydrocarbons ......Moderate Alkalies ......Not recommended Aromatic Hydrocarbon Solvents ......Light Chlorinated Solvents ......Not recommended Fresh Water......Moderate Salt Water.....Moderate

Oils (cutting, vegetable, lubricating) ......Severs
Organic Acids ......Ligh
Oxygenated Solvents ......Not recommender



Secondary Containment Corrosion Protection



Primer 67/67C

1818 Miller Parkway Streetsboro, Ohio 44241

(216) 562-1970 (216) 562-7638 FAX 100 % SOLIDS, MOISTURE-TOLERANT EPOXY PRIMER FOR STEEL AND CONCRETE 3-4 MILS (0.1 mm)

## RECOMMENDED APPLICATIONS

Concrete Substrates Steel Substrates Primer for Epoxy and Urethane Floor Toppings, Linings, Coatings and Grout

## PHYSICAL PROPERTIES

Tensile Strength 2,000 - 2,500 PSI ASTM C-307

Tensile Elongation 12-25 %

ASTM C-307

Adhesion to Concrete Cohesive Failure
ASTM D-4541 of concrete
Adhesion to Steel 2,200-2,500 PSI

ASTM D-4541

Electrical Properties < 25,000 ohms

NFPA #99. ASTM F-150

## **SPECIFICATIONS**

Primer shall be 3-4 mils thick, 100% solids bisphenol A epoxy cured with an amine adduct as manufactured by Dudick Inc. Primer 67 shall be brush, roller or spray applied in accordance with the manufacturer's recommended practices. Primer 67C must be spray or roller applied.

## PRIMER 67

Primer 67 is designed to prevent abrasiveblasted steel from developing rust bloom prior to the application of a Dudick coating or lining system. For maximum performance all steel surfaces should be primed, but primer may not be needed for mild, non-immersion service. Concrete, however, must always be primed to aid in the "wetting out" required for good adhesion.

## PRIMER 67C - CONDUCTIVE PRIMER

Primer 67C is a 100% solids, two component epoxy primer designed to be used over concrete whenever the coating or lining system must be spark tested.

# ESTIMATING QUANTITIES AND ORDER BILL OF MATERIAL

| SQUARE FEET PER GALLON |                   |  |  |
|------------------------|-------------------|--|--|
|                        | CONCRETE STEEL    |  |  |
| Primer 67              | Primer 67 150-200 |  |  |
| Primer 67C             | 100-150           |  |  |

Quantities shown are for estimating purposes only. Actual field usage may vary. Primer 67/67C are available in 1 and 2 gallon units.

## APPLICATION INSTRUCTIONS

#### SURFACE PREPARATION

Metal: Surfaces must be abrasive blasted to an appropriate finish.

Immersion and heavy spillage service: White Metal SSPC SP-5 or NACE #1, 3.0 mil minimum profile.

Heavy, non-immersion service (i.e. fumes and spillage): Near white SSPC SP-10 or NACE #2, 2.0 mil minimum profile.

Almospheric service: Commercial SSPC SP-6 or NACE #3, 2.0 mil minimum profile.

Concrete: Concrete must be abrasive blasted or etched with muriatic acid (Solution of 1 part 20° Be HCl and 1 part water) to remove surface laitance and other contaminants. Concrete must be free of curing compounds and form release agents. Surface texture should be similar to 40-60 grit sandpaper. The prepared surface should have a minimum tensile strength of 250 PSI per ASTM D-4541.

All concrete substrates must be checked for moisture prior to product application using the Plastic Sheet Test, ASTM D-4263.

Additional surface preparation will be required if a 40-60 grit texture is not achieved and the surface laitance not completely removed after a single application of acid or with the first mechanical preparation procedure.

Abrasive blasting removes laitance, exposing honeycombs or voids beneath the surface which must be filled with Scratch Coat 100. (Refer to separate product bulletin)

#### APPLICATION SPECIFICATIONS

Substrate temperature for both concrete and metal must be between 50'F and 110'F.

Relative humidity must not exceed 90%.

Substrate temperature must be 5°F above the Dew Point.

## PRIMER 67/67C MIX RATIOS:

Component B

| Primer 67 Component A Component B | l gal.<br>l gal. |  |
|-----------------------------------|------------------|--|
| Primer 67C<br>Component A         | l gal.           |  |

\*Pre-mix primer 67C Component A for 1-2 minutes to disperse the conductive fillers prior to adding the correct amount of Component B.

95 fl. oz.

Primer 67C must be spray or roller applied. Use brush application for small touch-up or repair work only.

The pot life of the mixed Primer 67/67C will depend on the temperature. To prevent material waste and avoid damage to equipment, do not open and mix more material than can be used according to the following table:

#### PRIMER 67/ 67C POT LIFE

| TEMPERATURE | POTLIFE |
|-------------|---------|
| 50°F        | 90 min. |
| 75°F        | 60 min. |
| 90°F        | 30 min. |

At 75° F the pot life and thin film cure of Primer 67 can be decreased by the addition of Accelerator #1 as follows:

| Ozs./Accelerator #1 per mixed gal. Primer 67 | Pot Life | Thin Film<br>Cure |
|----------------------------------------------|----------|-------------------|
| 3-4                                          | 36 min.  | 4 hrs.            |
| 6-7                                          | 15 min.  | 2 hrs.            |

Using 7 ounces of accelerator #1 per mixed gallon of Primer 67, the thin film cure @ 40° F is reduced to 8 hours.

## **PRIMING**

Metal: Mix the pre-measured units of Component A with Component B. Prime all metal surfaces to be coated with Primer 67 at 3-4 mils WFT.

Concrete: Mix the pre-measured units of Component A with Component B. Prime all concrete surfaces to be coated with either Primer 67 or 67C at 3-4 mils WFT. The basecoat may be applied over primer that is "tacky". Do not allow the primer to puddle.

Important - With all epoxies after priming and before each additional coat, examine the surface for amine blush (oily film). If present, remove by washing with warm water and detergent.

## Cure Cycle for Primer 67/67C:

| Temperature | Minimum<br>Recoat Time | Maximum<br>Recoat Time |
|-------------|------------------------|------------------------|
| 50°F        | 12 hrs.                | 8 Days                 |
| 75°F        | 6-8 hrs.               | 5 Days                 |
| 90°F        | 4-5 hrs.               | 3 Days                 |

To optimize intercoat adhesion, we recommend application of the basecoat while the primer is tacky. If this is not possible, the above recoat times must be observed. Exposure of the primer to direct sunlight will considerably shorten the recoat times. If recommended recoat times are exceeded, consult a Dudick Representative; sanding or abrasive blasting may be required before the coating, lining or floor topping can be applied.

## **CLEANING**

Use S-10 Cleaning Solvent to clean tools and equipment. DO NOT USE ACETONE.

#### SHIPPING

Primer 67/67C Component A's are non-regulated plastic liquids. Primer 67/67C Component B's are flammable corrosives with a flash point of 106°F (Setaflash) and carry both a red warning label and a black and white warning label. S-10 Cleaning Solvent is a flammable liquid with a flash point of 52°F (PMCC) and carries a red warning label.





## **STORAGE**

Warning: All Dudick products classified by DOT labels as either white, yellow or red labels, must not be mixed or stored together as an explosive reaction can occur. All products should be stored in a cool, dry area away from open flames, sparks or other hazards.

When properly stored in their original, unopened containers, Primer 67/67C components have a one year shelf life.

## SAFETY

M.S.D.S - Sheets must always be read before using products. Primer 67/67C are intended for application by experienced, professional personnel. Dudick Inc. can supply supervision to help determine that the surface has been properly prepared, the ingredients correctly mixed, and the materials properly and safely applied.

If materials are to be applied by your own personnel or by a third party contractor, please be sure that they are aware of the following safety precautions:

- Exposure to resins and hardeners through direct skin contact and/or inhalation may cause severe dermatitis reactions in some people. Cleanliness of the skin and clothing is critical and must be of paramount concern.
- Fumes are flammable and heavier than air. Proper ventilation should be maintained to minimize breathing of concentrated fumes.
- Suitable respirators should be used during application.
- Safety glasses, gloves, and suitable protective clothing must be worn at all times during application.
- If contact with hardeners occurs, remove any clothing involved and flush the skin with flowing water. Discard the clothing. Do not attempt to wash and reuse it. Primer liquids can be removed with S-10 Cleaning Solvent, MEK, or lacquer thinner. DO NOT USE ACETONE.

- Keep open flames and sparks away from the area where materials are being mixed and applied.
- If a rash occurs, remove the individual from the work area and seek a physician's care for dermatitis.
- In case of eye contact, flush with water for at least 15 minutes and consult a physician.
- If swallowed, do not induce vomiting; call a physician immediately.

#### Note:

Dudick Inc. ("Dudick") warrants all goods of its manufacture to be as represented in its catalogs and that the application of its products by its employees or sub-contractors shall be performed in a workmanlike manner. Dudick's obligation under this warranty shall be the repair to and replacement of any applications which its examination shall disclose to be defective. Dudick makes no warranty concerning the suitability of its product for application to any surface, it being understood that the goods have been selected and the application ordered by the purchaser. DUDICK INC. MAKES NO WARRANTY, EXPRESS OR IMPLIED, THAT THE GOODS SHALL BE MERCHANTABLE OR THAT THE GOODS ARE FIT FOR ANY PARTICULAR PURPOSE. THE WARRANTY OF REPAIR OR REPLACEMENT SET FORTH HEREIN IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES ARISING BY LAW OR OTHERWISE; AND DUDICK INC. SHALL NOT LIABLE FOR INCIDENTAL BE CONSEQUENTIAL DAMAGES, INCLUDING BUTNOTLIMITED TO LOST PROFITS, DOWN TIME, DAMAGES TO PROPERTY OF THE PURCHASER OR OTHER PERSONS, OR DAMAGES FOR WHICH THE PURCHASER MAY BE LIABLE TO OTHER PERSONS, WHETHER OR NOT OCCASIONED BY DUDICK'S NEGLIGENCE. This warranty shall not be extended, altered or varied except by written instrument signed by Dudick and Purchaser.



# Dudick Inc.

Dudlek Incorporated Corresion-Proof Products 1816 South Wason Drive Streetsboro, Ohio 44241

218-562-1970 FAX No. 216-562-7638

# Protecto-Coat 200

ELASTOMERIC, SPRAY APPLIED, ENVI-RONMENTALLY SAFE, URETHANE COAT-ING. 40-60 MILS (1-1 1/2 mm)

Protecto-Coat 200 is a high solids aromatic polyurethane coating with superior elongation. It is especially suited to bridge cracks in concrete.

## RECOMMENDED APPLICATIONS

Secondary Containment Areas Process Floors Railroad Tank Cars Underground Pipes & Tanks - Exterior Thickener Tanks & Mechanisms

Spent Liquor
Storage Tanks
Food Processing
Pharmaceutical
Breweries
Structural Steel

## CHEMICAL RESISTANCE

Protecto-Coat 200 provides a tough, durable surface and will withstand splash and spills of many inorganic and organic acide as well as alkalies. Also resistant to aliphatic solvents.

## PHYSICAL PROPERTIES

| Protecto-Coat<br>200                                              | 40 Mil<br>Basecoat   | 20 Mil<br>Topcoat    |
|-------------------------------------------------------------------|----------------------|----------------------|
| Tensile Strength<br>(PSI) ASTM C307                               | 2,400-2,600          | 2,200-2,500          |
| Elongation*                                                       | 225% to 250%         | 50 to 60%            |
| Shore D Hardness                                                  | 40-45                | 65-70                |
| Abrasion Resistance<br>CS 17 wheels/1000 cycles<br>x 1000 gm load | 10 mg<br>weight loss | 32 mg<br>weight loss |
| Solids by Volume                                                  | 80%                  | 100%                 |

\*At 60% elongation the chemical resistant topcoat begins to surface crack while the basecoat will continue to elongate to 250% extension.

## SPECIFICATIONS

Coating shall be 40-60 mils thick, 80-100% solids aromatic urethane resin, consisting of 2 basecoats and a topcoat of 20 mils each, manufactured by Dudick, Inc. Materials shall be brush-, roller- or spray- applied in accordance with manufacturer's recommended practices.

## THE PROTECTO-COAT 200 SYSTEM

The Protecto-Coat 200 system uses a moisture tolerant primer and two or three coats of elastomeric thermosetting urethane resins to protect concrete and steel.

Primer 67 is designed to prevent abrasiveblasted steel from developing rust bloom prior to the application of a Protecto-Coat System. For maximum performance, all steel surfaces should be primed, but primer may not be needed for mild, non-immersion service. Concrete, however, must always be primed to aid in the "weiting out" required for good bonding.

Protecto-Coat 200 is applied in three coats by brush, roller or spray. The elastomeric basecoat is applied in two 25 mil applications to achieve a nominal 40 mils DFT. The chemical resistant topcoat is applied in a single 20 mil application. Total thickness shall be a nominal 60 mils.

| Post-It' brand fax transmittal r | nemo 7671 # of pages > |
|----------------------------------|------------------------|
| To Dominus Occions               | From BO-1              |
| Co.                              | co.                    |
| Dept.                            | Phone " A. Amorica     |
| [1697-357A                       | Fax'#                  |

# ESTIMATING QUANTITIES AND ORDER BILL OF MATERIAL

| SQUARE FEET PER GALLON |             |         |  |
|------------------------|-------------|---------|--|
|                        | CONCRETE    | STEEL   |  |
| Primer 67              | 150-200     | 250-300 |  |
| Protec                 | to-Coat 200 |         |  |
| 2 Base Coats -         |             |         |  |
| Actual                 |             |         |  |
| 35-40 mil DFT          | 25          | 25      |  |
| Top Coat               | 77          |         |  |
| Actual                 |             |         |  |
| 15-20 mil DFT          | 60          | 60      |  |
| S-10 Solvent           | 500         | 500     |  |

Quantities shown are for estimating purposes only. Actual field usage may vary.

#### APPLICATION INSTRUCTIONS

#### SURFACE PREPARATION

Metal: For immersion service, abrasive blast to a white metal finish and a 2-4 mils minimum profile according to SSPC 5 or NACE No. 1. For fume or splash service, abrasive blast to a near-white metal finish according to SSPC 10 or NACE No. 2. Atmospheric service: Commercial SSPC 6 or NACE No. 3.

Concrete: Concrete must be abrasiveblasted or etched with muriatic acid (solution of 1 part 20° Be HCl and 1 part water) to remove surface laitance and other contaminants. Concrete must be free of curing compounds and form release agents. Surface texture should be similar to 40-60 grit sandpaper. The prepared surface should have a tensile strength of between 250 and 300 PSI per ASTM D4541.

Additional surface preparation will be required if a 40-60 grit texture is not achieved and the surface laitance not completely removed after a single application of acid or with the first mechanical preparation procedure.

If, after abrasive blasting, honeycombs/ voids appear on the concrete, these have to be filled with a suitable material. Contact a Dudick representative for this information. Recommended application temperatures should be between 40°F and 90°F substrate temperature. Do not apply Protecto-Coat 200 over concrete exposed to direct sunlight during the warming trend of the concrete as measured by surface temperature. To do so may lead to blistering, pinholes, or wrinkling in the conting due to outgassing of air in the concrete and high substrate temperatures. Wait for a definite downturn or cooling trend within the concrete as again measured by surface temperature. If this is not possible consult a Dudick representative for alternatives such as double priming.

#### **PRIMING**

Metal: For maximum performance, prime all steel surfaces with Primer 67, mixed with appropriate amount of hardener to 3-4 mils. For mild non-immersion service, priming of steel may be omitted.

Concrete: Concrete must be primed to aid in the "wetting out" required for good bonding. Mix Component A with Component B in the premeasured units for 2-3 minutes and apply by brush, roller, or spray. We recommend the basecoat be applied over slightly tacky or tack-free primer. Do not allow the primer to puddle.

#### Protecto-Coat 200 Mix Ratio:

Protecto-Coat 200 Basecoat
Component A\* 1 Gallon
Component B\* 54 fl. ozs.

\*Premeasured units by weight

Protecto-Coat 200 Topcoat

Protecto-Coat 200 Top Coat Comp. A\* 1 Gal.
Component B\* 54 fl. oz.

\*Premeasured quantities by weight

#### BASECOAT

Add appropriate amount of hardener for each gallon of Protecto-Coat Liquid and mix thoroughly until uniform color is achieved. Apply a 25 nul wet (20 mil DFT) basecoat using spray, brush or roller. Allow basecoat application to cure to at least a "firm" or slightly "tacky" feel before applying the second 25 mil wet (20 mil DFT) basecoat. Brush or roller may require several coats to achieve desired thickness.



Dudick Incorporated
Corrosion-Proof Products



Horizontal surfaces may be basecoated in one application by applying 50 mils wet (40 mil DFT) in a single coat.

#### TOPCOAT

Add appropriate amount of hardener for each gallon of Protecto-Coat Liquid and mix thoroughly until a uniform color is achieved. Apply a 20-mil-thick topcoat using spray, brush or roller.

## Cure Cycle for Protecto-Coat 200

| TEMPERATURE | RECOAT<br>TIME | CURE<br>TIME |
|-------------|----------------|--------------|
| 50°         | 48 Hrs.        | 96 Hrs.      |
| 70°         | 24 Hrs.        | 48 Hrs.      |
| 90°         | 16 Hrs.        | 36 Hrs.      |

If these recoat times are exceeded, consult a Dudick representative: sanding or abrasive blasting may be required before the next coat. Recoat times are dramatically reduced when the coating is exposed to direct sunlight.

Single Component Airless Spray Equipment — Graco King 45-to-1 spray pump or equivalent. Use Graco Golden Mastic Gun or Graco No. 207945 Gun with airless adapter equipped with a Reverse-A-Clean tip and a tip size between .035-.041. Spray hose should be 1/2" or 3/8" ID. Available inlet pressure must be a minimum of 100 psl.

Brush or roller application may require additional coats to meet specified dry film thickness.

Pot life of the opened and mixed Protecto-Coat 200 will depend on the temperature at the work site. To prevent material waste and avoid damage to equipment, do not open and mix more material than can be used according to the following table:

| TEMPERATURE | POT LIFE |
|-------------|----------|
| 50°F        | 120 Min. |
| 75°F        | 60 Min.  |
| 90°F        | 45 Min.  |

Do not attempt to store mixed material. Residual material should be properly disposed of at the end of each work period.

Where immersion service is required, spark test the coating with a 5,000 to 7,000 volt AC spark tester. Mark and repair all pinholes. Use Protecto-Coat liquid mixed with the appropriate amount of hardener. Retest only the repairs.

#### **CLEANING**

Use S-10 Solvent to clean tools and equipment.

#### SHIPPING

Protecto-Coat 200 Topcoat A and B and Protecto-Coat 200 Basecoat A are classified as plastic liquids and are non-regulated.

Protecto-Coat 200 Basecoat B is combustible. Primer 67 Component B is corrosive and carries a black and white warning label. Primer 67 Component A is classified as a plastic liquid and is nonregulated, while S-10 Cleaning Solvent is red label liquid with a flash point of 52°F (PMCC).

#### STORAGE

Warning: All Dudick products classified by DOT labels as either white, yellow or red labels must not be mixed or stored together as an explosive reaction may occur.

When stored in a cool and dry location. Protecto-Coat 200 ingredients have a one-year shelf life. Exposure to excessive heat may cause premature gelling and reduce working time.

#### SAFETY

M.S.D.S. - Sheets must always be read before using products. Protecto-Coat Systems are intended for application by experienced, professional personnel. Dudick Inc. can supply Protecto-Coat systems supervision to help determine that the surface has been properly prepared, the ingredients correctly mixed, and the materials properly and safely applied.



Elastomeric, Spray Applied, Environmentally Sale, Urethane Coat



If Protecto-Coat materials are to be applied by your own personnel or by a third-party contractor, please be sure that they are aware of the following safety precautions:

- Exposure to resins and hardeners may cause severe dermatitis reactions in some people. Cleanliness of the skin and clothing is critical and must be of paramount concern.
- Safety glasses, gloves and suitable protective clothing must be worn at all times during application.
- Suitable respirators should be used.
- If contact with hardeners occurs, remove any clothing involved and wash the skin with large amounts of water. Discard the clothing. Do not attempt to wash and reuse it. Protecto-Coat liquid may be washed off with S-10 Cleaning Solvent, MEK liquid, or laquer thinner.
- Fumes are flammable and heavier than air. Proper ventilation should be maintained to minimize breathing of concentrated fumes.
- If a rash or dermatitis occurs, remove the individual from the work area and seek a physician's care for dermatitis.
- Keep open flames and sparks away from the area where toppings are being mixed and applied.
- In case of eye contact, wash with water for at least 15 minutes and consult a physiclan. If swallowed, do not induce vomiting: call a physician immediately.

#### Note:

Dudick Inc. ("Dudick") warrants all goods of its manufacture to be as represented in its catalogs and that the application of its products by its employees or sub-contractors shall be performed in a workmanlike manner. Dudick's obligation under this warranty shall be the repair to and replacement of any applications which its examination shall disclose to be defective. Dudick makes no warranty concerning the suitability of its product for application to any surface. It being the understood that the goods have been selected and the application ordered by the purchaser. DUDICK INC. MAKES NO WAR-RANTY, EXPRESS OR IMPLIED, THAT THE GOODS SHALL BE MERCHANTABLE OR THAT THE GOODS ARE FIT FOR ANY PARTICULAR PURPOSE. THE WARRANTY OF REPAIR OR REPLACEMENT SET FORTH HEREIN IS EXCLU-SIVE AND IN LIEU OF ALL OTHER WARRAN-TIES ARISING BY LAW OR OTHERWISE; AND DUDICK INC. SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO LOST PROF-ITS. DOWN TIME, DAMAGES TO PROPERTY OF THE PURCHASER OR OTHER PERSONS, OR DAMAGES FOR WHICH THE PURCHASER MAY BE LIABLE TO OTHER PERSONS, WHETHER OR NOT OCCASIONED BY DUDICK'S NEGLI-GENCE. This warranty shall not be extended. altered or varied except by written instrument signed by Dudick and Purchaser.





Waste Analysis

23214 727 9686

Treated Tolowdown



# ANACHEM INC.

8 Prestige Circle, Suite 104 • Allen, Texas 75002 214/727-9003 • FAX # 214/727-9686 • 1-800-966-1186

Customer Name:

USPCI

Date Received:

August 17, 1994 at 11:10:45 August 26, 1994

Date Reported:

Submission #: Project:

9408000203 HEAT EXCHANGERS

SAMPLES The submission consisted of 1 sample with sample I.D. shown in the attached data table.

TESTS

The sample listed in the attached result pages was analyzed for: \* ALKALINITY, TOTAL (FDA 310.1)

ANACHEM

- \* ANION/CATION RATIO (CALCULATION)
- \* CALCIUM/Ca (EPA 215.1)
- \* CHLORIDE (EPA 300.6)
- \* CYANIDE, TOTAL (EPA 335.2) \* HARDNESS, TOTAL (BASED ON AAS/ICP) \* ICP SCAN (EPA 200.7)
- \* IRON/Fe (EPA 236.1)
- \* MAGNESIUM/Mg (EPA 242.1)
- \* MICROWAVE DIGESTION (ÉPA 3015)
- pH (EPA 150.1)
- \* POTASSTUM/K (EPA 200.7)
- \* SILICA (EPA 370.1)l
- \* SODIUM/Na (EPA 273.1)
- \* SPECIFIC CONDUCTANCE (EPA 120.1)
- \* SULFATE (EPA 375.4)
- \* TDS-TOTAL DISSOLVED SOLIDS (EPA 160.1)
- \* TSS-TOTAL SUSPENDED SOLIDS (EPA 160.2)

Distribution Of Reports 2-Bruce Patterson of USPCI Ph. (405) 697-3500 Fax (405) 697-3592

Respectfully Submitted, Anachem, Inc.

Submission #: 9408000203 lims

C.E. Newton, Ph.D. Chemist

NOTE: Submitted material will be retained for 60 days unless notified or consumed in analysis. Material determined to be hazardous will be returned or a \$20 disposal fee will be assessed. Our letters and reports are for the exclusive use of the client to whom they are addressed. The use of our name must receive our prior written approval. Our letters and reports apply to the sample tested and/or inspected, and are not necessarily indicative of the qualitites of apparently identical or similar materials. Page\_ 35372 to 35372

否214 727 9886 08/26/94 16:25

ANACHEM

Client Name: USPCI Submission #: 9408000203 Project Name: HEAT EXCHANGERS Report Date: 08/26/94

MAGNESIUM/Mg (EPA 242.1)

Analyte Magnesium

Client Sample #: TREATED EXHAUST BLOWOFF
Laboratory ID #: 35372 Matrix: Liqu
Sample Container: 3xGallon Plastic
Sampling Location: Not listed on the chain of cu
Sampling Date: Not listed on the chain of cu
Temperature (Celcius):21 Liquid Not listed on the chain of custody. Not listed on the chain of custody.

| •                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALKALINITY, TOTAL (EPA 310.1) Analyte Total Alkalinity                                                                                                                                                               | Results(mg/l)<br>7800                                                                                                                                 | Det Limit<br>1                                                                                                                                                    |
| ANION/CATION RATIO (CALCULATION) Analyte Anion/Cation Ratio                                                                                                                                                          | Results(%)<br>1.00                                                                                                                                    | Det Limit<br>0                                                                                                                                                    |
| CALCIUM/Ca (EPA 215.1) Analyte Calcium                                                                                                                                                                               | Results(mg/l)<br>30.2                                                                                                                                 | <u>Det.Limit</u><br>0.01                                                                                                                                          |
| CHLORIDE (EPA 300.6) Analyte Chloride                                                                                                                                                                                | <u>Results(mg/l)</u><br>145000                                                                                                                        | Det.Limit<br>0.1                                                                                                                                                  |
| CYANIDE, TOTAL (EPA 335.2) Analyte Total Quantide                                                                                                                                                                    | Results(mg/l)<br>23.9                                                                                                                                 | Det.Limit<br>0.20                                                                                                                                                 |
| NESS, TOTAL (BASED ON AAS / ICP)  Lyte Hardness, Calculated                                                                                                                                                          | Results(mg/l) 1500                                                                                                                                    | Det.Limit                                                                                                                                                         |
| ICP SCAN (EPA 200.7) Analyte Silver Cadmium Chromium Copper Cobalt Lead Manganese Nickel Antimony Thallium Zinc Arsenic Selenium Aluminum Barium Beryllium Molybdenum Tin Titanium Vandium Silicon Strontium Lithium | Results(mg/l) <0.0120 0.072 0.112 0.286 1.38 0.362 0.034 0.925 <0.0246 0.286 0.031 32.6 2.61 2.96 0.152 <0.0011 31,2 <0.023 <0.017 0.139 4.09 1.33 12 | Det.Limit. 0.0120 0.0014 0.0146 0.0046 0.0028 0.042 0.0004 0.0049 0.0246 0.056 0.0031 0.044 0.026 0.107 0.045 0.0011 0.0069 0.023 0.017 0.0037 0.015 0.0013 0.001 |
| [                                                                                                                                                                                                                    | Results(mg/l) 5.09                                                                                                                                    | Det Limit                                                                                                                                                         |

5.09

Results(mg/l)

31.7

0.03

Det.Limit 0.01

**図003/004** 

08/26/94 16:25 \$\mathbb{D}214 727 9686

Client Name: USPCI
Submission #: 9408000203
Project Name: HEAT EXCHANGERS
Report Date: 08/26/94

| H (EPA 150.1) \text{nalyte} H For Liquid                      | Results() 7.5             | Det Limit<br>0        |
|---------------------------------------------------------------|---------------------------|-----------------------|
| POTASSIUM/K (EPA 200.7) Analyte Potassium                     | Results(mg/l)<br>12300    | Det.Limit<br>0.010    |
| SILICA (EPA 370.1)l<br>Analyte<br>Silicon Dioxide/Silica      | Results(mg/l)<br>100      | Det Limit<br>2        |
| SODIUM/Na (EPA 273.1) Analyte Sodium                          | Results(mg/l)<br>105000   | Det Limit<br>0.01     |
| SPECIFIC CONDUCTANCE (EPA 120.1) Analyte Specific Conductance | Results(umhos/cm<br>78900 | Det.Limit<br>1        |
| SULFATE (EPA 375.4) Analyte Sulfate                           | Results(mg/l)<br>30200    | Det Limit<br>1        |
| TDS-TOTAL DISSOLVED SOLIDS (EPA 160.1) A te issolved Solids   | Results(mg/l)<br>299000   | <u>Det.Limit</u><br>1 |
| Analyte Total Suspended Solids                                | Results(mg/l) 1440        | Det.Limit<br>1        |

ANACHEM



**2214** 727 9686

ANACHEM



Report to: USPCI

Lab Number: 9408000203

16:26

Page 4 of 4

08/26/94

Project: Heat Exchangers

## QUALITY CONTROL DATA

| ANALYTE          | DATE<br>ANALYZED | SPIKE<br>VOL | STAND.<br>DEV. | COEFF. OF<br>VAR % | REC1/% | REC2/% |
|------------------|------------------|--------------|----------------|--------------------|--------|--------|
| Hardness, Calc.  | 8/19/94          |              | 0              | 0                  | 96     |        |
| Total Alkalinity | 8/19/94          |              | 5.7            | 0.7                | 100    | ~~~    |
| Silica           | 8/25/94          |              | 0              | 0                  | 100    |        |
| Sulfate          | 8/19/94          |              | 0.31           | 1.2                | 100    |        |
| Chloride         | 8/25.04          |              | 178            | 8                  | 100    |        |
| T.S.S.           | 8/18/94          |              | 181            | 10                 | 99     | 98     |
| Total Cyanide    | 8/25/94          |              | 0              | 0                  | 109    |        |

Standard Deviation = (x1-x2)/1.414 Coefficient of Variability % = (S.D/Avg.) X 100 very % = [(spiked-unspiked)/expected] X 100

## ICP SCAN INFORMATION

Note:

ICP scans are very general in nature and do not include precise calibration or quality control. The process is intended as a screening procedure to identify very high metal concentrations.

uc: **1#:** ame: ¿ Date:

<u>de</u>

шп

er

1t

nium

mium

ssium

nosium

ganese

1111

mony

llium

₃nic nium

unum ıdium con

ntium

.el

ľ

USPCI

9407000227 HEAT EXCHANGERS

08/04/94

t Sample #: EV #1 atory ID #:

le Container: ling Location: ling Date:

Liquid Matrix: 33964 2 Liter Plastic Bottle

Not listed on the chain of custody. Not listed on the chain of custody.

ICAN (EPA 6010)

Results(mg/l) 333 : 2.4 -0.166 0.514 1.76 97.6 0.242

12600 41.7 0.264 136000 36.4 0.336 0.198 0.264

Enaborator Enaborator

52.2 4.5

67.2

3.1

22.4

ium RCURY DIGESTION (EPA 7470) of Mercury Digestion:07/20/94

RCURY | Hg BY COLD VAPOR (EPA 245.1) alyte roury

Results(mg/l) 0.002

Det.Limit

Det.Limit

ient Sample #: EV #2 boratory ID #: mple Container: mpling Location: mpling Date:

Liquid Matrix: 33965

2x2Liter Plastic Bottle Not listed on the chain of custody. Not listed on the chain of custody.

KALINITY, TOTAL (EPA 310.1)

ialyte tal Alkalinity

Results(mg/l) 18900

Det.Limit

VION/CATION RATIO (CALCULATION)

nalyte nion/Cation Ratio

Results() 1.08 Det Limit

NATE ALKALINITY (EPA 310.1)

Det.Limit

ate Alkalinity

ALCIUM | Ca (EPA 200.7) nalyte alcium

Results(mg/l) 735 -

Results(mg/l) 23100

> Det.Limit 0.001

> > Page\_2\_of\_4/

|              | 100                                               |
|--------------|---------------------------------------------------|
| 7            |                                                   |
| Nr mo:       | USPCI<br>9407000227<br>HEAT EXCHANGEF<br>08/04/94 |
| NATE ALI     | KALINITY (EPA 310.1)                              |
| ite Alkalin  | ity                                               |
| IDE ŒPA      | 300.6)                                            |
| 3            | <b></b>                                           |
| DE, TOTA     | L (EPA 335.2)                                     |
| yanide       |                                                   |
| Te (EPA 20   | 00.7)                                             |
| POTITIVI / M | <br>ca (EDA 200 7)                                |

USPCI 9407000227 HEAT EXCHANGERS

| te Aikamity                                 | ·                          |                    |
|---------------------------------------------|----------------------------|--------------------|
| IDE (EPA 300.6)                             | Results(mg/l)<br>176000    | Det.Limit<br>0.1   |
| DE, TOTAL (EPA 335.2)                       | . Results(mg/l)<br><0.02   | Det Limit<br>0.02  |
| Fe (EPA 200.7)                              | Results(mg/l)<br>112       | Det Limit<br>0.013 |
| ESIUM/Mg (EPA 200.7)                        | Results(mg/l) 222          | Det Limit<br>0.030 |
| A 150.1)<br>Liquid                          | Results()                  | Det.Limit<br>0     |
| SIUM / K (EPA 200.7)                        | Results(mg/l)<br>17400     | Det Limit<br>0.010 |
| Dioxide/Silica                              | Results(mg/l) 400          | Det.Limit<br>2     |
| M/Na (EPA 200.7)                            | Results(mg/l)<br>150000    | Det Limit<br>0.001 |
| FIC CONDUCTANCE (EPA 120.1) c c Conductance | Results(umhos/cm<br>840000 | Det Limit<br>1     |

Results(mg/l) <1

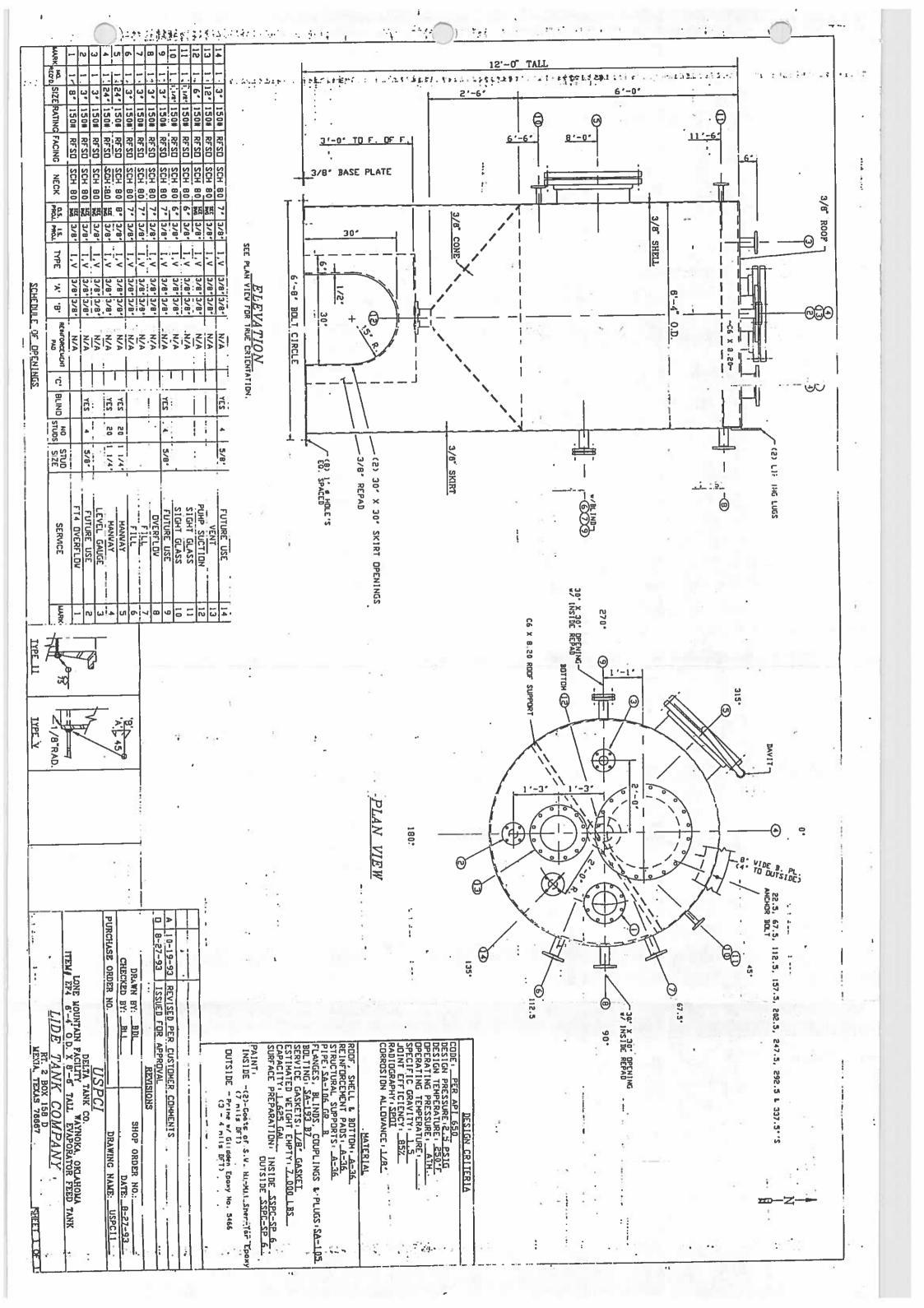
| c Conductance is a calculated value; the matrix of the LE PRECLUDED THE USE OF A CONDUCTIVITY E DUE TO OILY COATING; THE CALCULATED VA MES INFINITE DILUTION OF THE SAMPLE.) |                        | <b>n.</b> | Det.Limik<br>1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|----------------|
| FIC GRAVITY (USP 841)  c. Gravity                                                                                                                                            | Results()<br>1.31      |           | Det.Limit<br>1 |
| ATE (EPA 375.4)                                                                                                                                                              | Results(mg/l)<br>55300 | 16        | Dct.Limit<br>1 |
| OTAL DISSOLVED SOLIDS (EPA 160.1) Le Dissolved Solids                                                                                                                        | Results(mg/l) 417000   |           | Det Limit<br>1 |
| OTAT, SUSPENDED SOLIDS (EPA 160.2)                                                                                                                                           | Results(mg/l)<br>6780  | Ę         | Det Limit<br>1 |

Det.Limit 1

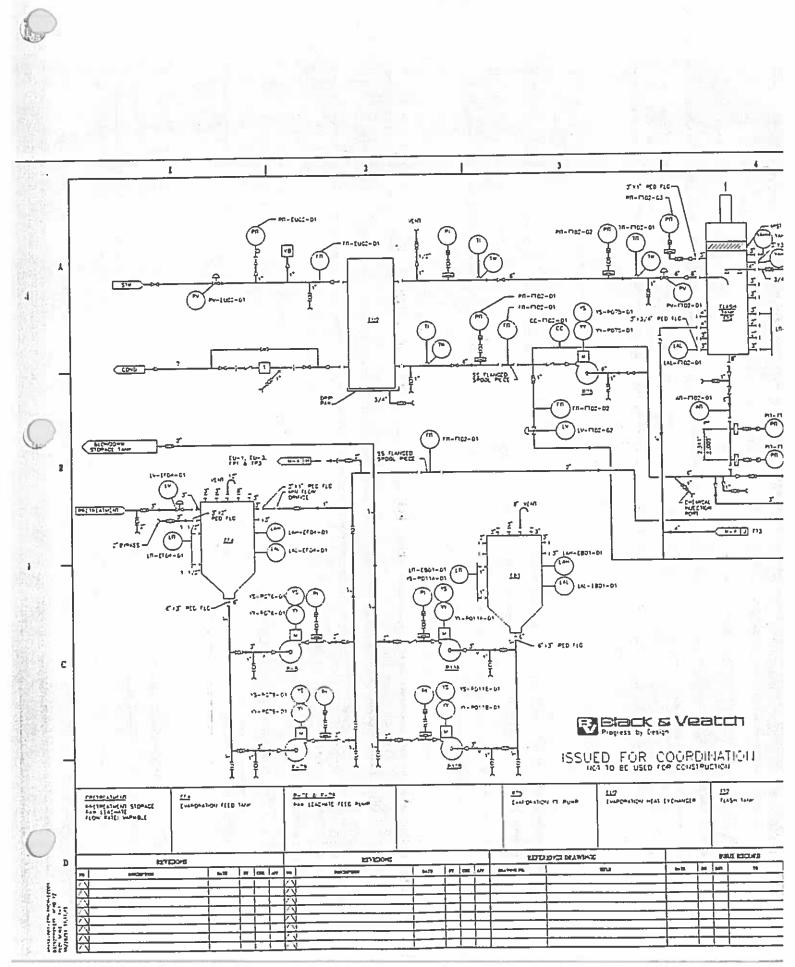
...t to: USPCI ...... Number: 9407000227 'age 44 of 44

Project: Heat Exchangers

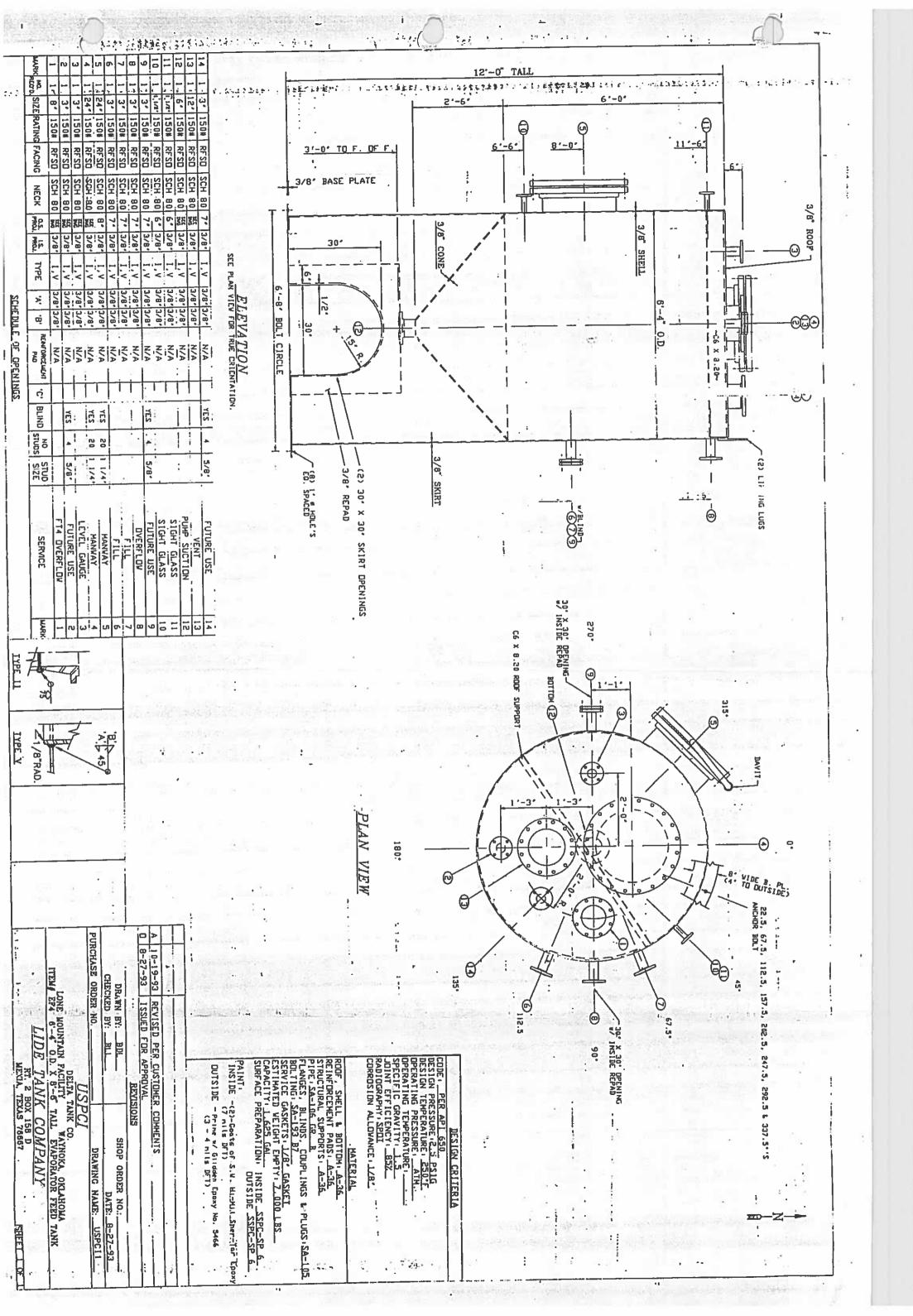
## QUALITY CONTROL DATA


| NALYTE            | DATE<br>ANALYZED | SPIKE<br>VOL | STAND.<br><u>DEV.</u> | COEFF. OF<br>VAR % | REC1/% | REC2/% |
|-------------------|------------------|--------------|-----------------------|--------------------|--------|--------|
| dercury           | 7/20/94          | ***          | 0.141                 | 2.0                | 102    | 99     |
| Cotal Alkalinity  | 7/26/94          |              | 0                     | 0                  | 100    |        |
| r.D.S.            | 7/28/94          | 995          | 304                   | 0.1                | 96     | 96     |
| Silicon Dioxide/  |                  |              |                       |                    |        |        |
| Silica            | 8/1/94           | 9            | 0                     | 0                  | 100    |        |
| Sulfate           | 8/1/94           |              | 5                     | 2.4                | 99     |        |
| Chloride          | 7/26/94          | 500          | 2.1                   | 1.1                | 100    | 99     |
| lardness, Calcium | 8/1/94           |              | ±4.2                  | 1.1                | 110    | 100    |
| LS.S.             | 7/21/94          | 298          | 0.7                   | 0                  | 98     | 95     |
| .S.S.             | 7/21/94          | 298          | 0.7                   | 0                  | 98     | 95     |

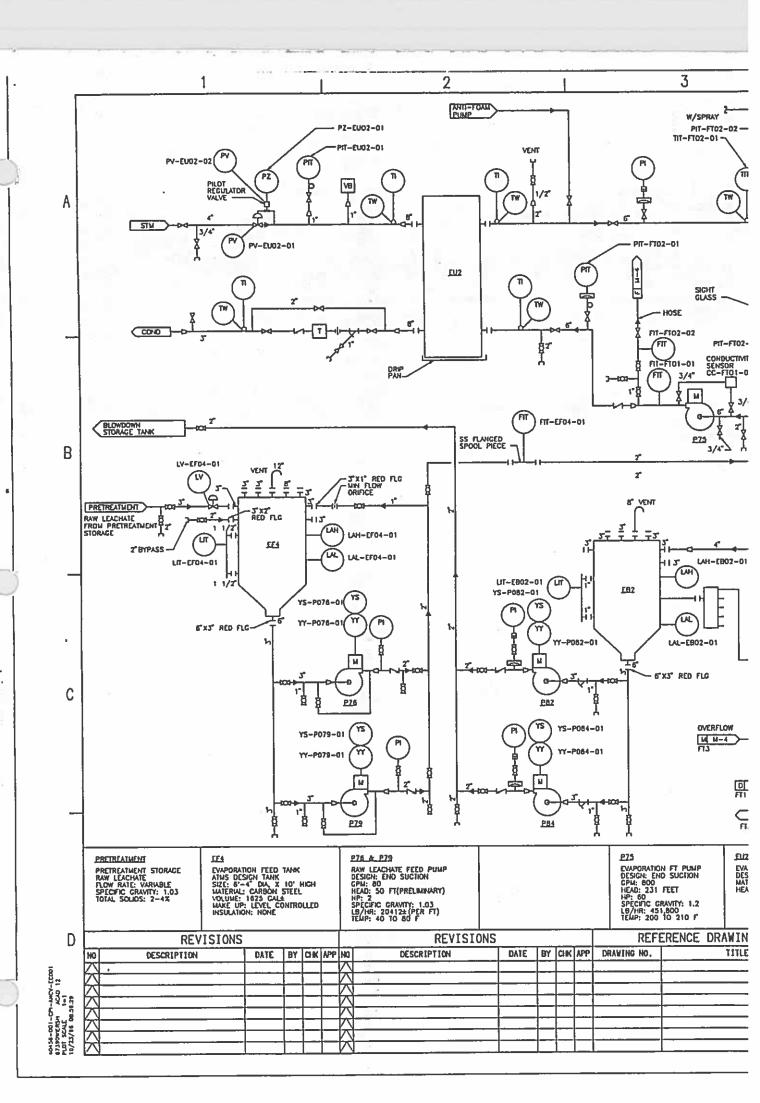
Standard Deviation = (x1-x2)/1.414 ent of Variability % = (S.D/Avg.) X 100 ry % = [(spiked-unspiked)/expected] X 100


## ICP SCAN INFORMATION

ole:


ICP scans are very general in nature and do not include precise calibration or quality control. The process is intended as a screening procedure to identify very high metal concentrations.




Ancillary Equipment Drawings



Tank Drawings



Ancillary Equipment Drawings





# **SECTION EO1**



# SECTION 305 ASSESSMENT OF EVAPORATOR OVERFLOW TANK (E01) LONE MOUNTAIN HAZARDOUS WASTE FACILITY U.S.P.C.I. WAYNOKA, OKLAHOMA

### A. TANK SYSTEM DESCRIPTION

Evaporator Overflow Tank (EO1) is an aboveground evaporator overflow storage tank. The wastewater stored in this tank is treated or neutralized wastewater according to USPCI. The tank is horizontal in position and cylindric in shape. This tank and a portion of the ancillary piping is located together inside a concrete containment area.

### **B. PRIMARY TANK VESSEL**

### 1. General Description

Evaporator Overflow Tank (EO1) consists of a circular steel tank placed in the horizontal position supported by a steel plate support system. The actual steel specifications to which the tank is constructed of is not known. The tank was inspected prior to the placement of interior coatings. Influent piping is located from the wastewater treatment building. This tank receives water from roof drains. Water from rains or an overflow of the flash tank will be collected in the gutter system and deposited into this tank.

### 2. Design Standards.

Structure calculations were performed to compare the existing tank and supports to those sections that are applicable in the American Petroleum Institute Standard 650 - 1988 edition (API-650) and the American Institute of Steel Construction (AISC) Manual of Steel Construction (8th Edition). These calculations can be found in Appendix B and C of this report. The actual steel specifications to which the tank is constructed are not known. Appendix A of API-650 was utilized in the analysis of this vessel due to the small diameter of the vessel.

### 3. Hazardous Characteristics of Wastes Stored

The wastes which are treated in this tank have the following characteristics:

Neutralized wastewater with a pH level between 4-10 N < 6
Temperature = Ambient

The hazardous characteristics of the waste treated in this tank were examined. It was determined that the pH and normality levels of the waste are the primary areas of concern. This is to determine the applicability of a corrosion allowance for the tank material type and thickness

### 4. Existing Corrosion Protection

The interior of the tank is coated with a coal tar epoxy coating. This coating was applied in May of 1992 and is in excellent condition. The exterior of the tank is painted with an epoxy paint as corrosion protection.

### 5. Documented Age of Tank

This tank was purchased as a used tank and the actual documented age is unknown. This tank was installed in July of 1987. The estimated age of the tank is 5 years old. This age was determined by using a 20 year design life less the estimated useful life of 15 years. A 20 year design life is assumed from the time of installation at USPCI.

### 6. Result of Leak Tests

No leak tests have been performed, however, the vessel is in service and a visual leak inspection was performed. In the visual leak test items such as welds, seams, flange connections, valves and threaded connections were examined to verify that no leaks were present. From this visual analysis it was determined that the primary tank is not leaking.

### 7. Existing Data Obtained

|   | Diameter of Tank      | 6.87'         |
|---|-----------------------|---------------|
|   | Height                | 20'-6"        |
|   | Material              | Carbon Steel. |
| k | Thickness             | 0.70"         |
|   | Specific Gravity      | ·1.5 =        |
|   | Operating Temperature | < 230°        |
|   | Maximum Volume        | 5514 Gal.     |
|   | Seismic Zone          | 1             |
|   |                       |               |

<sup>\*</sup> A complete and exhaustive ultrasonic thickness corrosion survey has been completed, the results of which can be found in Appendix F of this assessment.

### 8. Calculation of Foundation Loading

Total Weight of Tank and Contents = 37.07 tons

Detailed calculations reflecting the volume and weight of the tank along with the minimum required foundation thickness and steel reinforcement are included in Appendix A and E of this assessment.

### 9. Required Structural Calculation

The calculated required wall thickness for this tank is 0.066 inches. 0.0625 inches is added for corrosion allowance. This corrosion allowance is based on a best engineering estimate taking into account the materials being treated and a 20 year design life. (See Appendix B of this assessment for detailed calculations or required wall thickness and structural analysis of the tank support system).

### 10. Comparison of Actual Structure to Theoretical Values

### Wall Thickness Comparison

Calculated Required Thickness

Minimum Required Wall Thickness By API 650-88

Measured Wall Thickness

0.066"
0.1875"
0.70"

### C. SECONDARY CONTAINMENT SYSTEM

### 1. General Description of Secondary Containment

The secondary containment system is designed and operated to prevent any migration of wastes or liquids out of the system. (See Appendix G of this assessment for layout of secondary containment area.) The Evaporator Overflow Tank (EO1) #1 is located in a 12' x 24.5' x 3' high concrete containment area.

The containment area and tanks are routinely visually monitored on a daily basis for leaks. A sump pump and drain are located in the containment area. The floor is sloped to the sump to collect any drainage or spills. Any released tank contents or surface runoff will drain on top of the sloped concrete to the sump area. The accumulated liquids are then removed and pumped to the wastewater pretreatment area within a maximum of 24 hours, as a permit condition.

### 2. Design Standards

The structural capacity of the foundation and walls were compared to those sections that are applicable in the API 650-88 and the American Concrete Institute (ACI 318-89/318r-89) and these calculations were used as a guide in verifying the ability of the system to contain hazardous waste.

### 3. Hazardous Characteristics of Wastes Treated

The wastes which are treated in the primary tank have the following characteristics:

Treated Wastes
pH Level (4-10)
N < 6
Temperature = Ambient

The hazardous characteristics of the waste treated in the primary tank were examined. It was determined that the pH and normality levels of the waste are the primary areas of concern. This is to determine the applicability of a corrosion allowance for the containment system material type and thickness.

### 4. Existing Corrosion Protection

The entire secondary containment area floor and walls are coated with an impermeable coating by (Overcrete Plus by Concrete Protection Systems, Inc.) installed by Mid-America Painters of Woodward, Oklahoma. See Appendix H of this report for detailed information on this coating.

### 5. Documented Age of the Containment Area

The secondary containment system was constructed and installed in 1992 thus making the containment system less than 1 year old.

### 6. Result of Leak Tests

A visual inspection of the containment area was performed and from this inspection there were no cracks or breaks in the impermeable coating, therefore it appears to be adequate to contain any leaks or spills.

### 7. Existing Data Obtained

| Area         | 295.23 s.f. |
|--------------|-------------|
| Wall Height  | 3.05 ft.    |
| Material     | Concrete    |
| Gross Volume | 906.44 c.f. |

### 8. Calculation of Existing Capacity

### Containment Capacity Available (CCA)

CCA = Gross Volume - Volume of items in the containment - Volume of rainfall.

See the appendix of this report for detailed calculations of the available containment volume. The containment capacity available = 749.13 c.f.

### 9. Required Volume

### Containment Capacity Required (CCR)

CCR = Volume of Largest Tank in the secondary containment

Volume of Largest Tank = 737.29 c.f.

### 10. Comparison of Available Volume to Required Volume

### Containment Capacity Comparison

| Containment Capacity Required =          | 737.29 c.f. |
|------------------------------------------|-------------|
| Secondary Containment Volume Available = | 749.13 c.f. |
| Excess Containment Volume =              | 11.84 c.f.  |

CCA>CCR Adequate Capacity (under normal operating conditions) is available.

### D. CONCLUSIONS

### Primary Tank Vessel

The tank vessel at the time of inspection was fit for use with the present waste stream at given densities, chemical and physical characteristics as verified by USPCI.

### 2. Secondary Containment System

The secondary containment area at the time of inspection was fit for use, if the present waste stream at given densities and chemical and physical characteristics as verified by USPCI were released from the primary tank. The useful life of the concrete containment area is estimated at 15 years. This useful life was determined by using a design life of 20 years less the period that the tank has been in use at the USPCI Lone Mountain Facility. There did not seem to be any extensive corrosion or deterioration of the secondary containment area.

### E. RECOMMENDATIONS

The following repairs or modifications should be made:

### 1) Primary Tank

The tank should be checked periodically with ultrasonic testing procedures to establish a verified limit of corrosion. USPCI should continually insure compatibility with the waste and densities stored. Daily inspections should be continued to detect any visual corrosion or defects.

### 2) Secondary Containment System

The secondary containment should be checked periodically for any deterioration and structural integrity.

### 3) Routine Inspections

When routine and preventative measures are to be completed, the tank should be cleaned and internally inspected to determine any interior defects or corrosion. Continued routine painting and coating of tanks on the interior and exterior, and routine inspection is recommended.

### F. CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted, is to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment from knowing violations.

E. Eg.Myers
Date: 1/20/9E.
ENGINEEr3

# APPENDIX A Primary Tank Volume Calculations

### **SECTION 305 - APPENDIX A**

### EO1, Evaporator Overflow Tank

### PRIMARY TANK VOLUME CALCULATIONS

| DIMENSIONS:                                                                                                      |                                |        |                    |      |
|------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|--------------------|------|
| Geometry:                                                                                                        | CYLINDRICAL                    |        |                    |      |
| Diameter:                                                                                                        |                                | 6.87   | FEET               |      |
| Height =                                                                                                         |                                | 17.60  | FEET               |      |
| Top = Std. Umbrella =                                                                                            |                                |        |                    |      |
| Bottom = Std. Umbrella =                                                                                         |                                |        |                    |      |
| TANK VOLUME:                                                                                                     |                                |        |                    |      |
| Top = approx. Std. Umbrella volume = 0.05539*D^                                                                  | 3                              |        | 42.44              | C.F. |
| Bottom = Std. approx. Umbrella volume = 0.05539*                                                                 | D^3                            |        | 42.44              | •    |
| Tank Cylinder =                                                                                                  |                                |        | 652.40             | C.F. |
| TOTAL PRIMARY TANK VOLUME =                                                                                      |                                | OR     | 737.29<br>5,514.93 |      |
| 11 (19 1 ) S. C. M. S. C. M. S. C. M. S. C. C. C. M. S. C. M. S. C. M. S. C. C. C. C. C. C. C. C. C. C. C. C. C. | A THE SALE OF BUILDINGS STREET | Un     | 5,514.85           | GAL  |
| WEIGHT ON FOUNDATION                                                                                             |                                |        |                    |      |
| CONTENTS S.G.:                                                                                                   |                                | 1.50   |                    |      |
| DENSITY:                                                                                                         |                                | 93.60  | LB/C.F.            |      |
| SURFACE AREA CALCULATION                                                                                         |                                |        |                    |      |
| Tank Top = 0.8418*D^2 =                                                                                          | -                              | 39.73  |                    |      |
| Tank Bottom = 0.8418*D^2 =                                                                                       |                                | 39.73  | •                  |      |
| Tank Wall= Cir*h                                                                                                 | 3                              | 379.86 | S.F.               |      |
| TOTAL SURFACE AREA =                                                                                             | 4                              | 159.32 | S.F.               |      |
| Steel Thickness=                                                                                                 |                                |        |                    |      |
| Sidewalls                                                                                                        |                                | 0.26   | INCHES             |      |
| Top and bottom Dish                                                                                              |                                | 0.34   | INCHES             |      |
| Volume of Steel =                                                                                                |                                |        |                    |      |
| Sidewalls                                                                                                        |                                | 8.23   | C.F.               |      |
| Top and bottom dish                                                                                              |                                | 2,22   | C.F.               |      |
|                                                                                                                  | 6                              | 190.00 | LB/C.F.            |      |
| Density of Steel =                                                                                               |                                |        |                    |      |
|                                                                                                                  |                                | 2.56   | TONS               |      |

TOTAL WEIGHT OF TANK AND CONTENTS =

37.07 TONS

# APPENDIX B Primary Tank Wall Thickness Calculations

### **SECTION 305 - APPENDIX B**

### EO1, Evaporator Overflow Tank

### PRIMARY TANK WALL THICKNESS

| DIMENSIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                  |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CYLINDRICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                   |
| GEOMETRY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OTHINDHIOAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.87                             |                   |
| DIAMETER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                             |                   |
| LENGTH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.60                            | 0.5               |
| TANK VOLUME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 737.29                           | G.F.              |
| CONTENTS S.G.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30                             |                   |
| DENSITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81.12                            | LB/C.F.           |
| TOTAL WEIGHT OF TANK AND CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.14                            | TONS              |
| STEEL THICKNESS =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | INCHES            |
| Allowable Stress API-650-88<br>I =<br>S (provided) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23200.00<br>162819.18<br>3950.00 | psi<br>in4<br>in3 |
| w ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.22                             | K/LF              |
| Length Between Supports=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.80                             | feet              |
| M = wl^2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.85                            | K-FT              |
| 101 - WI 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 490.25                           | K-IN              |
| And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                   |
| S required =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.13                            | in3               |
| Thickness Required =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.004                            | in                |
| Corrosion Allowance =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0625                           | in                |
| Thickness Required =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.066                            | in                |

# APPENDIX C Structural Support Calculations

### SECTION 305 - APPENDIX C

### EO1, Evaporator Overflow Tank

### STRUCTURAL SUPPORT CALCULATIONS

| GIVEN: Tank Diameter = Total Height = Weight of Tank (Steel) = Weight of Max. Contents = Tank Nominal Thickness = | 6.87<br>17.60<br>5120.00<br>69020.00<br>0.25 | feet<br>lbs<br>lbs |           |        |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------|-----------|--------|
|                                                                                                                   | SMIC DESIG                                   | IN CHE             | ск        |        |
| ZONE COEFFICIENT (Z):                                                                                             |                                              |                    | 0.1875    |        |
| ESSENTIAL FACILITIES FACTOR (I):                                                                                  |                                              |                    | 1.000     |        |
| LATERAL EARTHQUAKE FORCE COEFF. (C1):                                                                             |                                              |                    | 0.240     |        |
| D/H:                                                                                                              |                                              |                    | 0.390     |        |
| k factor:                                                                                                         |                                              |                    | 0.550     | 1      |
| SITE AMPLIFICATION FACTOR (S):                                                                                    |                                              |                    | 1.500     |        |
| NATURAL PEERIOD OF FIRST SLOSHING (T):                                                                            |                                              |                    | 1.442     |        |
| LATERAL EARTHQUAKE FORCE COEFF. (C2):                                                                             |                                              |                    | 0.312     |        |
| WEIGHT OF TANK SHELL (Ws):                                                                                        |                                              |                    | 5120.000  | LBS    |
| TOTAL WEIGHT OF TANK CONTENTS (Wt):                                                                               |                                              |                    | 69020.000 | LBS    |
| W1/Wt:                                                                                                            |                                              |                    | 0.900     |        |
| W2/Wt:                                                                                                            |                                              |                    | 0.100     |        |
| WEIGHT OF EFFECTIVE MASS OF CONTENTS<br>MOVES IN UNISON WITH THE TANK SHELL (M                                    | THAT<br>/1):                                 |                    | 62118.000 | LBS    |
| WEIGHT OF EFFECTIVE MASS IN FIRST SLOS                                                                            |                                              |                    | 6902.000  | LBS    |
| HT FROM BTM OF SHELL TO CENT. OF SHEL                                                                             |                                              |                    | 8.800     | FEET   |
| X1/H:                                                                                                             |                                              |                    | 0.480     |        |
| HT FROM BTM TO CENT. OF LAT. SEISMIC FO                                                                           | PRCE (X1):                                   |                    | 6.448     | FEET   |
| X2/H:                                                                                                             |                                              |                    | 0.800     |        |
| HT FROM BTM TO CENT. OF LAT. SEISMIC FO                                                                           | ORCE (X2):                                   |                    | 14.080    | FEET   |
| OVERTURNING MOMENT (M) = Z*I*(C1*Ws*                                                                              |                                              | *X1 +              | C2*W2*X2) |        |
| OVERTURNING MOMENT (M):                                                                                           |                                              |                    | 31330.178 | FT-LBS |
|                                                                                                                   |                                              |                    |           |        |

Note: All of the above calculations are based on API-650-88 Seismic Design Procedure (Appendix E).

### CHECK STRESS IN TANK SHELL FROM SEISMIC FORCES:

WI = MAXIMUM WEIGHT OF TANK CONTENTS THAT MAY BE USED TO RESIST THE SHELL OVERTURNING MOMENT

 $Wl = 7.9*tb*(Fby*G*H)^.5$ 

WI must be less than 1.25\*G\*H\*D:

226.71

tb = THK. OF BTM. PLATE UNDER SHELL:

0.250 IN

Fby = MINIMUM YIELD STRENGTH OF **BOTTOM PLATE:** 

36000.000 PSI

G = DESIGN SPECIFIC GRAV. OF LIQUID:

1.50

WI =

1925.40 LBS/FT OF SHELL

CIRCUMFRENCE

DENSITY OF TANK SHELL MATERIAL:

490.00 LBS/CF

WT = WEIGHT OF TANK SHELL AND THE PORTION OF FIXED ROOF SUPPORTED BY TANK SHELL:

179.67 LBS/FT OF SHELL

CIRCUMFRENCE

M/[D^2(WT+WI)]:

0.3153

b = MAXIMUM LONGITUDINAL COMPRESSIVE FORCE AT THE BTM. OF TANK SHELL

b = WT + 1.273\*M/D^2

1024.71 LBS/FT OF SHELL

G\*H\*D^2/t^2:

19935.97

Fa = MINIMUM OF 10 ^ 6\*t/2.5\*D + 600\*(G\*H) ^.5 or .5\*Fty

18000.00 PSI

Fty = MINIMUM YIELD STRENGTH OF BTM.

SHELL COURSE:

36000.00 PSI

MAX. LONGITUDINAL COMPRESSIVE STRESS b/12t =

IN THE TANK SHELL =

341.57 PSI

### CHECK OVERTURNING MOMENT FROM WIND PRESSURE

Mmax must be Less Than or Equal To .66\* (WD)/2

W = Shell Weight Available To Resist Uplift (lbs)

D = Tank Diameter (feet)

M = Overturning Moment



M = Pw\*Projected Area\*H1

H1 = Height from ground to centroid of tank shell

Pw = Wind Pressure (18 psf for 100 MPH Wind on cylinders)

Mmax:

11607.55 FT-LBS

M:

19152.46 FT-LBS

# APPENDIX D Containment Area Volume Calculations







### SECTION 305 APPENDIX D

EO1, Evaporation Overflow Tank

### SECONDARY CONTAINMENT CALCULATIONS

| Area No.1      | 04.50 \$   |    |
|----------------|------------|----|
| Length =       | 24.50 feet |    |
| Width =        | 12.05 fee  | t  |
| *              | 3.05 fee   | t  |
| Height =       | 295.23 S.F |    |
| Surface Area = |            |    |
| Volume =       | 900.44 C.F | *. |
| Volume –       |            |    |

| Gross Area = Gross Volume =                                                                         | Area 1<br>Vol. 1                  | 295.23 S.F<br>900.44 C.F.              |
|-----------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|
| Volumes of Items of Displacement **                                                                 |                                   |                                        |
|                                                                                                     | ndary containment except tank EO1 | 0.00 C.F.                              |
| Subtraction for volume of rainfall  Volume of rain = Area x description  Depth of rainfall = Area = | epth of rainfall                  | 6.15 ln.<br>295.23 S.F.<br>151.30 C.F. |

| Volume =                                                                                         | 151.30 C.F.                           |
|--------------------------------------------------------------------------------------------------|---------------------------------------|
| TOTAL AVAILABLE VOLUME = Gross Volume - Subtractions =  Items of diplacement  Volume of rainfali | 900.44 C.F<br>0.00 C.F<br>-151.30 C.F |

| TOTAL AVAILABLE   | VOLUME - |    | 749.13  | C.F. |
|-------------------|----------|----|---------|------|
| I O I WE WANTABLE | AOFOMF - | OR | 5603.52 | Gal. |
|                   |          |    |         |      |

# APPENDIX E Foundation Design Analysis

### SECTION 305 - APPENDIX E

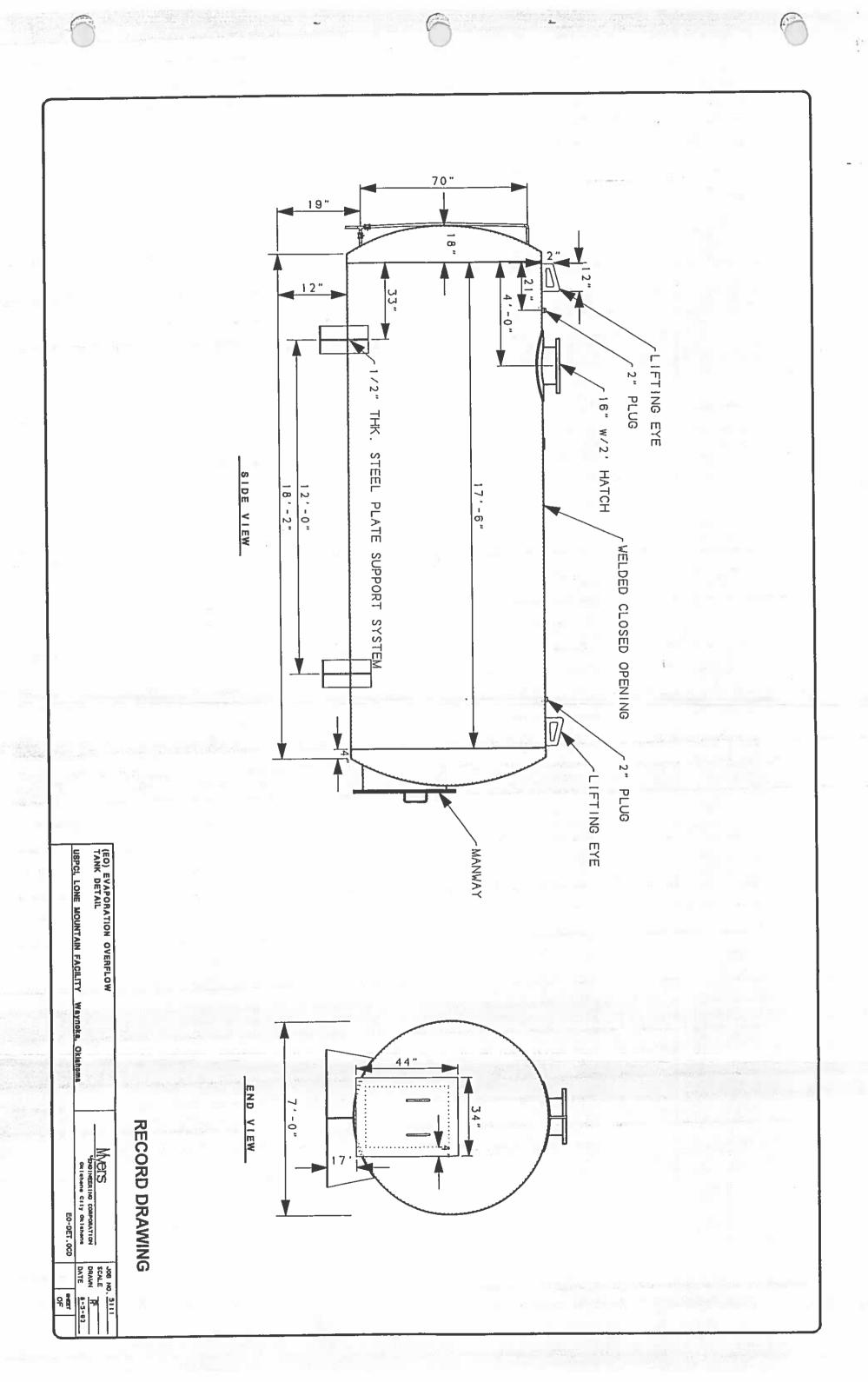
### EO1, Evaporator Overflow Tank

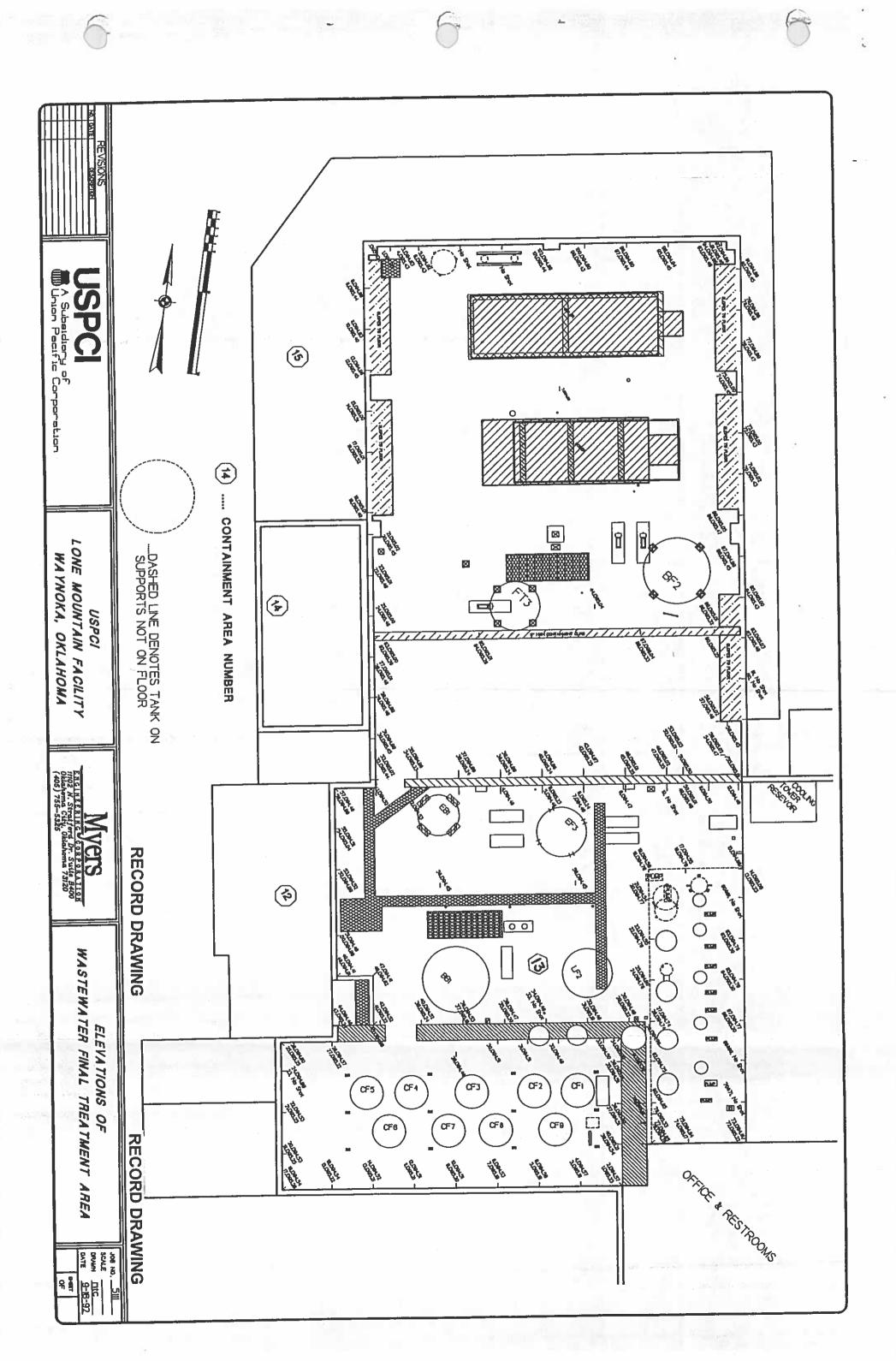
### FOUNDATION DESIGN ANALYSIS

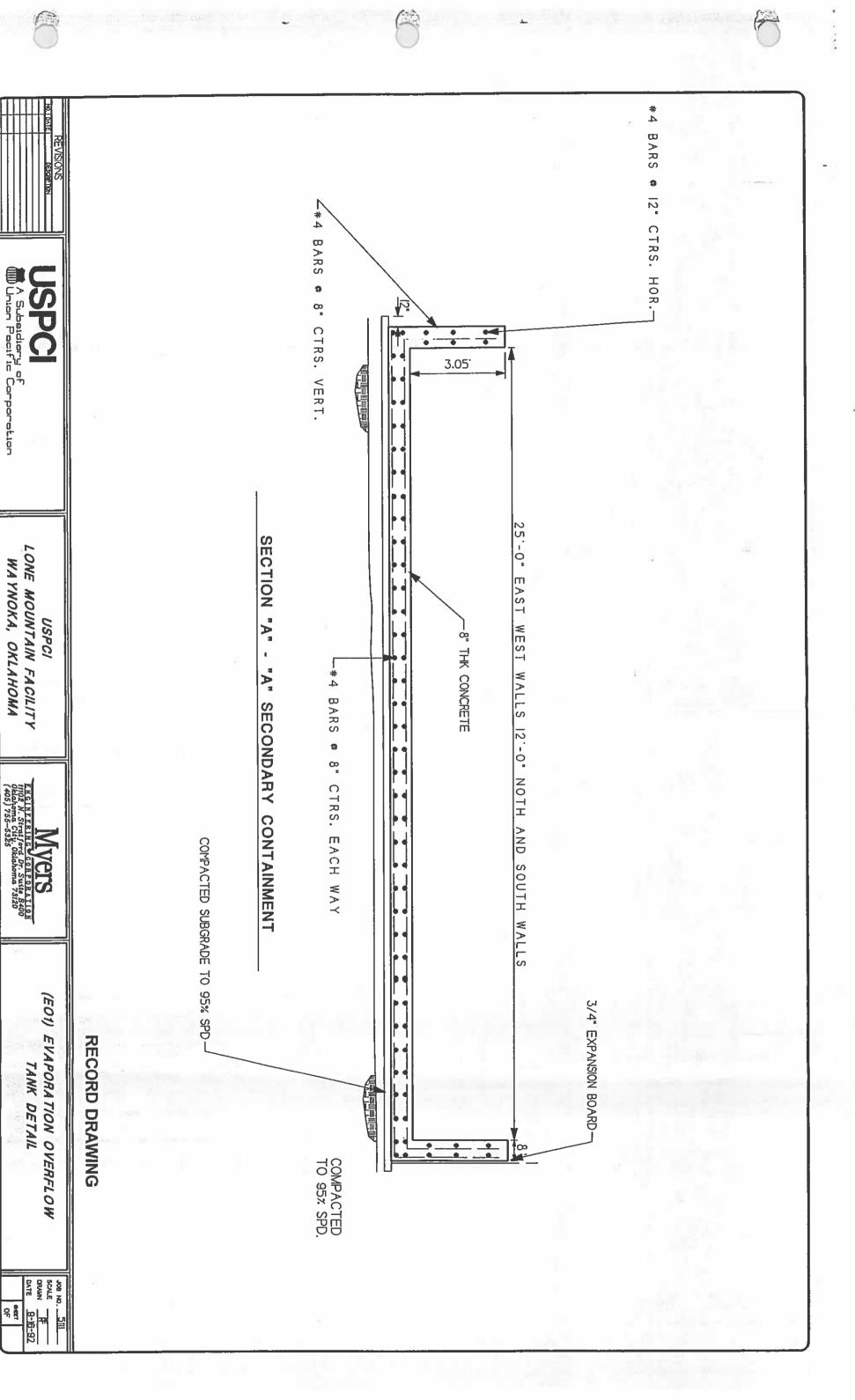
| ASSUMPTIONS:                                       |                                             |            |         |               |
|----------------------------------------------------|---------------------------------------------|------------|---------|---------------|
| f'c =                                              |                                             | KSI        |         |               |
| 10 =<br>fy =                                       |                                             |            |         |               |
| Allowable Soil Press. =                            | 2.00                                        | KSI        |         |               |
| Structural Steel =                                 | A36                                         |            |         |               |
| 040000100                                          |                                             |            |         |               |
| GIVEN:                                             | 6.87                                        | feet       |         |               |
| Tank Diameter =                                    | 17.60                                       | feet       |         |               |
| Sidewall Height =                                  | 5120.00                                     |            |         |               |
| Weight of Tank (Shell)                             | 69020.00                                    |            |         |               |
| Weight of Max. Contents =                          | 69020.00                                    | IDS        |         |               |
|                                                    |                                             |            |         |               |
| Tank is Resting on a concrete foundation.          |                                             |            |         |               |
|                                                    |                                             |            |         |               |
| SOUNDATION DESIGN:                                 |                                             |            |         |               |
| CHECK CONCRETE FOUNDATION DESIGN:                  |                                             | i          |         |               |
|                                                    |                                             | inches     |         |               |
| Assume Footing Depth =                             | 12.00                                       | inches     |         |               |
| Assume Footing Width =                             | 1925.00                                     | psf        |         |               |
| Assumed Effective Soil Press. =                    |                                             |            |         | psf           |
| Look at what is resisiting overturning moment from |                                             |            |         |               |
| seismic load:                                      |                                             |            |         |               |
| seismic idad.                                      |                                             |            |         | 10 Mr R       |
|                                                    | b =                                         |            | 1024.71 | lb/ft of      |
|                                                    |                                             | . 31       |         | circ.         |
|                                                    | Where b is the maximum shell compressi      | ion at the |         |               |
|                                                    | bottom of the shell.                        |            |         |               |
|                                                    | 40                                          |            | 10.00   | inches wide   |
|                                                    | If the footing is                           |            | 12.00   | ILICITES MICE |
|                                                    | then the actual applied pressure to the     |            | 1024.71 | lls/ef        |
|                                                    | subgrade is                                 |            | (U24./1 | 10/01         |
|                                                    | - to the standing call property             | re         |         |               |
|                                                    | This is less than the effective soil pressu | 10.        |         |               |



# APPENDIX F Ultrasonic Thickness Testing Results


### REPORT OF UT THICKNESS INSPECTION


| TESTED FOR: US PCI                              | PROJECT:              | CORROSION                         |
|-------------------------------------------------|-----------------------|-----------------------------------|
| LONE MOUNT                                      | יאו מי                | SURVEY                            |
| LONE MOON!                                      | 71                    |                                   |
|                                                 |                       |                                   |
| DATE: 8-3-92                                    | OUR REPO              |                                   |
| Client Order Number:                            | b Number: UT #1       | Location: EO-/                    |
| Test Method Standard: Ac                        | ceptance Standard:    | Scanning Method:                  |
| RC UT 5                                         | ac ut 5               | RANDOM/2'                         |
| UT UNIT A-Scan                                  | Manufacturer          | KBA                               |
| Direct Readout                                  |                       | 2mE                               |
| A-Scan and Direct Rea                           |                       | 03/62                             |
| CALIBRATION                                     |                       | · · · · · · · · · · · · · · · · · |
| SLOCK ID Number:                                |                       | " - , 500" STEP                   |
| Material Type: 574                              | <u> </u>              |                                   |
| SEARCH                                          | 625'                  | Frequency 5 MHZ                   |
| UNITSingle Element                              | Size Serial No.       | _ Frequency                       |
| Dual Element                                    |                       |                                   |
| Measurements                                    |                       | C Diagram                         |
| 18 35                                           | 52 53                 | DRW6.#E0-1                        |
| 2 19 36 37 37 37 37 37 37 37 37 37 37 37 37 37  | 54 AND 1              | ATTACHMENTS                       |
| 4 38                                            | 55                    | READINGS AND                      |
| 5 22 39 40                                      | 67                    |                                   |
| 7 24 41                                         | 58 LOCAT              |                                   |
| 8 2543                                          | _ 59<br>_ 60          | · BLANK AREAS                     |
| 10 27 44                                        | 61   //\              |                                   |
| 11 28 45                                        |                       | WING PENOTE AREAS                 |
| 12 46 13 47                                     | UNINSPE               | CTABLE DUE TO                     |
| 14 31 48                                        | - 65 INACCE           | SABILITY.                         |
| 15 32 49 50 50 50 50 50 50 50 50 50 50 50 50 50 | _ 66<br>_ 67   /NACCE | SMOILICY,                         |
| 34 51                                           | 68                    |                                   |
| Fechnician: J. BROOKS Le                        | vel: T Technician: hu | uff. Prooftevel: II               |
| 0.00010165                                      | AKEN AT Z FOO:        | 6R105                             |
| REMARKS: CERTITORS                              | 11 41 61              |                                   |


| _      | P.S.I. |        |    |       |              | Tank Number <u>F0-1</u> |     |       |     | Date 8-3-92 |     |          |  |
|--------|--------|--------|----|-------|--------------|-------------------------|-----|-------|-----|-------------|-----|----------|--|
| 124    |        | 051    |    | 1700  |              | 101                     |     | - 57  |     |             | Ι   | <u> </u> |  |
| 0.124  |        | 0.951  | 57 | 0.708 | 1            | 0.696                   |     | 0.755 |     | 0.          | 168 | 0.       |  |
| 0.953  | 3      | 0.985  | 58 | 0.7/9 |              | 0.734                   |     |       | 142 | 0.          | 169 | 0.       |  |
|        |        | 0.985  | 59 | 0.714 |              | 0.765                   |     |       | 143 | 0.          | 170 | 0.       |  |
| 0.695  |        | 0.693  |    | 0.720 | <del> </del> |                         | 116 |       | 144 | 0.          | 171 | 0.       |  |
| 0.728  | 33     | 0.705  |    | 0.711 | 89           | 0.756                   | 117 | 0.695 | 145 | 0.          | 172 | 0.       |  |
| 0.702  | 34     | 0.719  | 62 | 0.711 | 90           | 0.778                   | 118 | 0.702 | 146 | 0.          | 173 | 0.       |  |
| 0.720  | 35     | 0.705  | 63 | 0.728 | 91           | 0.760                   | 119 | 0.738 | 147 | 0.          | 174 | 0.       |  |
| 0.920  | 36     | 0.706  | 64 | 0.701 | 92           | 0.757                   | 120 | 0.706 | 148 | 0.          | 175 | 0.       |  |
| 0.893  | 37     | 0.709  | 65 | 0.728 | 93           | 0.741                   | 121 | 0.720 | 149 | 0.          | 176 | 0.       |  |
| 0.918  | 38     | 0.717  | 66 | 0.971 | 94           | 0.743                   | 122 | 0.745 | 150 | 0.          | 177 | 0.       |  |
| 0.970  | 39     | 0.696  | 67 | 0.937 | 95           | 0.765                   | 123 | 0.725 | 151 | 0.          | 178 | 0.       |  |
| 0.931  | 40     | 0.708  | 68 | 0.953 | 96           | 0.752                   | 124 | 0.702 | 152 | 0.          | 179 | 0.       |  |
| 7 96   | 41     | 0.726  | 69 | 0.910 | 97           | 0.719                   | 125 | 0.706 | 153 | 0.          | 180 | 0.       |  |
| 0.700  | 42     | 0.766  | 70 | 0.905 | 98           | 0.699                   | 126 | 0.694 | 154 | 0.          | 181 | 0.       |  |
| 0.699  | 43     | 0.730  | 71 | 0.499 | 99           | 0.715                   | 127 | 0.705 | 155 | 0.          | 182 | 0.       |  |
| 0.686  | 44     | 0.741  | 72 | 0.895 | 100          | 0.710                   | 128 | 0.    | 156 | 0.          | 183 | 0.       |  |
| 0.952  |        | 0.755  | 73 | 0.943 | 101          | 0.740                   | 129 | 0.    | 157 | 0.          | 184 | 0.       |  |
| 0.955  |        | 0.747  | 1  | 0.910 |              | 0.700                   | 130 | 0.    | 157 | 0.          | 185 | 0.       |  |
| 0.923  |        | 0.740  | 75 | 0.934 |              | 0.688                   | 131 | 0.    | 158 | 0.          | 186 | 0.       |  |
| 0.911  |        | 0.730  | 76 | 0.912 |              | 0.687                   | 132 | 0.    | 159 | 0.          | 187 | 0.       |  |
| 0.949  |        | 0.765  | 77 | 0.970 |              | 0.693                   | 133 | 0.    | 160 | 0.          | 188 | 0.       |  |
| 0.993  |        | 0.720  | 78 |       | 106          | 0.685                   | 134 | 0.    | 161 | 0.          | 189 | 0.       |  |
| 0.923  |        | 0.743  | 79 | 0.715 |              |                         | 135 | 0.    | 162 | 0.          | 190 | 0.       |  |
| 0.928  |        | 0.746  | 80 | 0.739 |              | l                       | 136 |       | 163 | 0.          | 192 | 0.       |  |
| 0.915  |        | 0.714  | 81 | 0.742 | l .          | 0.709                   | 137 | 0.    | 164 | 0.          | 193 | 0.       |  |
| 200    |        |        | 82 | 0.743 |              | 0.750                   | 138 | 0.    | 165 | 0.          | 194 | 0.       |  |
| 29     | -      | 0. 730 | 1  | 0.725 |              | 0.718                   | 139 | 0.    | 166 | 0.          | 195 | 0.       |  |
| 0.908  |        | 0.7/1  | -  | 0.683 |              | 0.7/8                   | 140 | 0.    | -   | 0.          | 196 | 0.       |  |
| 0. 730 |        | · ///  |    | 0.00  | ***          | . / & &-                | 170 |       |     | ļ".         | 190 |          |  |
|        | l      | ļ      |    | C=-1* | 205          | a 4 1*                  |     | ^     | l   | 1           |     | !        |  |

| ٠,١          | •,1      |                   |             | 2P15 1:03     |         |                            |           |             |         |        |       |
|--------------|----------|-------------------|-------------|---------------|---------|----------------------------|-----------|-------------|---------|--------|-------|
| Uatt 5-3-72  | 101      | 104               | 121         | 011           | 113     | 116                        | 611       |             | /25     | 127    |       |
|              | 70p      | Manuay 84         | 28          | \$ \$0<br>\$0 | 06      | 42                         | 46        | 96          | 86      | 100    |       |
|              | 181      | 80                | \$85,       | 2.2           | 68      | 16                         | 9 29      | 95          | 44      | 66     |       |
| 1-0-1        | 32       | 78.               | .39         | 75            | 34.     | 49                         | 5.2       | 75          | 09      | 63     | . 34  |
| # ber<br>End | - 11     | 35.               | m           | 4             | 尧       | ζ,                         | 9         | 141         | 29      | 7      | End   |
| North Eng    | 33       | . <del>3.</del> 7 | 20          | 43            | 44      | 50                         | 33        | 57          | 19      | 6.4    | South |
| Man          | 34       | Ή                 | 14.         | 44.           | 87.     | <i>\overline{\gamma}</i> . | 24        | 50          | 79      | 59     |       |
|              | \ \      | Betten            | .5          |               |         | Bettem                     |           |             |         |        |       |
| F. S. L.     | 16 14 15 | 103 /05           | JO6         | 801 601       | 111-577 | 1115 114                   | 11.9      | 02/ 12/ 09: | 124 123 | 126 13 |       |
| Northand     | 22 31 25 | 19 23             | 11 21 10 29 | 30            |         | South End                  | 10p 73 75 | 77          | 72      | 18/    | 77    |

# APPENDIX G Drawings









# **SECTION FT1**



# ASSESSMENT Of EVAPORATOR FLASH TANK NO. 1 (FT 1) Located At The LONE MOUNTAIN HAZARDOUS WASTE FACILITY WAYNOKA, OKLAHOMA

PREPARED FOR



July 2002



### **ASSESSMENT**

### Of

### **EVAPORATOR FLASH TANK NO. 1 (FT 1)**

### **Located At The**

### LONE MOUNTAIN HAZARDOUS WASTE FACILITY

### WAYNOKA, OKLAHOMA

Prepared For SAFETY-KLEEN, INC.

## TABLE OF CONTENTS

| 1.      | TANK SY                                                                                         | STEM DESCRIPTION                                                                                                                                                                                                                                                                                                                                                   | 1.                                                 |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| 2.      | PRIMAR                                                                                          | ARY TANK VESSEL                                                                                                                                                                                                                                                                                                                                                    |                                                    |  |  |  |  |  |  |  |
|         | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8<br>2.9<br>2.10<br>2.11<br>2.12             | General Description Design Standards Hazardous Characteristics of Waste Stored Welding Specifications and Inspection Corrosion Protection Documented Age of Tank Results of Leak Tests Existing Data Obtained Calculation of Existing Foundation Loading Required Structural Calculation Comparison of Actual to Theoretical Structural Values Ancillary Equipment | 1.<br>1.<br>2.<br>2.<br>2.<br>2.<br>2.<br>3.<br>3. |  |  |  |  |  |  |  |
| 3.      | SECONDARY CONTAINMENT SYSTEM                                                                    |                                                                                                                                                                                                                                                                                                                                                                    |                                                    |  |  |  |  |  |  |  |
|         | 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7                                                   | General Description of Secondary Containment Corrosion Protection Documented Age of the Containment Area Results of Leak Tests Calculation of Capacity Available (CCA) Required Volume Comparison of Available Volume to Required Volume                                                                                                                           | 4.<br>4.<br>4.<br>4.                               |  |  |  |  |  |  |  |
| 4.      | CONCL                                                                                           | JSIONS                                                                                                                                                                                                                                                                                                                                                             | 5.                                                 |  |  |  |  |  |  |  |
| 5.      | RECOM                                                                                           | MENDATIONS                                                                                                                                                                                                                                                                                                                                                         | 5.                                                 |  |  |  |  |  |  |  |
| 6.      | CERTIFI                                                                                         | CATION                                                                                                                                                                                                                                                                                                                                                             | 5.                                                 |  |  |  |  |  |  |  |
| LIST OF | APPENDICI                                                                                       | S:                                                                                                                                                                                                                                                                                                                                                                 |                                                    |  |  |  |  |  |  |  |
|         | APPENDI<br>APPENDI<br>APPENDI<br>APPENDI<br>APPENDI<br>APPENDI<br>APPENDI<br>APPENDI<br>APPENDI | X B. WELDING PROCEDURES AND INSPECTIONS X C. HYDROSTATIC LEAK TESTS X D. CALCULATIONS X E. METALLURGICAL INFORMATION X F. SUPPORT STRUCTURE CALCULATIONS X G. FOUNDATION ANALYSIS X H. CONCRETE COATING INFORMATION FOR SECONDARY CONTAINMENT                                                                                                                      |                                                    |  |  |  |  |  |  |  |

# ASSESSMENT Of EVAPORATOR FLASH TANK NO. 1 (FT 1) Located At The LONE MOUNTAIN HAZARDOUS WASTE FACILITY WAYNOKA, OKLAHOMA Prepared For SAFETY-KLEEN, INC.

### 1. TANK SYSTEM DESCRIPTION

Evaporator Flash Tank No. 1 (FT 1) is a welded, above-ground wastewater treatment and storage tank to be installed as a part of the final wastewater treatment plant at the Lone Mountain Facility in Waynoka, Oklahoma. This tank is a replacement for an existing tank which is constructed of carbon steel. The new tank, which is constructed of stainless steel, is exactly the same size as the original tank. The top of the tank is completely open to the atmosphere for evaporation purposes. Evaporator Flash Tank No. 1 (FT 1) is located within the Wastewater Final Treatment building on the first mezzanine level of the support structure. The complete tank system consists of Evaporator Flash Tank No. 1 (FT 1), Circulating Pump (P 78), Heat Exchanger (EU 1), Pump (P 80), Filter Press (FP 1), and associated piping and instruments.

### 2. PRIMARY TANK VESSEL

- **2.1 General Description.** Evaporator Flash Tank No. 1 (FT 1) is a circular steel tank with an outside diameter of 6-ft. 4-in. and a height of 31-ft. The tank proper's skirt is anchored to the support structure, and the bottom of the tank is dished and welded to the shell. A self-supporting flue is attached to the top of the tank. Evaporator Flash Tank No. 1 (FT 1) is being assessed to determine if the unit is adequately designed with sufficient structural strength and compatibility with the waste to be stored.
- **2.2 Design Standards.** The tank is designed and constructed to those sections that are applicable in the American Petroleum Institute Standard 650, 10<sup>TH</sup> Edition (API-650). The manufacturer's certification is included in *Appendix A*.
- **2.3 Hazardous Characteristics of Waste Stored.** The waste stored in this tank is treated and untreated brine solutions. The following parameters are characteristics of the waste treated:

Ignitability:

Flash Point > 240° F

Corrosiveness:

6 < pH < 13

0 < N < 7

Reactivity:

None

Temperature:

< 240° F

Based on the results of the examination of the hazardous characteristics of the waste to be stored in this tank, it was determined that the pH, normality levels, and salinity (corrosiveness) of the waste are the primary areas of concern. These levels are used to determine the applicability of a corrosion allowance for the tank material type and thickness.

- **2.4 Welding Specifications and Inspection.** The welding procedures utilized in the tank construction and the Radiographic Examination Report are included in *Appendix B*.
- 2.5 Corrosion Protection. The tank shell is constructed of 316L stainless steel for corrosion protection.
- **2.6 Documented Age of Tank.** This tank was manufactured by Lide Industries of Mexia, Texas, in January 2002, and installed in July 2002.
- **2.7 Results of Leak Tests.** The manufacturer conducted a hydrostatic leak test of the tank prior to shipping. A description of this test is included in *Appendix C* of this assessment. In addition, a visual inspection was performed of the tank's interior and exterior subsequent to installation. This inspection was conducted specifically to detect the presence, if any, of the following defects:
  - (a) Weld break
  - (b) Punctures
  - (c) Cracks
  - (d) Corrosion
  - (e) Other structural damage or inadequacies of construction and/or installation

The tank was again hydrostatically tested subsequent to installation. A description of this procedure is summarized in *Appendix C* of this assessment. Based on the results of these tests, it was determined that the primary tank was not leaking.

#### 2.8 Existing Data Obtained.

| Tank Diameter                        |
|--------------------------------------|
| Nominal Height of Tank               |
| Maximum Capacity                     |
| Overflow Liquid Level                |
| Overflow Volume                      |
| Design Specific Gravity              |
| Maximum Bottom Pressure              |
| Maximum Operating Temperature 300° F |
| Construction Material:               |
| Flue                                 |
| Shell ASTM 316L                      |
| Bottom ASTM 316L                     |
| Skirt•                               |
| Flanges, Blinds, Coupler and Plugs   |
| Bolts                                |
| Wall Thickness (Shell and Bottom)    |
| Operating Pressure                   |
| Seismic Zone                         |

\* The maximum capacity of the assessed tank is the same as the original tank, however the original tank assessment indicates otherwise. There appears to have been an error in the original assessment's volume calculations.

#### 2.9 Calculation of Existing Foundation Loading.

Detailed calculations reflecting the volume and weight of the tank are included in *Appendix D* of this assessment.

2.10 Required Structural Calculation. Calculations for the required wall thickness for this tank are presented in Appendix D of this assessment. Metallurgical information on the materials used is included in Appendix E of this assessment. The minimum required thickness in accordance with API 650 is 0.1875-in. A corrosion allowance of 0.125 is provided for. The measured wall thickness is 0.25-in.

Design calculations for the support structure are included in *Appendix F* of this assessment. These calculations were completed in accordance with the BOCA National Building Code 1990 Edition and were part of a previous tank assessment prepared by Black and Veach. The structural support was inspected and no changes have been made since the date of the Black and Veach assessment.

Structural analysis of the foundation is included in Appendix G of this assessment.

#### 2.11 Comparison of Actual to Theoretical Structural Values.

(a) Wall Thickness Comparison:

| Calculated Required Wall Thickness (includes corrosion allowance) | 0.156-in.  |
|-------------------------------------------------------------------|------------|
| Minimum Required Wall Thickness by API 650                        | 0.1875-in. |
| Measured Wall Thickness                                           | 0.250-in.  |

(b) Bottom Thickness Comparison:

| Calculated Required Bottom Thickness         | 0.151-in. |
|----------------------------------------------|-----------|
| Minimum Required Bottom Thickness by API 650 | 0.250-in. |
| Measured Bottom Thickness                    | 0.250-in. |

(c) Foundation Integrity Comparison:

| Maximum Calculated Load (6-in. Slab)  |  |
|---------------------------------------|--|
| Maximum Calculated Load (17-in. Slab) |  |

- **2.12 Ancillary Equipment.** The ancillary equipment for the Evaporator Flash Tank No. 1 (FT 1) system includes the following:
  - (a) Circulating Pump (P 78). A centrifugal pump designed to pump 800-GPM at 150-ft. of discharge head with a suction head of 11-ft.
  - (b) Heat Exchanger (EU 1). A plate and frame unit of stainless steel construction designed to operate at a pressure of 150-PSIG and a temperature of 300° F.
  - (c) Pump (P 80). A pneumatically-operated, double-diaphragm pump designed to pump from 100to 0-GPM at head pressures varying from 0- to 100-PSIG, pumping fluid at a temperature up to 212° F.
  - (d) Filter Press (FP 1). A gasketed unit employing glass-filled polypropylene plates designed to operate at a temperature/pressure limit of 100-psi at 212° F.
  - (e) Associated Piping, Valves, and Instruments. All piping is Schedule 40 carbon steel fitted with 150-psi flanges. All piping with an inside diameter of 2-in. or smaller is socket-welded using, at minimum, 3,000-lb. connections. All piping with an inside diameter greater than 2-in. is butt-welded. All valves, fittings, and instruments are rated for 150-psi or higher.

**Note:** Items (a) - (c) are part of the tank system. However, no changes were made to them during the installation of the new FT 1 tank.

#### 3. SECONDARY CONTAINMENT SYSTEM

**3.1 General Description of Secondary Containment.** The secondary containment system is designed and operated to prevent migration of wastes or liquids out of the system. Evaporator Flash Tank Nos. 1, 2 and 3, Evaporator Blowdown Tank No. 2, and Evaporator Feed Tank No. 4 are located on a reinforced concrete base floor area with vertical concrete sidewalls. This area is inspected daily on a routine basis.

At the time of inspection, the concrete area was withstanding daily operations and routine climatic conditions. No cracks from compression or uplift were visually apparent.

Any released tank contents are removed and pumped to an appropriate storage area within the maximum time allowed as a permit condition.

- **3.2 Corrosion Protection.** There is an impermeable coating applied to the entire concrete floor and curbs. Detailed information on the coatings employed is included in *Appendix H* of this assessment.
- **3.3 Documented Age of the Containment Area.** The concrete secondary containment system was constructed and installed in 1987.
- 3.4 Results of Leak Tests. A visual inspection of the containment area was conducted and no cracks or breaks in the impermeable coating were observed. Therefore, it appears to be adequate to contain any leaks or spills.
- 3.5 Calculation of Capacity Available (CCA).

| Area          | 9-sf |
|---------------|------|
| Curb Height   |      |
| Material Conc | rete |
| Gross Volume  | 5-cf |

Note: See Appendix I for secondary containment.

- 3.6 Required Volume.
  - (a) Containment Capacity Required (CCR):

CCR = Volume of Largest Tank (Overflow Volume) in the Secondary Containment

- 3.7 Comparison of Available Volume to Required Volume.
  - (a) Containment Capacity Available (CCA):

| Containment Capacity Required (CCR)    | 506-cf |
|----------------------------------------|--------|
| Secondary Containment Volume Available |        |
| Excess Containment Volume              | 179-cf |

CCA > CCR Adequate Capacity (under normal operating conditions is available.)

**Note:** See Appendix I for secondary containment calculations.

#### 4. CONCLUSIONS

The foundation and structural support for the Evaporator Flash Tank No. 1 (FT1) system have been previously analyzed, reviewed, and deemed to be adequately designed.

The Evaporator Flash Tank No. 1 (FT 1) system has sufficient structural strength, is compatible with the waste to be stored and treated, and has adequate corrosion protection to ensure that it will not collapse, rupture, or fail.

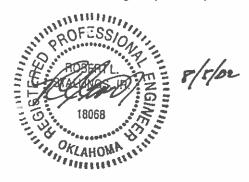
The Evaporator Flash Tank No. 1 (FT 1) system was inspected on July 18, 2002, for weld breaks, punctures, scrapes of protective coating, cracks, leaks, corrosion, and other structural damage or inadequacies of construction/installation.

The Evaporator Flash Tank No. 1 (FT 1) equipment was hydrostatically tested on July 18, 2002, and it was determined that the tank does not leak.

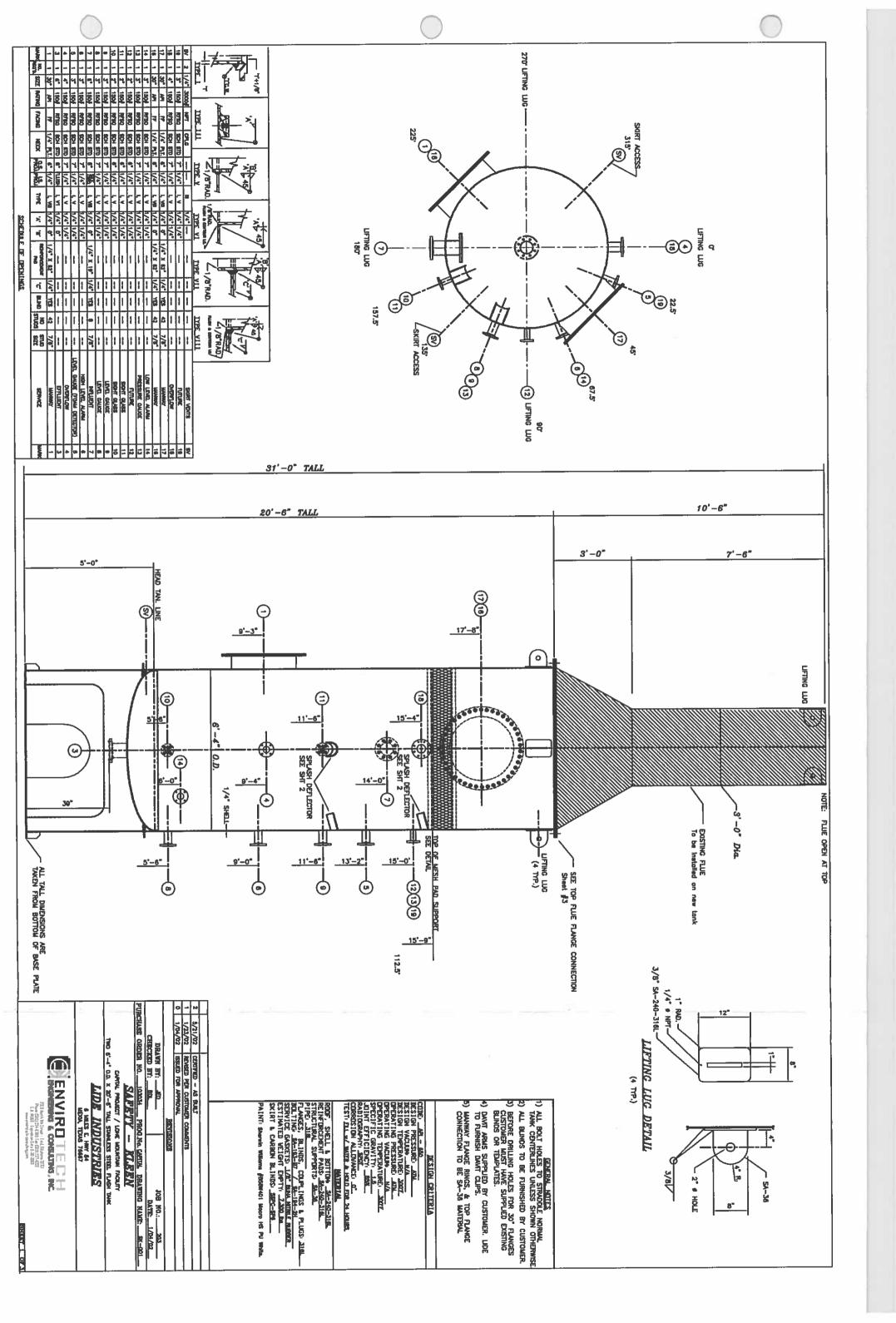
The Secondary Containment for the Evaporator Flash Tank No. 1 (FT 1) system is of sufficient structural strength and volume to meet the requirements set forth in 40 CFR 264.193.

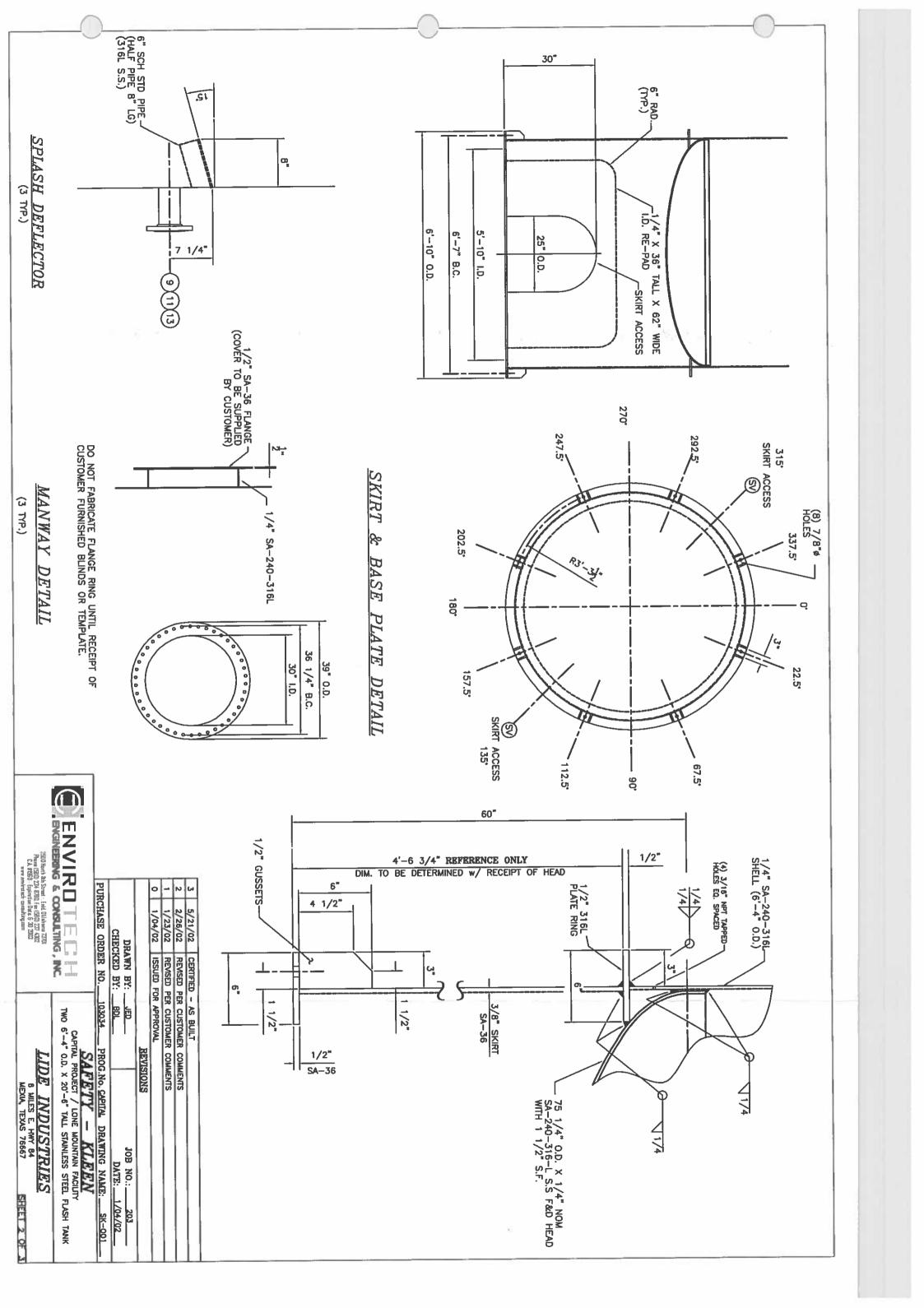
#### 5. RECOMMENDATIONS

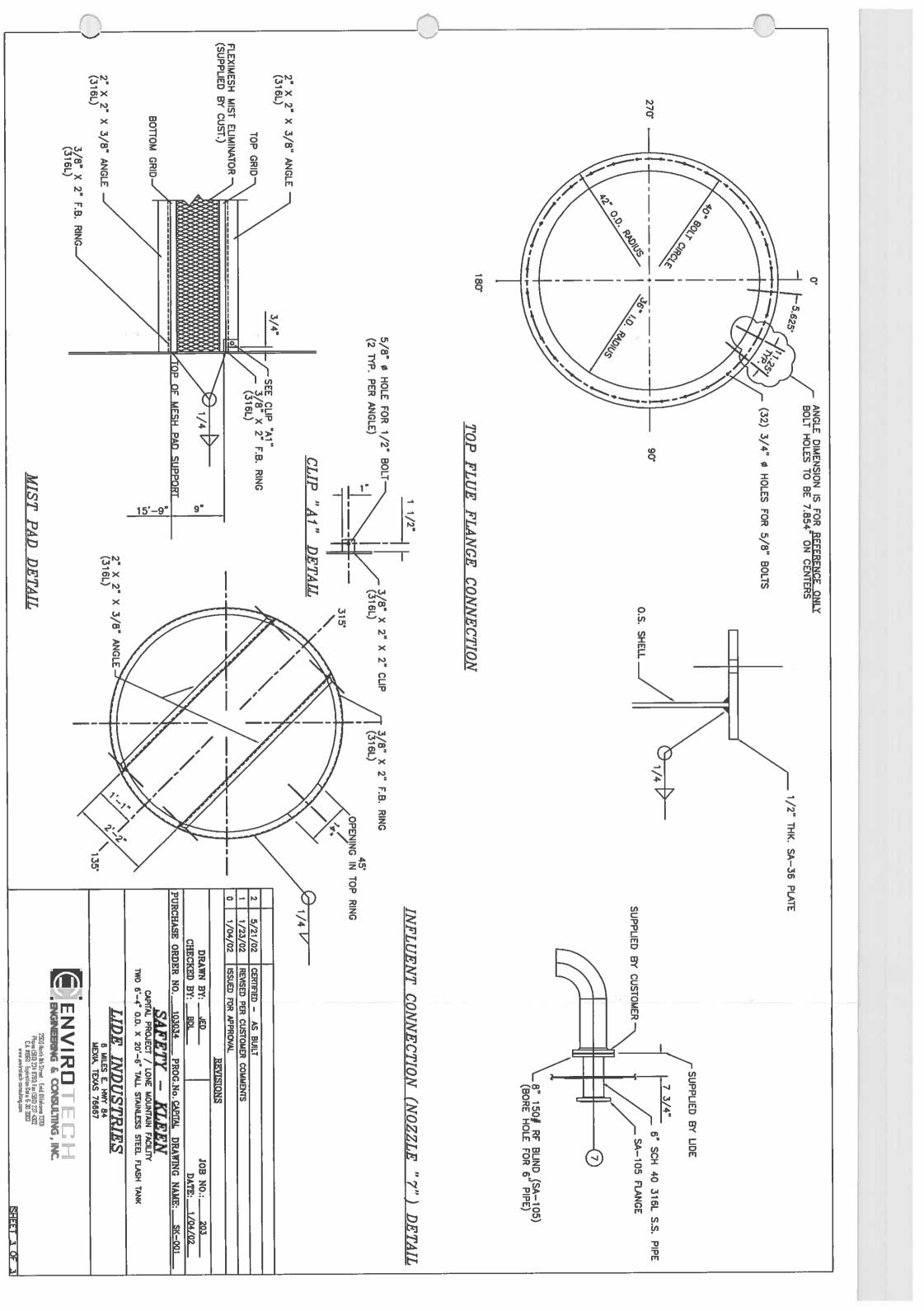
Due to a previous history with interior deterioration of the Evaporator Flash Tank No. 1 (FT 1), the following recommendations are suggested:


| Visual ins | pections | of the | tank | interior | subseq | uent to | the | initial | 6-mo. | of | operation |
|------------|----------|--------|------|----------|--------|---------|-----|---------|-------|----|-----------|
|            |          |        |      |          |        |         |     |         |       |    |           |

| П | Annual visua | l inspections of | the tank   | interior | subsequent ( | to the | initial | 6-mo. | inspecti |
|---|--------------|------------------|------------|----------|--------------|--------|---------|-------|----------|
|   | Annuai visua | i inspections of | r the tank | interior | subsequent ( | o me   | ınıuaı  | o-mo. | inspect  |


Perform an ultrasonic survey of the tank shell subsequent to 5-yr. of operation to determine the average shell thickness.


#### 6. CERTIFICATION


"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision, in accordance with a system designed to ensure that qualified personnel properly collect and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for collecting the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.



Rob L. Stallings, P.E. Envirotech Engineering & Consulting, Inc.







### APPENDIX A.

## PRIMARY TANK VOLUME CALCULATIONS



#### APPENDIX A.

## PRIMARY TANK VOLUME CALCULATIONS For EVAPORATOR FEED TANK NO. 2 (EF2)

**DIMENSIONS:** Geometry: Cylindrical Diameter: 60.00-ft. Height: 16.90-ft. . Operating Height: 15.50-ft Bottom: Flat TANK VOLUME: Maximum Volume 357,458.57-gal. 47,785.26-cf Operating Volume 43,826.72-cf 327,846.63-gal. Total Primary Tank Volume 47,785.26-cf 357,458.57-gal. WEIGHT ON FOUNDATION: Contents S.G. 1.3 Density 81.12-lb/cf **SURFACE AREA CALCULATION:** Tank Top n/a Tank Bottom 2,827.53-sf Tank Wall 3,185.68-sf Total Surface Area 6,013.21-sf Steel Thickness: Sidewalls 0.250-in. Bottom 0.240-in. Volume of Steel: Sidewalls 66.37-cf Bottom 56.55-cf Density of Steel 490-lb/cf Weight of Steel (Tank): 30.12-ton 60,230.32-lb. Weight of Tank Contents 1,938-ton 3,876,340-lb. Total Weight of Tank and Contents 1,968-ton 3,936,570-lb.

## APPENDIX B.

## PRIMARY TANK WALL THICKNESS



#### APPENDIX B.

## PRIMARY TANK WALL THICKNESS For EVAPORATOR FEED TANK NO. 2 (EF2)

**DIMENSIONS:** Geometry: Cylindrical 60.00-ft Diameter: Height: 16.90-ft. Specific Gravity: 1.30 Normal Operating Temperature: Ambient STEEL THICKNESS CALCULATIONS: Thickness (t) = (2.6 \* H \* D \* S.G.) / (s \* E) + CAAllowable Design Stress 23,200.00-psi S E 🥸 💯 Joint Efficiency 85.00% Thickness (t) 0.1738-in. Corrosion Allowance 0.0625-in. Calculated Minimum Wall Thickness 0.2363-in.

## APPENDIX C.

**SEISMIC CALCULATIONS** 



#### APPENDIX C.

## SEISMIC CALCULATIONS For EVAPORATOR FEED TANK NO. 2 (EF2)

|   | DIMENSI                 | ONS:                                                              | *                                                                                    | *                             |          |
|---|-------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|----------|
|   | Weight of<br>Tank Shell | Tank (Steel):<br>Maximum Contents:<br>Thickness:<br>om Thickness: | 60.00-ft.<br>16.90-ft.<br>60,230.32-lb.<br>3,876,340.00-lb.<br>0.25-in.<br>0.240-in. | ¥6                            | :        |
|   | STRESS II               | N TANK SHELL FRO                                                  | M SEISMIC FORCES:                                                                    | A Section 1                   |          |
|   | Maximum                 | weight of tank content                                            | s that may be used to resist shell o                                                 | verturning moment: WI         |          |
|   | WI =                    | = 7.9 * tb * (Fb <sub>)</sub>                                     | / + G + H)^.5                                                                        |                               |          |
| + | Fby =                   | = Minimum Yiel                                                    | d Strength in Bottom Plate                                                           | 36,000.00                     |          |
|   | tb =                    | = Thickness of T                                                  | ank Bottom                                                                           | 0.240                         |          |
|   | G :                     | = Design Specifi                                                  | c Gravity of Liquid                                                                  | 1.3                           |          |
|   | WI =                    | = ,,                                                              | *                                                                                    | 1686.18                       |          |
|   | Note:                   | WI Shall Not E                                                    | exceed 1.25 * G * H * D                                                              | 1,647.75-lb/ft. of Shell Circ | umferenc |
|   | Density of              | Tank Shell Material                                               | 74 y 7                                                                               | 490.00-lb/cf                  |          |
|   | WT :                    | = Weight of Tar                                                   | ık Shell                                                                             | 172.52-lb/ft. of Shell Circu  | mference |
| 2 | M/LD^2(W                | /T+Wi)]                                                           |                                                                                      | 0.1071                        | 2        |
|   | b :                     | = Maximum Lo                                                      | ngitudinal Compressive Force at th                                                   | e Bottom of Tank Shell        |          |
|   | b                       | = WT + 1.273*                                                     | ·M/D^2                                                                               |                               |          |
|   | Ь                       | <b>≟</b>                                                          |                                                                                      | 420.63-lb/ft. of Shell        |          |
|   | G*H*D <sup>A</sup> 2    | ½/t^2 =                                                           | 1 4                                                                                  | 1,265,472                     |          |
|   | $Fa = 10^{\circ}$       | 6*t/D ==                                                          |                                                                                      | 4,167-psi                     |          |
|   | OR                      |                                                                   |                                                                                      |                               | -        |
|   | Fa = .5*F               | ity =                                                             |                                                                                      | 18,000-psi                    |          |
|   | Use-Minir               | num Value for Fa Fa =                                             |                                                                                      | 4,167-psi                     |          |
|   | b/12*t                  | = 0.0                                                             |                                                                                      | 140.21-psi                    |          |

b/12t Cannot Exceed Fa for a Stable Tank

#### ☐ OVERTURNING MOMENT:

Opposing Moment

Overturning Moment (M) Z\*I\*(C1\*Ws\*Xs+C1\*W1\*X1+C2\*W2\*X2)Zone Coefficient (Z) 0.1875 Essential Facilities Factor (i) 1.000 Lateral Earthquake Force Coefficient (C1) 0.240 D/H 3.55 k Factor (@ D/H = 3.55)0.680 Site Amplification Factor (S) 1.5 Natural Period of First Sloshing Mode (T) 5.11 Lateral Earthquake Force Coefficient (C2) 0.07755 Weight of Tank (Ws) 60,230.32 Weight of Tank Contents (Wt) 3,876,340.00 W1 / Wt (@ D/11 = 3.55) 0.32 W2/Wt @ D/H = 3.55)0.60 Weight of Effective Mass (W1) 1,240,428.80 Weight of Effective Mass (W2) 2,325,804.00 Ht from Btm of Shell to Cent. of Shell (Xs) 8,45 X1/H 0.38 Ht from Btm of Cent. of Lat Seismic Force (X1) 6.422 X2/H 0.55 Ht from Btm of Cent. of Lat. Seismic Force (X2) 9.295 Overturning Moment 695,718-ft/lb.

118,097,110-ft/lb.

## APPENDIX D.

## WIND LOAD CALCULATIONS



#### APPENDIX D.

## WIND LOAD CALCULATIONS For EVAPORATOR FEED TANK NO. 2 (EF2)

DIMENSIONS:

Diameter:

60.00-ft.

Height:

16.90-ft.

Weight of Tank (Steel):

60,230.32-lb.

Weight of Max. Contents:

3,876,340.00-lb.

Tank Shell Thickness:

0.25-in.

Tank Bottom Thickness:

0.240-in.

OVERTURNING MOMENT FROM WIND LOADS:

M = Overturning Moment Due to Wind Loading

M = Pw \* Ap \* Hc

Pw = Wind Pressure

(Assume 18-psi for 100-MPH Wind on Cylinders) = 18.00-psi

Ap = Projected Frontal Area of Tank (H\*D) =  $1,014-Ft^2$ 

H1 = Height from Ground to Centroid of Tank = 8.45-ft

M = Overturning Moment 154,229.40-ft-lb.

M Max = Returning Moment .66\*(WD)/2

W = Wt of Tank = 60,230.32-lb.

M Max = 1,192,560-ft-lb.

M Must Be Less Than M Max

## APPENDIX E.

# FOUNDATION INTEGRITY MONITORING DOCUMENTS



| Tank Name:          | EF-2                                          | Tank N                                           | lumber:                      | # 2                                        | <del>_</del>                          |
|---------------------|-----------------------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------|---------------------------------------|
| Tank Location:      | WWPT                                          | Date:                                            |                              | 06-11-0                                    | 1                                     |
| Inspected By:       | JERRYLIF                                      | Phillips Signatu                                 | ие: . 🚽                      | in hether                                  |                                       |
| Date of Last Inspec | tion: <u>03</u> -                             | 07-01                                            |                              | 15)                                        |                                       |
| Foundation          |                                               | es .                                             |                              |                                            | A. 5- 0 TT 71                         |
| · A *               | Measure foundation le<br>Note: No other tanks | velness and bottom el<br>require foundation leve | evations (8 points<br>elevat | s for EF-1 <u>and</u> 9 por<br>ion survey. | rs for ef-2).                         |
| <u>EF-1:</u>        |                                               | · · · · · · · · · · · · · · · · · · ·            | • •                          |                                            | •                                     |
| 37                  | 47                                            | 55                                               | 28                           | 53                                         |                                       |
| 271                 | 279                                           | 293                                              | 3                            | 03                                         | 2                                     |
| /EF-2:              | 20                                            |                                                  | •                            |                                            |                                       |
| 65 <u>/4 2</u>      | 5.84 73 142                                   | 5,74 81 <u>14:</u>                               | 2 <i>5, 98</i> 8             | 9 1425.86                                  | 191 1425.7                            |
| 205 <u>/-</u> f     | 2 <i>5.6</i> 3 211 <i>14.</i>                 | <u>25.7</u> 0 219 <u>1</u>                       | 125,77 2                     | 27 1425, 78                                |                                       |
| , В.                | Has the yearly maxin                          | num settlement excee                             | ded 1 inch? (EF-             | 1 and EF-2 only)                           |                                       |
| 356                 | <u>EF-1:</u>                                  | 9 (3                                             | - "                          | <u> </u>                                   |                                       |
|                     | Yes                                           | No                                               | Yes                          | No                                         |                                       |
| C.                  | Check 8 inch annula position. (EF-1 only)     | r channel for deflectio                          | n of more than 2             | degrees from its cor                       | rect                                  |
|                     | Deflection                                    | •                                                | 8 . 200                      |                                            |                                       |
| Comments:           |                                               |                                                  | . +                          |                                            |                                       |
| 4                   |                                               |                                                  |                              | ·                                          | · · · · · · · · · · · · · · · · · · · |
|                     |                                               |                                                  | F2                           | F .                                        |                                       |

| Ţ   | ank Name:         | _EF                          | -2                                            | Tank Number:                                        | # 2                      |                  |
|-----|-------------------|------------------------------|-----------------------------------------------|-----------------------------------------------------|--------------------------|------------------|
| T   | ank Location:     | WU                           | PT                                            | Date:                                               | 4-17-02                  |                  |
| in  | spected By:       | `                            |                                               | Signature:                                          |                          | •                |
| D   | ate of Last Inspe | chon:                        |                                               |                                                     | *                        |                  |
| ſ.  | Foundati          | on                           | . "                                           |                                                     |                          |                  |
|     | A.                | Measure to<br>Note: No o     | undation levelness a<br>ther tanks require fo | nd bottom elevations (8<br>undation levelness and ( | points for EF-1 and 9 p  | oints for EF-2). |
|     | EF-1:             |                              |                                               |                                                     | •                        | 1                |
|     | 37                |                              | 47                                            | 55                                                  | 263                      |                  |
|     | 271               |                              | 279                                           | 293                                                 | 303                      |                  |
|     | /EF-2:            | + 1                          | 22                                            |                                                     |                          |                  |
|     | 65 147            | 5.80                         | 73 1425.92                                    | 81 1425.98                                          | 89 1425.84               | 191, 1425.66     |
|     | 205_147           | 5.58                         | 211_1425.65                                   | 2191425.74                                          | 227 1425.75              |                  |
|     | 8.                | Has the yea                  | ndy maximum settlen                           | nent exceeded 1 inch? (                             | EF-1 and EF-2 only)      |                  |
|     |                   |                              | EF-1:                                         |                                                     | <u>EF-2:</u>             |                  |
|     |                   | Yes                          | No                                            | Yes                                                 | _ Na_X                   |                  |
|     | C.                | Check 8 inc<br>position. (El | h annular channel fo<br>7-1 only)             | r deflection of more that                           | n 2 degrees from its cor | Tect             |
|     |                   | Deflection_                  |                                               |                                                     |                          |                  |
| Com | ments:            |                              |                                               |                                                     |                          |                  |
|     |                   |                              |                                               |                                                     |                          |                  |
|     |                   |                              |                                               |                                                     |                          |                  |
| 17  |                   |                              |                                               |                                                     |                          |                  |
|     |                   |                              |                                               |                                                     |                          |                  |

May-30-2006 11:52am

| Tar     | nk Name:         | E                          | F-2                                             | Tank Number:                                          | # 2                                   |                     |
|---------|------------------|----------------------------|-------------------------------------------------|-------------------------------------------------------|---------------------------------------|---------------------|
| Tai     | nk Location:     | wi                         | WPT                                             | Date:                                                 | 4-14-04                               | 4                   |
| Ins     | pected By:       |                            |                                                 | Signature:                                            |                                       | ****                |
| Da      | te of Last Inspe | ction:                     | 2*2                                             |                                                       | (4)                                   | 28                  |
|         |                  |                            | ē!                                              |                                                       |                                       |                     |
| l.      | Foundat          | ion                        |                                                 |                                                       |                                       |                     |
|         | Α.               | Measure (<br>Note: No      | oundation levelness a<br>other tanks require (o | and bottom elevations (8<br>fundation levelness and ( | points for EF-1 and 9 persons survey. | pints for EF-2).    |
|         | <u>EF-1</u> ·    |                            |                                                 |                                                       |                                       |                     |
|         | 37               |                            | 47                                              | 55                                                    | 263                                   |                     |
|         | 271              |                            | 279                                             | 293                                                   | 303                                   |                     |
|         | /EF-2:/          |                            |                                                 |                                                       |                                       |                     |
| )       | 65 <u>14</u> 2   | 5,82                       | 73 1425,94                                      | 81 1425,99                                            | 89 1425.86                            | 191 <u>1425, 69</u> |
|         | 205 14           | 25,61                      | 211 <u>1425, 67</u>                             | 219 1425.76                                           | 227 1425.76                           |                     |
|         | <b>8.</b>        | Has the ye                 | any maximum settlen                             | nent exceeded 1 inch? (I                              | EF-1 and EF-2 only)                   |                     |
|         |                  |                            | EF-1;                                           |                                                       | <u>EF-2:</u>                          |                     |
|         |                  | Yes                        | No                                              | Yes                                                   | _ No_X                                | <del>-</del>        |
| 3.<br>3 | c.               | Check 8 in<br>position. (E | ch annular channel fo<br>EF-1 only)             | r deflection of more than                             | 2 degrees from its con                | rect                |
|         |                  | Deflection                 |                                                 | _                                                     |                                       |                     |
| omm     | ienis;           |                            |                                                 |                                                       |                                       |                     |
|         |                  |                            |                                                 |                                                       |                                       |                     |
|         |                  |                            | 4                                               |                                                       |                                       |                     |
| *       | 100              |                            |                                                 |                                                       |                                       |                     |

May-30-2006 11:53am

| Tank Name:  Tank Location:  Inspected By:  Date of Last Inspec | EF-2.<br>WWPT                                                             | Date. Signature:                                                | # 2<br>4/24/06                                      |               |
|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------|
| I. Foundation A.                                               |                                                                           | 4/14/04<br>d boπom elevations (8 p<br>ndation levelness and ele | oints for EF-1 <u>and</u> 9 poir<br>evation survey. | its for EF-2) |
| 271/ <u>EF-2:</u> /                                            |                                                                           | 55<br>293                                                       | 263<br>303                                          |               |
|                                                                | 5. 78 73 1425, 90<br>5. 58 211 1425.67<br>Has the yearly maximum settleme | 219 <u>/425, 73</u>                                             |                                                     | 191 1425.6    |
|                                                                | EF-1:<br>Yes No                                                           | Yes                                                             | <u>EF-2:</u>                                        |               |
| e C.                                                           | Check 8 inch annular channel for position. (EF-1 only)  Deflection        | deflection of more than 2                                       | 2 degrees from its correc                           | et.           |
| Comments:                                                      |                                                                           |                                                                 |                                                     |               |

## APPENDIX F.

## LAW ENGINEERING GEOTECHNICAL REPORT



November 22, 1993



LAW

ENGINEERING AND ENVIRONMENTAL SERVICES

Mr. Walter Sonne, P.E. USPCI, Inc. 515 West Greens Road, Suite 500 Houston, Texas 77067

SUBJECT:

REVISED REPORT OF GEOTECHNICAL EXPLORATION

Expansion of Wastewater Treatment Facilities--Lone Mountain Facility, Major County, Oklahoma Law Engineering Projects No. 392-01406-01

Law Engineering, Inc. has completed the geotechnical exploration at the subject site. Our services were provided in accordance with our Revised Proposal for Geotechnical Exploration Services No. HP-8173-93G, dated September 22, 1993; and a Request for Change Order letter dated October 12, 1993. This report briefly discusses our understanding of the project information, describes our exploratory procedures and findings, and presents our recommendations and conclusions. The data obtained during the field exploration and from the laboratory testing program is presented in the endices.

We will be happy to discuss our recommendations with you and would welcome the poportunity to provide the additional studies or construction testing services necessary to complete this project. We look forward to serving as your geotechnical engineer on the remainder of this project and on future projects.

If you have any questions, or if you require additional information, please do not hesitate to contact us.

Sincerely,

LAW ENGINEERING, INC.

. Fernando Pons, E.I.

Project Geotechnical Engineer

Michael W. Palmer, P.E.

Principal Geotechnical Engineer

USPCY- Olient Manager

Michael H. Homan, P.E.

Principal Geotechnical Engineer
Oklahoma Registration No. 15777

Discribution Copies:

Waiter Sonne Larry Marr (2) - USPCI

(1) - USPCILAW COMPANIES GROUP, INC.

5500|GUHN ROAD • HOUSTON, TX 77040 (712) 939-8444 • FAX (713) 462-1653



LAW ENGINEERING

REVISED REPORT OF GEOTECHNICAL EXPLORATION

OF WASTEWATER TREATMENT FACILITIES

LONE MOUNTAIN FACILITY MAJOR COUNTY, OKLAHOMA

prepared for USPCI, Inc. HOUSTON, TEXAS

LAW ENGINEERING PROJECT NO. 392-1406-01
NOVEMBER 1993

Expansion of Wastewater Facilities CI, Inc. La., Eng. Proj. No. 392-01406-01

#### 1.0 PURPOSE OF EXPLORATION

The purpose of this exploration was to obtain specific subsurface data at the site and to provide recommendations and opinions for:

- General geotechnical design and construction criteria for the Expansion of Wastewater Final Treatment Facilities (WWFT): Phase I (Expansion of the WWFT Building) and Phase II (Leachate Storage Tanks).
- o Site preparation and construction of compacted fills for the WWFT Phase I, and the WWFT Phase II.
- o Soil stratigraphy at the Wastewater Pretreatment Facilities (WWPT): Phase III tanks.

It should be noted that it was not the purpose of this study to directly assess or to address any environmental conditions at the site, i.e., the presence of contaminants or substances in the soil, rock, or ground water. An additional study should be uncertaken if USPCI decides to specifically address environmental conditions.

Expansion of Wastewater Facilities PCI, Inc.
Law Eng. Proj. No. 392-01406-01

#### 2.2 LEACHATE STORAGE TANKS

We understand that USPCI plans to construct three tanks within a containment area. The proposed site of construction is south of Cell 4. The proposed tanks will include a 60-foot diameter, 16-feet tall, 300,000 gallon tank; and two 33-foot diameter, 16-feet tall, 100,000 gallon tanks

The proposed tanks, containing leachate with a specific gravity of 1.3, will be located within a concrete containment structure with walls on the order of 7 feet in height.

We understand that the preferred foundation system at the present time is a drilled pier underground system, 18-inch diameter, straight-sided drilled piers founded at 8-feet on centers. In turn, these drilled piers will support the containment wall and a 10-inch thick concrete slab on 6 inches of sand and 24 inches of structural fill.

#### 2.3 WASTEWATER PRETREATMENT (WWPT) BUILDING

understand that two existing on-line 300,000 storage tanks structures within the Wastewater Pretreatment (WWPT) Building are experiencing foundation distress. We further understand that these two tanks and the containment area are supported on shallow footings.

Finansion of Wastewater Facilities 'Cl, Inc. Law Eng. Proj. No. 392-01406-01

#### 4.1.3 Wastewater Pretreatment (WWPT) Building

Exploration borings L-5, L-6, L-6A, and L-7 were drilled in this area. The measured surface elevation of these borings were 1418.35, 1428.62, 1428.48, and 1430.23 feet MSL, respectively, as provided by USPCI. The subsurface conditions for this area are generalized as follows:

#### AREA C

#### WASTEWATER PRETREATMENT BUILDING

(Borings L-5, L-6, L-6A, and L-7)

|            | <u> </u>     |                                                                                                       |                                     |
|------------|--------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|
| STRATUM    | DEPTH (ft)   | DESCRIPTION                                                                                           | USCS<br>CLASSIFICATION <sup>6</sup> |
| <u>UIC</u> | 0 to 2       | FILL GRAVEL                                                                                           | Unclassified                        |
| II C       | 1 to 22.5    | FILL: Soft to hard, reddish brown with gray, silty CLAY, with gypsum fragments and gravel.            | CL                                  |
| III C      | 15.5 to 20.5 | Very stiff to hard, reddish brown with gray, silty CLAY, with gypsum fragments and gray silt streaks. | CL                                  |
| IV C       | 18.5 to TOB' | Gray silty CLAYSTONE to reddish brown silty CLAYSTONE                                                 | Unclassified                        |

Termination of Boring Unified Soil Classification System Evnansion of Wastewater Facilities (1, Inc. 1, Law Eng. Proj. No. 392-01406-01

With reference to the Soil Stratum Summary, the TEST BORING RECORDS, Soil Profiles and the Laboratory Test Results, our discussion of the soil conditions for Area C is as pllows:

Stratum IC consists of GRAVEL to gravelly fill soils encountered in all borings from a existing surface to approximately 2 feet below existing grade.

Stratum IIC consists of fill soils of soft to hard, reddish brown with gray, silty CLAY with typsum fragments and gravel. Law personnel performed continuous sampling with shelby tubes, and utilized on-site extruding techniques to better identify the extent of this ill stratum. These fill soils were encountered from a depth of 1 foot from existing surface b 22.5 feet below grade. Organic odor and wet seams were identified in the lower two eet of this formation in Borings L-6 and L-7. Plasticity for this stratum was medium with plasticity index values ranging from 17 to 21. Liquid limit values range from 43 to 45 percent and plastic limit values range from 24 percent to 26 percent. Stratum IIC soils were generally moist with occasional wet seams. Natural moisture contents ranged from 24 percent, and were from 0 to 2 percent above corresponding PL values.

Pocket penetrometer tests and laboratory unconfined compression tests, on relatively indisturbed samples, indicated shear strength values that varied erratically throughout he fill depth in Boring L-5 (easternmost boring). Shear strength values in Borings L-6 and L-7 were similar throughout the same depths of the fill stratum. There was a similar inform decrease of shear strength values with depth in Borings L-6 and L-7 to a depth if approximately 12.5 feet. (See TEST BORING RECORDS L-6 and L-7).

piratum IIIC consists of very stiff to hard, reddish brown with gray, silty CLAY with lypsum fragments and gray silt streaks. These soils were encountered in all borings, except Boring L-5, from 15.5 feet from existing surface to a depth of 20.5 feet below grade. One Standard Penetration Test N-value was 40 blows per foot (bpf) at a depth of 17 feet in Boring L-6A. Plasticity for this stratum was medium with a plasticity index value of 13, a LL value of 32 percent, and a PL value of 19 percent. One natural moisture content was 24 percent. Based on this natural moisture content and corresponding Atterberg Limit tests, the soil was very moist with a moisture content 5 percent above the corresponding PL value. Pocket penetrometer tests resulted in cohesion values ranging from 3,750 psf to an excess of 4,500 psf.

Fxpansion of Wastewater Facilities PCI, Inc.
Law Eng. Proj. No. 392-01406-01

Stratum IVC consists of gray silty CLAYSTONE to reddish brown silty CLAYSTONE. This formation was encountered from a depth of 18.5 feet below existing surface to termination depth. Standard Penetration Test N-values resulted in refusal values ranging from 6 inches per 50 blows to 4.5 inches per 50 blows. One natural moisture content was 21 percent. All pocket penetrometer tests resulted in cohesion values in excess of 4,500 psf.

#### 4.2 WATER LEVEL CONDITIONS

Water level observations were made in the bereheles during drilling operations and 24 hours after completion of drilling to investigate the short term ground water levels.

Ground water was identified during our subsurface exploration at depths of 7 feet and 5.5 feet in Borings L-1 and L-2A, respectively (24 hour readings). Ground water was encountered 1.5-feet to 1-foot above the top of the claystone formation in these borings.

rings L 3 and L 4 were dry at the time of drilling and 24 hours thereafter.

Water was identified during drilling at a depth of 24 feet below existing ground surface in Boring L-5. Boring L-6 was dry to termination depth during drilling operations and 24 hours thereafter. Ground water was not identified in Borings L-6A and L-7 during and immediately following drilling operations. Law personnel could not obtain 24 hour water level readings at L-5, L-6A, or L-7, due to caving soils in L-5 at 15.8 feet, and surficial cuttings that obstructing the boreholes at L-6A and L-7.

Fluctuations in rainfall, evaporation, construction activity, surface runoff, and other site ispecific factors could cause ground water conditions at the time of construction to vary from that observed during our field exploration.

oansion of Wastewater Facilities 'CI, Inc. Law Eng. Proj. No. 392-01406-01

#### 5.4.3 Settlement

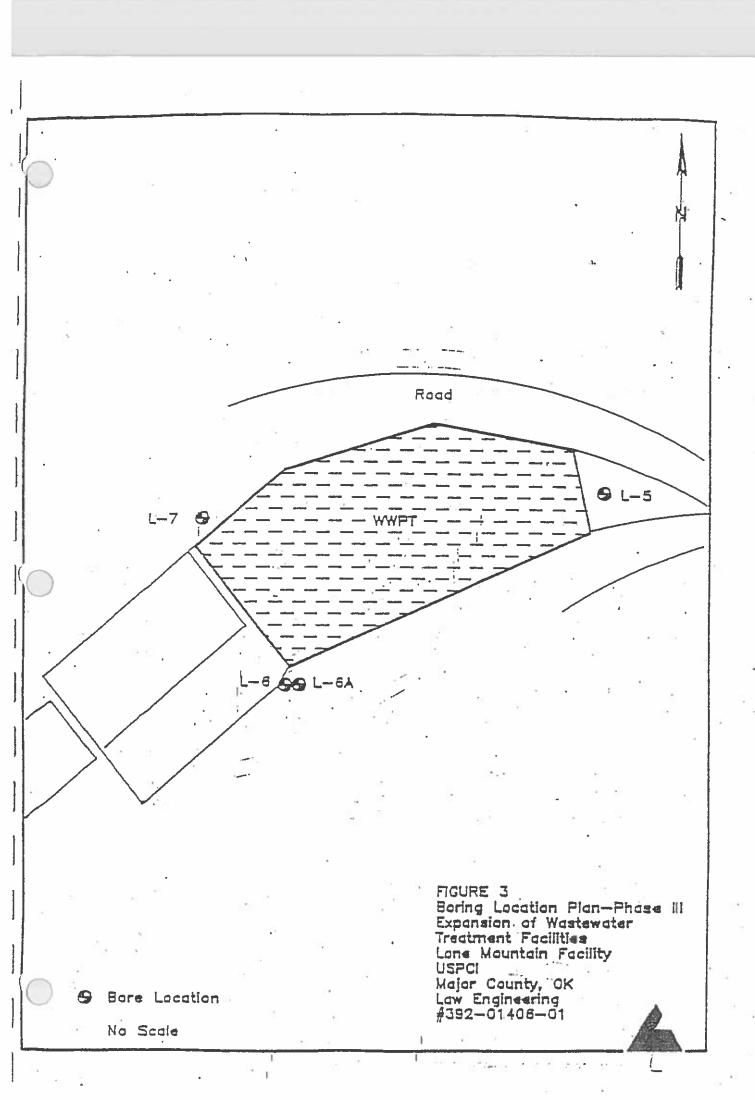
Predicted settlements for the drilled piers will be relatively small and are expected to be limited to the elastic compression of the founding claystone formation. The maximum total settlement of any drilled shaft under the anticipated sustained loading conditions is predicted to be less than 0.25 inch.

#### 5.5 CONSTRUCTION CONSIDERATIONS

Once a foundation excavation is completed, the setting of reinforcing steel and placement of concrete should proceed expeditiously to reduce exposure of the bearing stratum and possible disturbance of the material. Should the bottom of an excavation become disturbed due to ponding of water or desiccation, the disturbed soils should be removed before concrete is placed.

recommend that the geotechnical engineer, or their representative, observe the ng excavations immediately prior to placing concrete. The engineer should compare the soils exposed with those encountered in the soil test borings and document the results. Any significant differences should be brought to the attention of the Owner's representatives along with appropriate recommendations. The foundation bearing area should be level or suitably benched. It should also be free of loose soil, ponded water and debris prior to the inspection.

#### 5.6 WASTEWATER PRETREATMENT BUILDING STRATIGRAPHY


We understand that two existing on-line 300,000 storage tanks structures within the Wastewater Pretreatment (WWPT) Building are experiencing foundation distress. We further understand that these two tanks and the containment area are supported on shallow footings, which are currently bearing in fill soils consisting of soft to hard, reddish brown with gray, silty CLAY with gypsum fragments and gravel (Stratum IIC).

Expansion of Wastewater Facilities CI, Inc., Law Eng. Proj. No. 392-01406-01

As discussed previously in this report, the soil stratigraphy encountered in the WWPT area generally consists of silty fill soils to a maximum depth of 22.5 feet underlain by silty clay soils which grade into claystone. Law personnel performed continuous sampling in Borings L-5, L-6, and L-7 and utilized shelby tubes and on-site extruding techniques to better identify the extent of this fill stratum.

The properties of the soils, deemed significant in the evaluation of distress of the structures, are the following:

- (a) the moist condition of the silty clay fill soils (Stratum IIC) at the site;
- (b) the medium shrink-swell potential of the silty clay matrix within the zone of major seasonal moisture change;
- (c) the erratic variation in consistency of the fill soils encountered in Boring L-5;
- (d) the similar uniform decrease in shear strength in Borings L-6 and L-7 to a minimum at approximately 13 feet from existing ground level;
- (e) the presence of wet seams, organics, and organic odor in the fill soils
   of Boring L-6 and Boring L-5;
- (f) the presence of ground water in Boring L-5 at a depth of 24.5 feet;



| SCRIPTION OF MATERIAL                   | L     | D     | чш-     | SAA      | ИРI    | LES        | / TEST                  | rs .       | Pla | stic L | +           |                                                  |      |              |             | -+-   | imit | (% |
|-----------------------------------------|-------|-------|---------|----------|--------|------------|-------------------------|------------|-----|--------|-------------|--------------------------------------------------|------|--------------|-------------|-------|------|----|
| SCREETON OF MATERIAL                    | JMOMZ | DWALH |         | DHPPHE   | Į      | npla       | Te                      | ıst        |     |        | <b>√⊗</b> € | ⊕.c<br>• P:                                      | OHE  | SION<br>IRA: | (100<br>NON | (pbt) | ۰    |    |
| SURF. EL: 1430.23 ft. MSL               | . D   | (ñ)   | 4P-10Z  | H<br>(n) | y<br>P | No.        | Dry<br>dessity<br>(pcf) | %<br>Fines |     | 10 :   | 20 3        | 10 4                                             | 10 4 | io 6         | 50 7        | O 81  | 0 9  | ď  |
| WAL                                     |       | _     |         |          |        |            |                         |            |     |        |             |                                                  |      |              |             |       |      | Γ  |
| oft to hard, reddish-brown with some    |       | _     |         | 1        | 266    |            |                         |            |     |        |             |                                                  |      |              |             |       | ٠ .  |    |
| CLAY with gypsum fragments and          |       | _     |         | 3.0      |        | 1          |                         |            |     |        |             |                                                  | 8    |              |             | -     |      |    |
|                                         |       |       |         | ٠.       | 暴      |            |                         |            |     |        |             |                                                  |      |              |             |       |      |    |
|                                         |       | 5     | 1425.2- | 5.0      |        | - <u>:</u> | ·                       | 1 1        | L   |        |             |                                                  | 8    |              |             | -     |      |    |
|                                         |       | 42.   |         |          |        |            |                         | - 5        | ١.  |        |             |                                                  |      | l            |             |       |      | i  |
|                                         |       |       |         |          | 慧      |            |                         |            |     |        | ١,          |                                                  |      |              |             |       |      |    |
| 240                                     |       | _     |         | 7.0      |        | 3          |                         |            |     |        | 6           | 1                                                |      |              |             |       |      | i  |
| 21                                      |       | -     |         |          | F_     |            |                         |            |     |        | h.          |                                                  |      |              |             |       |      |    |
| £0                                      |       | -     |         | 9.0      |        | . 4        | 102.9                   |            |     | ⊗,     | ⊕⊕          |                                                  | +    |              |             |       |      | ĺ  |
| . *                                     |       | 10—   | 1420.2- |          |        |            | ٠                       |            | H   | 一      |             |                                                  |      |              |             | 9 4   |      | H  |
|                                         |       | _     |         | 111.0    |        | 5          |                         | 4,         |     | 8      | }           | , .                                              |      |              |             |       |      |    |
|                                         |       | _     |         |          | ŝ      |            |                         |            | ŀ   |        |             |                                                  | ⊗    |              |             |       |      | 1  |
| 70                                      |       |       | ļ, į    | 17.0     |        | 6          |                         | ı .        | 8   |        |             |                                                  |      |              |             |       |      |    |
|                                         |       | 6     |         |          |        |            | 14<br>15<br>1           |            |     |        | 8           |                                                  |      |              |             |       |      |    |
|                                         |       | _ =   |         |          |        |            | '                       |            |     |        |             | ]                                                |      |              |             |       | .    |    |
|                                         |       | 15    | 1415.2- | 15.0     | 5      | -7         | -                       |            | 1   |        | - 6         | <del>}                                    </del> |      |              | Ì           |       | ٠.   |    |
|                                         |       |       | 1       |          | 疆      |            |                         |            |     |        |             | ľ                                                |      |              |             | Ì     |      |    |
| to hard, reddish-brown with gray, silty |       |       |         | 17.0     | 穩      | -8         |                         |            |     |        |             |                                                  | 8    |              |             | ٠     |      |    |
|                                         |       | J     |         |          |        |            |                         |            |     |        |             |                                                  |      |              |             |       |      |    |
| gray silty CLAY with gypsim             |       | -     |         | 19.0     | 100    | 9          |                         |            |     |        | # Q.        | ļ.                                               | :    |              |             | -     | I    |    |
| . ;                                     |       | -20-  | 1410.2- | •        |        |            |                         |            | L   |        |             |                                                  |      |              |             |       |      |    |
| CLAYSTONE                               | 8//8  |       |         | 21.0     |        | 10         |                         |            |     |        |             |                                                  |      |              |             |       |      |    |
| nown sity CLAYSTONE                     |       |       |         | 4.0      | E      | ,,,        |                         |            |     |        |             | -                                                |      |              | 7/50        |       |      | ĺ  |
| · . /                                   |       | -     | 1       |          |        |            |                         |            |     |        | ,           |                                                  | .    |              |             |       |      |    |
|                                         |       | -     | 1       |          |        |            |                         |            |     | }      |             |                                                  |      |              |             |       |      | 1  |
| · · · · · · · · · · · · · · · · · · ·   |       | -     |         |          | -7     |            |                         |            |     |        |             |                                                  |      |              |             |       |      |    |
| Boring terminated at 25 feet            |       | 25 —  | 1405.2- |          |        | 11         |                         |            | -   | -      | -           | -                                                | -    | -            | 4.5-/5      | 0     |      | -  |
|                                         |       | _     | ļi      |          |        |            |                         |            |     |        |             |                                                  |      |              |             |       |      |    |
|                                         |       |       |         |          |        |            |                         |            |     |        |             | }                                                |      |              |             |       |      |    |

IATES: N10920.34 E9182.90. Boreholo advanced 75 truck-mounted drill rig using 3 1/4" L.D. hollow

Aroold Caeser ando Pons

SEE KEY SHEET FOR EXPLANATION OF YMBOLS AND ABBREVATIONS USED ABOVE

#### TENDRORING RESORD

BORING NUMBER DATES DRILLED

L-7 Start: Complete:

October 1, 1993 October 1, 1993

PROJECT NUMBER

392-01406-01

PROJECT PAGE 1 OF 1

Expansion of WWT Facilities



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\top$  | T .              | E       | 64      | 1/0    | r de | / TES                   | · ·        | Plas | ic L   | mit(% | () i | NM ( | 6) [       | iguis    | i Lim                                            | i ( a |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|---------|---------|--------|------|-------------------------|------------|------|--------|-------|------|------|------------|----------|--------------------------------------------------|-------|
| CHEPTION OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L E     | DE               | m-im>   |         | T      |      |                         |            |      |        | +-    |      |      | )<br>)) NC | ÷        | (2)                                              | ***   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UZMOMZD | DEPTHA<br>(ft)   | 20-4>   | DEPTH() | 54     | whle | l                       | est i      |      |        |       | PER  | YEIR | ATIO       | Ą (pt    | Ó                                                |       |
| SURF. EL: 1428.48 n. MSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1       | (ft)             | 20      | (ft)    | y<br>P | No.  | Dry<br>density<br>(pcf) | %<br>Fines | ,    | 0 2    | 0 30  | 3 40 | 50   | 60         | 70       | 80                                               | 90    |
| AVEL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                  |         |         |        |      |                         |            |      |        |       | 1    |      |            | 1        | T                                                | T     |
| y Stiff to soft, reddish brown, silty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | -                | 1       | }       |        |      | ·                       |            |      |        |       | - 1  |      |            | 1        |                                                  |       |
| a gypsum fragmenia and gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | -                | 1       | ļ       | Ì      |      |                         | -          |      |        |       |      |      |            | 1        |                                                  |       |
| o p ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | -                |         |         | 1.     |      |                         | 1          |      |        |       |      |      |            |          | 40                                               | ı     |
| to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |         |                  | Į       | 95Y     |        |      | ÷                       | ĺ          |      | ĺ      |       |      |      |            | Ì        |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | <sup>∞</sup> 5 — | 1423.5- |         | -      |      |                         |            |      |        | -     |      |      |            |          | - :                                              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |         |         |        |      |                         |            |      |        |       |      |      |            | **:      |                                                  |       |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | _                |         |         |        |      |                         |            |      | - 30   |       |      |      |            |          |                                                  | ł     |
| (* <del>*</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | _                |         |         |        |      |                         |            | . [  |        |       |      |      |            |          |                                                  |       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | -                |         |         |        |      |                         |            |      | 1      |       |      |      | Ì          |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | _                | 14.1    |         |        |      |                         |            |      |        |       |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 10-              | 1418.5- |         |        |      |                         |            |      |        |       | ĺ    |      |            |          |                                                  |       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | .0               | 1710.2  | 339     |        |      | •                       |            |      |        | -01   |      |      |            | $\vdash$ | <del>                                     </del> | T     |
| · i ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | -                |         | 40      |        |      |                         | 3.5        |      |        |       |      | (A)  |            |          |                                                  |       |
| i *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | -                |         |         |        |      |                         |            |      |        | 17:   |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ٠                |         |         |        | .    |                         |            |      |        |       |      |      |            |          |                                                  |       |
| Q10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | ٠                | OK.     | ,       | .      |      | 15                      |            |      |        |       |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -15              | 1413.5- | 54 ·    |        |      | •                       |            |      |        |       |      |      | 1          | Ì        |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  | 1713.3- |         |        |      |                         |            |      | •      |       |      |      | i          |          | İ                                                | Г     |
| own with some gray, silty CLAY with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | . 1              |         |         |        |      |                         |            |      |        |       |      | .    | 62         |          |                                                  |       |
| silt streaks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | -                |         | 17.0    |        | 1    |                         |            |      |        | Ι.    | •0   | 3    |            |          |                                                  |       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Ţ                |         |         |        |      |                         |            | 1    |        |       | ļ    |      | 190        |          | 7                                                |       |
| LAYSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                  |         | 19.0    |        | - 2  |                         |            |      | J.     |       |      | 1    |            |          |                                                  |       |
| own silty CLAYSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 20.              |         | .,      |        |      |                         | İ          |      | Ì      | 1     | 8    | 1    | 5.5°/50    | 120      |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 20               | 1408.5- |         |        |      |                         | Ì          |      | $\neg$ |       |      |      | 1          |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -                |         |         |        |      |                         | .          |      |        |       |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -}               |         |         |        | }    |                         | . :        |      |        | .     |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | _                |         |         |        |      |                         |            | .    |        |       |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | •                |         | **      | [ ]    |      |                         | ĺ          |      |        |       |      |      |            |          |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7                | ]       | -       |        |      |                         |            |      |        |       |      |      | -150       |          |                                                  |       |
| Boring terminated at 25 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 25               | 1403_5- |         |        | 3    |                         | -          | +    |        | +     | +    | + 9  | i-√50      | -        |                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -                |         |         |        |      | Ì                       |            | -    | - 1    |       |      |      |            |          |                                                  |       |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                  |         |         |        |      |                         | - 0        |      |        | _     |      |      | .          |          |                                                  |       |

NTES: N10829.08 E9253.23. Borehole advanced is truck-mounted drill rig using 3 1/4" I.D. hollow is Soil classification from 0 to 16 feet is based on

emando Pons.

EEE KEY SHEET FOR EXPLANATION OF MBOLS AND ABBREVATIONS USED ABOVE

#### TEST BORING RECORD

BORING NUMBER DATES DRILLED

L-6A

Start: Complete:

October 1, 1993 October 1, 1993

PROJECT NUMBER

392-01406-01

PROJECT PAGE 1 OF 1

Expansion of WWT Facilities

LAW EXCENEERING

| ESCRIPTION OF MATERIAL                  | É.     | . D.   | ELEV    | 1              | MP.       | LES        | / TES                   | TS    | I IAS | 4              | mit(% |       | ~ -0-      | %) [           |                     |     | ų %      |
|-----------------------------------------|--------|--------|---------|----------------|-----------|------------|-------------------------|-------|-------|----------------|-------|-------|------------|----------------|---------------------|-----|----------|
|                                         | OZMOMP | DEPTH: | V AT 10 | (9)<br>H-1-4 B | Sar       | nple       | T                       | :5\$  | -     | Δ              | .⊗e   | P CO  | HESI       | )() NO<br>10TL | XI (bpf)<br>Y (bpf) | i   |          |
| SURF. EL: 1428.62 A. MSL                | 1 1    | (前)    | 707     | (ft)           | δ<br>1    | No.        | Dry<br>density<br>(pef) | Fines | 1,    | 0 2            | 0 30  | 0 40  | so         | 60             | 70 %                | n q | 20       |
| JRAVEL .                                |        |        |         |                |           |            |                         |       |       |                |       |       | T          |                | 7,0                 | ,   | Ť        |
| oft to hard, reddish brown, silty CLAY  |        | -      |         |                | <b>38</b> | ĺ          |                         |       |       |                |       | 1.    | 8          |                |                     |     |          |
| sum fragments and gravel                |        | - 7    |         |                |           | 1          |                         |       |       |                |       | ·   ' | 2          |                |                     |     | 1        |
|                                         |        | _      |         | 3,0            |           | 2          | 1.51                    | · 6.  |       |                |       | 1,    | 8          |                |                     |     |          |
| 10.00                                   |        |        | 9 (     |                |           | <u>.</u> . | 100                     |       |       |                |       | - 1   | $^{\circ}$ | - {            | ]                   |     |          |
| me gray at 4'- 6'                       |        | -      |         |                |           |            |                         |       |       |                | ŀ     |       |            |                | 1                   |     | [.       |
| 27                                      |        | 5      | 1423.6- | 5.0            |           | 3          |                         | į.    | -     |                | -     | -     | -          |                |                     |     | <u> </u> |
|                                         |        | -      |         |                |           |            | 552                     |       |       |                | 1     | 1.    |            | . ·            | •                   |     |          |
|                                         |        |        |         |                |           |            |                         |       |       |                |       | ľ     |            |                | Ηi                  |     |          |
|                                         |        |        |         | 7.0            |           | 4          | 99.0                    | 100   |       | 8              | 9 이   |       |            | -              |                     |     | -        |
| et seams at 8'-10'                      |        | -      |         |                |           |            |                         |       |       |                |       |       |            | '              |                     |     |          |
| ome paper or plastic debris             |        |        |         | 9.0            |           | 5          |                         |       |       | ⊗ <sup>*</sup> |       |       | i          |                | 1 1                 | .   |          |
| - <sub>10</sub>                         |        | 10     | 1418.6- |                |           |            |                         |       |       | ٥              |       |       |            |                |                     |     |          |
| et seams and organics at 10° - 12°      |        | 10     | 1410.0- | ,              |           |            | - 1                     |       |       |                |       |       |            | +              |                     |     | _        |
|                                         |        | -      |         | 11.0           |           | 6          | V.                      | 1     |       | -€             | C#(   | - 14  | -          |                | 1 1                 | Ì   |          |
| 4                                       |        | _      |         |                | 4         |            |                         | f .   |       |                | - 1   |       |            |                |                     |     |          |
| rganic odor and 1° to 2° thick wet seam |        |        |         | 13.0           |           | _          |                         |       | 8     |                |       | -     |            |                |                     |     |          |
|                                         |        |        | 130     | חיניו          |           | 7          | - 1                     |       |       | ď              | 8 l   |       | - {        |                |                     |     |          |
| iches, wet seems and organic            |        | . =    |         | ٠. ٠           |           | ٠          | ,                       |       |       |                | 1     | - 1   |            |                |                     |     |          |
| 141,(S'                                 |        | 15 —   | 1413.6- | 15.0           |           | 8          | - 8                     |       | ,     |                | a     |       |            | -              |                     |     |          |
| -brown with some gray, silty CLAY with  |        | :      |         |                | -         |            |                         |       |       |                | Ö     |       |            |                |                     |     |          |
| dy silt streaks                         |        | 1      |         |                |           |            | 9                       |       |       |                |       | 1     | 1          |                |                     |     |          |
| elby tube from 16° to 18°               |        | 4,5    |         |                |           | . [        |                         |       |       |                |       | ı     |            |                |                     | -   |          |
| Boring terminated at 18 feet            | 8/16   | -1     |         |                | _         | ĺ          |                         |       |       |                | .     |       |            |                | 1                   |     |          |
| L.                                      |        | _      |         |                | -         |            |                         | · .   |       |                | .     | ;     |            |                | .                   |     |          |
| . 3,                                    |        | 15     |         | ٠.             |           | -          |                         |       |       | }              |       |       |            |                |                     |     |          |
| 3                                       |        | `20—   | 1408.6- |                |           |            |                         |       |       |                | -     | -     | +          |                |                     | 1   |          |
|                                         |        | 4      |         |                | Ì         |            |                         | è     |       | ,              |       |       | Ì          | 1              |                     | 1   |          |
| / z * +                                 | ŀ      | -      |         |                |           |            |                         |       |       | .              |       |       | - 1        |                |                     | -   |          |
|                                         | 1      |        |         | *              |           |            |                         |       |       |                | -     |       |            |                |                     | 1   |          |
|                                         |        | ٦      |         |                |           |            | .                       | 30    |       |                |       |       |            |                |                     | -   |          |
|                                         |        | -      |         | -              |           | 1          |                         |       |       |                |       |       |            |                |                     | 1   |          |
| 9                                       |        | 25     | 1403.6- |                |           |            |                         |       |       |                |       |       |            | )              |                     |     |          |
|                                         |        |        |         |                |           |            | 2                       |       |       |                |       |       |            |                |                     | j   |          |
|                                         |        | -      |         |                |           |            |                         | Î     |       | ļ              |       |       |            |                |                     | ļ   |          |

NATES: N10826.86 E9250.81. Borehole advanced j-75 truck-mounted drill rig using 3 1/4" I.D. hollowers. Borehole dry 24 hours after drilling.

Amold Casser

odo Pons

SEE KEY SHEET FOR EXPLANATION OF YMBOLS AND ABBREVATIONS USED ABOVE

#### JEST BORING RECORD

BORING NUMBER
DATES DRILLED

L-6

.

Start: Complete:

October 1, 1993 October 1, 1993

PROJECT NUMBER

392-01406-01

PROJECT PAGE 1 OF 1

Expansion of WWT Facilities

LAW ENGINEERING

| ESCRIPTION                           | OF MATERIA              | L            | Ļ      | D.      | ELEV    |              | MPLES   | / TES                   | TS    | Plast      |                | +    |             | <del>-</del> О |               |                | Limit | (9 |
|--------------------------------------|-------------------------|--------------|--------|---------|---------|--------------|---------|-------------------------|-------|------------|----------------|------|-------------|----------------|---------------|----------------|-------|----|
| 12                                   |                         | <del>.</del> | Писти  | DEPTH   |         | E P T H (ft) | Sample  |                         | est   |            | Δ.             | ⊗⊕   | COH<br>PENI | esio:<br>etra  | N (10<br>TION | (pbt)<br>(pbt) |       |    |
| RAVEL                                | SURF. EL: 1418          | JSA. MSL     | D      | (ñ)     | AT TOX  | Ĥ<br>(ħ)     | y No.   | Dry<br>density<br>(pef) | Fines | 1          | 0 20           | 30   | 40          | 50             | 60            | 70 80          | J 9   | O  |
|                                      | th brown with gray      | ailes a      | 1-2    |         |         |              |         |                         |       |            |                |      |             |                |               |                | •     |    |
| ith some gravel                      | == 0.00 = 1, = 1d1 g.2) | , sury       |        | _       |         |              | I I     |                         |       |            |                | 8    |             | ] .            |               |                |       |    |
| 9                                    |                         |              |        |         |         | 3.0          | 100     | ļ                       |       | -          |                | 8 8  | .  .        |                | 1             |                |       |    |
|                                      |                         |              |        | Ī       |         | 3.0          | 2       |                         |       |            |                | ŏ  ⊗ | 9           |                |               |                |       |    |
|                                      |                         |              |        | -       | 1       | ٠            | 圖 ' - ' |                         |       |            | .              |      |             |                | ,             |                |       |    |
|                                      |                         |              |        | 5—      | 1413.4  | 15.0         | -3      |                         |       |            | <del>-\$</del> |      | +           | +              |               |                | -     | H  |
|                                      |                         |              |        | -       |         |              |         |                         | , .   |            | ٠,             |      |             | 1.             |               |                |       |    |
|                                      |                         |              |        | _       |         | 7.0          | 圖 4     | 96.7                    |       | ⊗          | Ð              | Ð    | +           |                |               |                |       |    |
|                                      |                         |              |        | _       |         |              | 3       | 70.7                    |       |            |                | \$   |             |                |               |                |       |    |
|                                      |                         |              |        |         |         | 9.0          | 5       |                         |       | ⊗          |                |      |             |                | 1             |                |       | ĺ  |
|                                      |                         |              |        |         |         | 7,0          |         |                         |       |            |                | 8    |             |                | }             |                |       | ĺ  |
|                                      |                         | •            |        | 10 —    | 1408.4  |              |         |                         |       | •          | $\dashv$       | _    | +           | +              |               |                | -     | _  |
|                                      | 10                      | j .          |        | -       |         | 11.0         | 6       |                         |       | a **       | 8              |      |             |                |               |                |       |    |
|                                      |                         | i            |        | -       |         | •            |         |                         |       |            |                |      |             |                |               |                |       |    |
|                                      |                         |              |        | · -     |         | 13.0         | 7       |                         |       |            |                | 8    |             |                |               |                |       |    |
|                                      | 2                       |              |        |         |         | ı            |         |                         |       |            |                |      |             |                |               | .              | 1     |    |
| 0                                    | *                       |              |        | T. 15 — | 1403.4  | 15.0         | 8       | '                       |       | ٠          |                |      |             |                |               | -              | -     |    |
|                                      |                         | 52           |        |         |         |              |         |                         |       |            |                | . [  | Ī           |                |               |                |       |    |
|                                      | 20                      |              |        |         |         |              |         | . :                     |       |            |                |      |             |                |               |                |       |    |
|                                      |                         |              |        |         |         | 17.0         | 9       |                         |       | _ <b>©</b> | )              | ф    |             |                |               |                |       |    |
|                                      |                         |              |        |         |         |              |         |                         |       |            |                |      |             |                |               |                |       |    |
| •                                    |                         | 1            |        |         |         | 19.0         | 10      |                         |       |            |                | 8    | 1           |                |               | .              |       |    |
| 4.                                   |                         | •            | · 1993 | .20 —   | 1398.4- |              |         | -                       |       | -          | 1              |      | -           | ļ ·            | ,             |                | -     |    |
| 7                                    |                         |              |        | ٠       |         | 21.0         | 11      |                         |       |            | ~              |      | 8           |                |               |                |       |    |
| -                                    | d organic odor at 2     |              |        |         |         |              |         |                         | . ]   |            |                |      | 100         |                |               |                |       |    |
| wet seam with a                      |                         | · :          |        |         |         |              |         |                         |       | 8          |                | ٥    | 8           |                |               |                | -     |    |
|                                      |                         | <del>\</del> |        |         |         |              | 12      |                         |       |            | ŀ              | ,    | 100         |                | 4.0           |                |       |    |
| prown silty CLA<br>ube refusal at 23 | Foot                    | -            |        | -       |         |              |         |                         |       |            |                |      |             |                |               |                |       |    |
| Boring termin                        | ated at 23 Teet         |              | ·F     | 25 —    | 1393.4- |              | 13      | ,                       |       | -          |                | +    | -           |                | 50            | 6"             | .     |    |
| And a                                |                         | 2.33         |        |         |         |              | [       |                         |       | ,          |                | }    | 1           | 1              |               |                | - [   |    |

NATES: N10939.63 E9409.49. Borehole advanced 1-75 truck-mounted drill rig using 3 1/4\* L.D. HSAs. Issued immediately following drilling operations. https://doi.org/10.1072/93.

Amold Caeser

ando Pons

HISEE KEY SHEET FOR EXPLANATION OF YMBOLS AND ABBREVATIONS USED ABOVE

#### TEST BORING RECORD

BORING NUMBER

DATES DRILLED -

.L-5

Start: Complete:

October 1, 1993 October 1, 1993

PROJECT NUMBER PROJECT PAGE 1 OF 1

392-01406-01

Expansion of WWT Facilities



## APPENDIX G.

### FOUNDATION DESIGN ANALYSIS



#### APPENDIX G.

## FOUNDATION DESIGN ANALYSIS For EVAPORATOR FEED TANK NO. 2 (EF2)

DIMENSIONS:

Diameter: 60.00-ft.
Height: 16.90-ft.
Weight of Tank (Steel): 60.230.32-l

Weight of Tank (Steel): 60,230.32-lb.
Weight of Max. Contents: 3,876,340.00-lb.

Tank Shell Thickness: 0.25-in.
Tank Bottom Thickness: 0.240-in.

☐ CONCRETE FOUNDATION DESIGN:

Assumed Footing Depth = 48-in.

Assumed Footing Width = 12-in.

Assumed Effective Soil Pressure

(Based on Law Engineering Investigation) = 1,500-psf

Maximum Shell Compression at Bottom of Shell

(Based on Seismic Analysis) b = 420.63-lb/ft. of circ.

Footing Width = 1.00-ft.

Actual Applied Loading = 420.63-psf

The actual applied loading is significantly less than the assumed effective soil pressure and therefore, the foundation should be stable.

### APPENDIX H.

DUDICK, INC.
PROTECTO-COAT 200
DATA



## Dudick Inc.

Dudick Incorporated Corresion-Proof Products 1818 South Wason Drive Streetsboro, Ohio 44241

216-562-1970 FAX No. 216-562-7638

#### Protecto-Coat 200

ELASTOMERIC, SPRAY APPLIED, ENVI-RONMENTALLY SAFE, URETHANE COAT-ING. 40-60 MILS (1-1 1/2 mm)

Protecto-Coat 200 is a high solids aromatic polyurethane coating with superior elongation. It is especially suited to bridge cracks in concrete.

#### RECOMMENDED APPLICATIONS

Secondary Containment Areas
Process Floors
Railroad Tank Cars
Underground Pipes & Tanks - Exterior
Thickener Tanks & Mechanisms

Spent Liquor
Storage Tanks
Food Processing
Pharmaceutical
Breweries
Structural Steel

#### CHEMICAL RESISTANCE

Protecto-Coat 200 provides a tough, durable surface and will withstand splash and spills of many inorganic and organic acids as well as alkalies. Also resistant to aliphatic solvents.

#### PHYSICAL PROPERTIES

| Protecto-Coat<br>200                    | 40 Mil<br>Basecoat | 20 Mil<br>Topcoat |
|-----------------------------------------|--------------------|-------------------|
| Tensile Strength<br>(PSI) ASTM C307     | 2,400-2,600        | 2,200-2,500       |
| Elongation"                             | 225% to 250%       | 50 to 60%         |
| Shore D Hardness                        | 40-45.             | 65-70             |
| Abrasion Resistance                     | 10 mg              | 32 mg             |
| CS 17 wheels/1000 cycles x 1000 gm load | weight loss        | weight loss       |
| Solids by Volume                        | 80%                | 100%              |

At 60% elongation the chemical resistant topcoat begins to surface crack while the basecoat will continue to elongate to 250% extension.

#### **SPECIFICATIONS**

Coating shall be 40-60 mils thick, 80-100% solids aromatic urethane resin, consisting of 2 basecoats and a topcoat of 20 mils each, manufactured by Dudick, Inc. Materials shall be brush-, roller- or spray- applied in accordance with manufacturer's recommended practices.

#### THE PROTECTO-COAT 200 SYSTEM

The Protecto-Coat 200 system uses a moisture tolerant primer and two or three coats of elastomeric thermosetting urethane resins to protect concrete and steel.

Primer 67 is designed to prevent abrasiveblasted steel from developing rust bloom prior to the application of a Protecto-Coat System. For maximum performance, all steel surfaces should be primed, but primer may not be needed for mild, non-immersion service. Concrete, however, must always be primed to aid in the "wetting out" required for good bonding.

Protecto-Coat 200 is applied in three coats by brush, roller or spray. The elastomeric basecoat is applied in two 25 mil applications to achieve a nominal 40 mils DFT. The chemical resistant topcoat is applied in a single 20 mil application. Total thickness shall be a nominal 60 mils.

Sand the state of the state of the state of the sand

ころのは、このなるなるということのことのころの

.1

### ESTIMATING QUANTITIES AND ORDER BILL OF MATERIAL

| SQUARE FE     | ET PER GALL | ON      |
|---------------|-------------|---------|
|               | CONCRETE    |         |
| · 'mner 67    | 150-200     | 250-300 |
| Protec        | to-Coat 200 |         |
| 2 Base Coats  |             |         |
| Actual        |             |         |
| 35-40 mil DFT | 25          | : 25    |
| Top Coat      | 22          |         |
| Actual        | €(          |         |
| 15-20 mil DFT | 60          | 60      |
| S-10 Solvent  | 500         | 500     |

Accounties shown are for estimating purposes unity. Actual field usage may vary.

#### APPLICATION INSTRUCTIONS

#### SURFACE PREPARATION

Metal: For immersion service, abrasive blast to a white metal finish and a 2-4 mils minimum profile according to SSPC 5 or NACE No. 1. For finne or splash service, abrasive blast to a near-white metal finish according to SSPC 10 or NACE No. 2. Atmospheric service: Commercial SSPC 6 or NACE No. 3.

Concrete: Concrete must be abrasiveblasted or etched with muriatic acid (solution of 1 part 20° Be HCl and 1 part water) to remove surface laitance and other contaminants. Concrete must be free of curing compounds and form release agents. Surface texture should be similar to 40-60 grit sandpaper. The prepared surface should have a tensile strength of between 250 and 300 PSI per ASTM D4541.

Additional surface preparation will be required if a 40-60 grit texture is not achieved and the surface lattance not completely removed after a single application of acid or with the first mechanical preparation procedure.

If, after abrasive blasting, honeycombs/ voids appear on the concrete, these have to be filled with a suitable material. Contact a Dudick representative for this information. Recommended application temperatures should be between 40°F and 90°F substrate temperature. Do not apply Protecto-Coat 200 over concrete exposed to direct sunlight during the warming trend of the concrete as measured by surface temperature. To do so may lead to blistering, pinholes, or wrinkling in the coating due to outgassing of air in the concrete and high substrate temperatures. Wait for a definite downturn or cooling trend within the concrete as again measured by surface temperature. If this is not possible consult a Dudick representative for alternatives such as double priming.

#### PRIMING

Metal: For maximum performance, prime all steel surfaces with Primer 67, mixed with appropriate amount of hardener to 3-4 mils. For mild non-immersion service, priming of steel may be omitted.

Concrete: Concrete must be primed to aid in the "welling out" required for good bonding. Mix Component A with Component B in the premeasured units for 2-3 minutes and apply by brush, roller, or spray. We recommend the basecoat be applied over slightly tacky or tackfree primer. Do not allow the primer to puddle.

#### Protecto-Coat 200 Mix Ratlo:

Protecto-Coat 200 Basecoat

Protecto-Coat 200 Basecoat Comp. A\* 1 Gal. Component B\* 4 Gal.

Premeasured quantities by weight

#### Protecto-Coat 200 Topcoat

Protecto-Coat 200 Top Coat Comp. A\* 1 Gal. Component B\* 54 fl. oz.

\*Premeasured quantities by weight

#### BASECOAT

Add appropriate amount of hardener for each gallon of Protecto-Coat Liquid and mix thoroughly until uniform color is achieved. Apply a 25 mil wet (20 mil DFT) basecoat using spray, brush or roller. Allow basecoat application to cure to at least a "firm" or slightly "tacky" feel before applying the second 25 mil wet (20 mil DFT) basecoat. Brush or roller may require several coats to achieve desired thickness.

P. Diecto-Coar 200

Elastomeric, Spray Applied, Environmentally Safe, Urethane Coats

Dudick Incorporated
Corrosion-Proof Products

THE STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T

j.V

TO THE REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T

ののでは、これでは

Horizontal surfaces may be basecoated in one application by applying 50 mils wet (40 mil DFT) in a single coat.

#### TOPCOAT

Add appropriate amount of hardener for each gallon of Protecto-Coat Liquid and mix thoroughly until a uniform color is achieved. Apply a 20-mil-thick topcoat using spray. brush or roller.

Care Cycle for Protecto-Coat 200

| TEMPERATURE | RECOAT<br>TIME | CURE    |
|-------------|----------------|---------|
| 50°         | 48 Hrs.        | 96 Hrs. |
| 70°         | 24 Hrs.        | 48 Hrs. |
| 90°         | 16 Hrs.        | 36 Hrs. |

if these recoat times are exceeded, consult a Dudick representative; sanding or abrasive blasting may be required before the next coat. Recoat times are dramatically reduced when the coating is exposed to direct sunlight.

Single Component Airless Spray Equipment — Graco King 45-to-1 spray pump or equivalent. Use Graco Golden Mastic Gun or Graco No. 207945 Gun with airless adapter equipped with a Reverse-A-Clean tip and a tip size between .035-.041. Spray hose should be 1/2" or 3/8" ID. Available inlet pressure must be a minimum of 100 pst.

Brush or roller application may require additional coats to meet specified dry film thickness.

Pot life of the opened and mixed Protecto-Coat 200 will depend on the temperature at the work site. To prevent material waste and avoid damage to equipment, do not open and mix more material than can be used according to the following table:

| TEMPERATURE | POT LIFE |
|-------------|----------|
| 50°F        | 120 Min. |
| 75°F        | 60 Min.  |
| 90°F        | 45 Mln.  |

Do not attempt to store mixed material. Residual material should be properly disposed of at the end of each work period.

Where immersion service is required, spark test the coating with a 5,000 to 7,000 volt AC spark tester. Mark and repair all pinholes, Use Protecto-Coat liquid mixed with the appropriate amount of hardener. Retest only the repairs,

#### CLEANING.

Use S-10 Solvent to clean tools and equipment.

#### SHIPPING

Protecto-Coat 200 Topcoat A and B and Protecto-Coat 200 Basecoat A are classified as plastic liquids and are non-regulated.

Protecto-Coat 200 Basecoat B is combustible. Primer 67 Component B is corrosive and carries a black and white warning label. Primer 67 Component A is classified as a plastic liquid and is nonregulated, while S-10 Cleaning Solvent is red label liquid with a flash point of 52'F (PMCC).

#### STORAGE

Warning: All Dudick products classified by DOT labels as either white, yellow or red labels must not be mixed or stored together as an explosive reaction may occur.

When stored in a cool and dry location, Prolecto-Coat 200 ingredients have a one-year shelf life. Exposure to excessive heat may cause premature gelling and reduce working time.

#### SAFETY

M.S.D.S. - Sheets must always be read before using products. Protecto-Coat Systems are intended for application by experienced, professional personnel. Dudick Inc. can supply Protecto-Coat systems supervision to help determine that the surface has been properly prepared, the ingredients correctly mixed, and the materials properly and safely applied.

If Protecto-Coat materials are to be applied by your own personnel or by a third-party contractor, please be sure that they are aware of the following safety precautions:

- Exposure to resins and hardeners may cause severe dermatitis reactions in some people. Cleanliness of the skin and clothing is critical and must be of paramount con-
- Silety glasses, gloves and suitable protective clothing must be worn at all times during application.
- Suitable respirators should be used.
- If contact with hardeners occurs, remove any clothing involved and wash the skin with large amounts of water. Discard the clothing. Do not attempt to wash and reuse it. Protecto-Coat liquid may be washed off with S-10 Cleaning Solvent, MEK liquid, or laquer thinner.
- Funce are flammable and heavier than air. Proper ventilation should be maintained to minimize breathing of concentrated furnes.
- If a rash or dermatitis occurs, remove the individual from the work area and seek a physician's care for dermatitis.
- Keep open flames and sparks away from the area where toppings are being mixed and applied.
- In case of eye contact, wash with water for at least 15 minutes and consult a physician. If swallowed, do not induce vomiting; call a physician immediately.

#### Note:

Dudick Inc. ("Dudick") warrants all goods of its manufacture to be as represented in its catalogs and that the application of its products by its employees or sub-contractors shall be performed in a workmanlike manner. Dudick's obligation under this warranty shall be the repair to and replacement of any applications which its examination shall disclose to be defective. Dudick makes no warranty concerning the suitability of its product for application to any surface, it being the understood that the goods have been selected and the application ordered by the purchaser. DUDICK INC. MAKES NO WAR-RANTY, EXPRESS OR IMPLIED, THAT THE GOODS SHALL BE MERCHANTABLE OR THAT THE GOODS ARE FIT FOR ANY PARTICULAR PURPOSE. THE WARRANTY OF REPAIR OR REPLACEMENT SET FORTH HEREIN IS EXCLU-SIVE AND IN LIEU OF ALL OTHER WARRAN-TIES ARISING BY LAW OR OTHERWISE; AND DUDICK INC. SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES. INCLUDING BUT NOT LIMITED TO LOST PROF-ITS. DOWN TIME, DAMAGES TO PROPERTY OF THE PURCHASER OR OTHER PERSONS, OR DAMAGES FOR WHICH THE PURCHASER MAY BE LIABLE TO OTHER PERSONS, WHETHER OR NOT OCCASIONED BY DUDICK'S NEGLI-GENCE. This warranty shall not be extended, altered or varied except by written instrument signed by Dudick and Purchaser.

## APPENDIX I.

SECONDARY CONTAINMENT CALCULATIONS



#### APPENDIX I.

## SECONDARY CONTAINMENT CALCULATIONS For EVAPORATOR FEED TANK NO. 2 (EF2)

| DIMENSIONS:                                                                                                         |                                                                    |                                                                |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|
| EF Tank Diameter:<br>PCL Tank Diameter:<br>Secondary Containment<br>Secondary Containment<br>Gross Volume of Second | Surface Area - Asc                                                 | 60.00-ft.<br>12.00-ft.<br>5.50<br>14,589.00-sf<br>80,239.50-cf |
| DISPLACEMENT VOLUM                                                                                                  | MES:                                                               |                                                                |
| EF Tank Base                                                                                                        | PI*D^2/4*Hsc                                                       | 15,551.42-cf                                                   |
| PCL Tank Base                                                                                                       | $PI*D^2/4*Hsc$                                                     | 622.06-cf                                                      |
|                                                                                                                     | lumes include only one of the EF (<br>lable secondary containment. | anks. It is assumed that a failed tank would                   |
| Displacement Volume                                                                                                 |                                                                    | 16,173.47-cf                                                   |
| RAINFALL VOLUMES:                                                                                                   |                                                                    |                                                                |
| Depth of Rainfall<br>Impacted Area<br>Rainfall Volume                                                               |                                                                    | 6.150-in.<br>8,934.00-sf<br>4,578.68-cf                        |
| CONTAINMENT CAPAC                                                                                                   | ITY AVAILABLE:                                                     |                                                                |
| CCA = Gross Volume - [                                                                                              | Displacement Volume - Rainfall Vo                                  | blume                                                          |
| CCA                                                                                                                 | =                                                                  | 59,487-cf                                                      |
| Volume of Largest Tank (E                                                                                           | (F1) =                                                             | 47,785.26-cf                                                   |
| Excess Containment Volu                                                                                             | me =                                                               | 11,702-cf                                                      |
| Safety Factor                                                                                                       | =                                                                  | 1.24                                                           |