

Mixon Brothers Wood Preserving, Inc.

P.O. Box 327 - 1202 Veterans Dr.
Idabel, OK 74745
Phone: (580) 286-9494

RECEIVED

FEB 25 2025

LAND PROTECTION DIVISION
DEPT. OF ENVIRON. QLTY

February 12, 2025

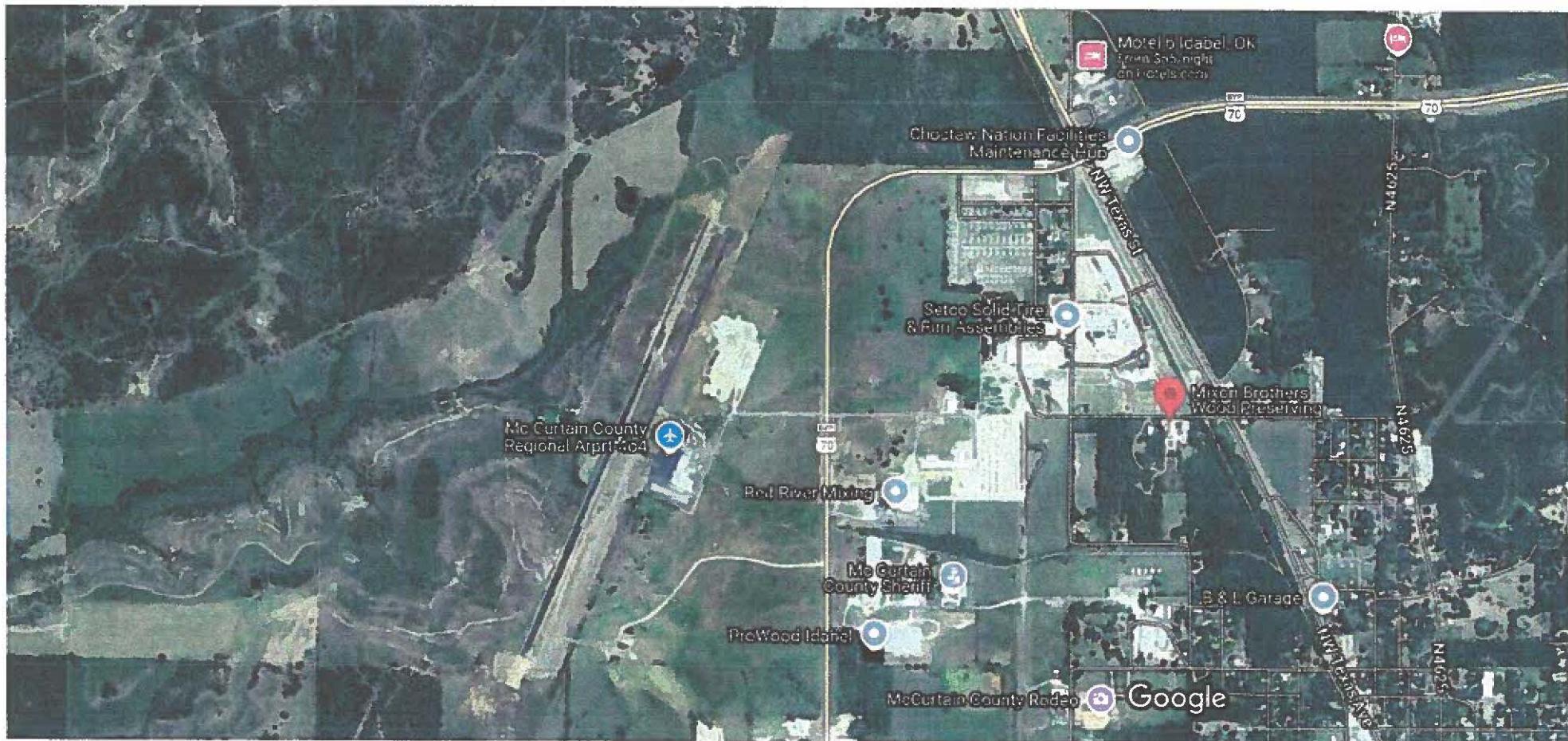
CERTIFIED MAIL

Ms. Kelly Dixon, Division Director
Land Protection Division
Oklahoma Department of Environmental Quality
707 North Robinson, P.O. Box 1677
Oklahoma City, Oklahoma 73101-1677

Re: Technical Review of Application for Renewal of Post-Closure Operations Permit Number
007336258PC, Mixon Brothers Wood Preserving, Inc.

Dear Ms. Dixon:

In response to your letter, dated October 10, 2024, Mixon Brothers Wood Preserving, Inc. (MBWP) appreciate your patience in our responses concerning the Notice of Deficiency (NOD). In response to NOD, map indicating surrounding land uses, updated Chemical Storage Contingency Plan, Oil Spill Prevention Control and Countermeasure Plan, and Revised Post Closure Plan Part B.


If you have any questions, or comments, please call me at (580) 286-9494.

Sincerely,

Bob Mixon

Attachments: Land Uses Map, Updated Chemical Storage Contingency Plan, Oil Spill Prevention Control and Countermeasure Plan, and Revised Post Closure Plan Part B.

cc: Mr. Jerry J. Black

Imagery ©2024 Airbus, Maxar Technologies, Map data ©2024 1000 ft

1.0 Introduction

Mixon Brothers Wood Preserving, Inc. (MBWP) operates a Copper Naphthenate wood preserving facility near Idabel Oklahoma. The facility has generated a listed hazardous waste, in the past and the listed material was stored in three surface impoundments and one waste pile. MBWP has closed these areas and a letter dated October 6, 1994 to MBWP by Mr. H.A. Caves/Assistant Division Director, Oklahoma Department of Environmental Quality (ODEQ), stated that the certification of closure meets the requirements of 40 CFR 265.115 and 270.11(d), and the survey plat meets the requirements of 40 CFR 265.116.

MBWP Post-Closure Operations Permit Number 007336258PC was issued by ODEQ in May 2013 for 10 years. The permit application is due six months prior to the expiration date of the current permit. ODEQ records show that the current permit expired May 2023 and therefore the application for renewal is due by November 2022. An extension was granted and the application for renewal is due by February 24, 2025. Oklahoma Administrative Code Title 252, Chapter 205, include additional requirements as well as incorporated by reference to 40 CFR. As stated in the 40 CFR 270.1 and 40 CFR 270.10, the permit application contents for the Part B are listed in 40 CFR 270.14 through 270.29. Therefore the contents as required, are listed in order of 40 CFR 270.14 through 270.29 including additional requirements by OAC 252:205.

2.0 General Description of the Facility (40 CFR 270.14(b)(1))

2.1 Location

The MBWP facility is located northwest of Idabel, Oklahoma, west of U.S. Highway 70. The legal description is the NW1/4, NW1/4, Section 31, Township 7 South, Range 24 East Indian Median, McCurtain County (prior renewal application, Appendix F for complete description) and the site location is depicted in Figure 2.1. Topographic features of the area surrounding the facility are presented in Figure 2.2 and 2.3. The surveyed property lines are depicted in Figure 2.4, 2.5, and Figure 2.6.

2.2 Operations

2.2.1 Current Operations

The plant has been in operation at this location since 1964, and maintains 4-

6 employees during normal operations. The primary product is Dual (Cellutreat+QNAP) treated wood. The plant has two covered pressure vessels (or cylinders), seven feet in diameter and seventy-four feet in length, with a steel lined concrete sump that contains a steel insert with a leak detection system. The concrete drip pad is underlined by a leakage collection system, above the 60-mil HDPE geomembrane, and has two rail tracks. The drip pad was certified by an independent Oklahoma registered professional engineer and evaluated annually by an independent Oklahoma's registered professional engineer (Attachment 4). An operating management and inspection plan for the drip pad is maintained at the plant and includes routine inspections and if needed, removal of all wastes as required by 40 CFR 262.34(a)(1)(iii)(A) and (B) (prior renewal application, Appendix R for complete description). The Dual (Cellutreat+QNAP) product collection system recycles the liquid in the wood preserving process. All Dual (Cellutreat+QNAP) treated products are inspected to insure that the products are dry before being removed from the drip pad area.

The Storm Water Pollution Prevention Plan (SWPPP) contains the Facility Policy of Preventive Maintenance, the Chemical Storage Contingency Plan, and Oil Spill Prevention Control and Countermeasure Plan (refer to Appendix H for the Chemical Storage Contingency Plan, and Oil Spill Prevention Control and Countermeasure Plan). Routine inspections of the yard for infrequent and incidental drippage in the storage areas as required by 40 CFR 265.440(c) are included in the Plan. The SWPPP was certified by an independent Oklahoma registered professional engineer. The SWPPP is review annually and certified to meet the requirements of Federal Register, Vol. 57, No. 175, "Final NPDES General Permits for Storm Water Discharges Associated with Industrial Activity.", Part IV: Storm Water Pollution Prevention Plans and Vol. 60, No. 189 "Final National Pollutant Discharge Elimination System Storm Water Multi-Sector General Permit for Industrial Activities (Attachment 3). Stormwater sampling of the runoff at Outfall 001A is performed as required by the ODEQ permit number OK0044458 (ID Number I-48000040) and under the Oklahoma Pollutant Discharge Elimination System (OPDES). The Permit was issued November 5, 2017 and expired on November 4, 2022. On July 14, 2022, a renewal application was submitted for review and approved by ODEQ. The Project Logs of the Storm Water (Appendix C) and Laboratory Analytical Reports (Attachment 3, List of Laboratory Reports and Appendix D) from 2013-2022, indicated that the Storm Water did not exceed or violated any parameters listed in the discharge permit (Table 1, Summary of Analytical Results from Outfall 001 (2013 to 2022).

2.2.2 Past Operations

Past operational practice included the utilization of a pentachlorophenol (PCP) or creosote to preserve wood products. The primary contaminants of the wastewater were Pentachlorophenol (PCP), creosote, as well as tar resins and natural organics found in the wood. The wastewater was placed in a settling impoundment (impoundment #2) for settlement of suspended solids and oil/water separation. Water resulting from the completion of the process was then transferred into evaporation impoundment (impoundment #3) for volume reduction. Besides these impoundments, another impoundment (impoundment #1) was used as a holding area for makeup water in the cooling tower operation. Water from the holding impoundment was pumped to the top of the cooling tower and allowed to gravity flow through the cooling tower and back into the holding impoundment. The cooling tower was used to cool air in the cylinders when placing the cylinders under a vacuum. Past operations allowed for the transfer of fluids from one impoundment to another via pumping. The transfer of fluids occurred from the north to the south (from impoundment #1 to impoundment #2 to impoundment #3). Figure 2.4 depicts the schematic of the past treatment process.

In the west/central portion of the facility was a waste pile in which used motor oil taken from the MBWP equipment was disposed. Analytical data indicates that PCP contaminated materials were also present in the area. Figure 2.3 presents the layout of the facility and depicts the location of the impoundments and the waste pile.

The bottom sediment sludge in the impoundments and the waste pile materials contains listed hazardous wastes as defined by 40 CFR 261 and that has US EPA hazardous waste number designation K001.

3.0 Waste Characterization (40 CFR 270.14(b)(2))

The information provided a basis for selecting indicator test parameters to be utilized in the ground water assessment portion of the post-closure plan. The following indicator parameter is recommended for all units: PCP.

3.1 Impoundment Sludge Sampling

During 1985 and 1986, measurements were taken of liquid and sludge depth in each impoundment as well as taking representative samples to characterize the waste. Table 3.1 (prior renewal application) presents the list sample type and the parameters utilization in the waste characterization. The samples were collected utilized methodology similar to SW846, Method number 1.44 (1). For detail

description of sampling procedures refer to MBWP RCRA Closure Plan for the Surface Impoundments and Waste Piles (prior renewal application, section 3.2.1, pages 10 and 11).

The results of the characterization, which is listed in Table 3.2, indicated that the waste contains compounds listed in 40 CFR Part 261. These compounds are listed as the primary hazardous constituents that may be associated with K001 wastes.

Pursuant to US EPA's directive, additional waste information was obtained in 1987. The characterization results are consistent with past investigations, except that chromium was consistently present at elevated concentrations in all the impoundments. Higher concentrations of these constituents were generally detected in the impoundment #2 sludge as well as measurable levels of mercury and cadmium. The relationship of the concentration detected in the impoundments is depicted in figure 3.1 (prior renewal application) and is consistent with the sequence of past treatment operations. For a complete description of sample strategy and results refer to Appendix M of prior renewal application.

3.2 Waste Pile

During 1985, measurements were taken of waste pile depth as well as taking representative samples to characterize the waste. The composite sample was analyzed for reactivity, corrosivity, ignitability and EP toxicity. Appendix D of prior renewal application, contains a copy of the results of the analysis as well as analytical results of Oklahoma Department of Health (OSDH) samples. The depth of oil discoloration was measured at a depth of four feet. For detail description of sampling procedures refers to MBWP RCRA Closure Plan for the Surface Impoundments and Waste Piles (section 3.2.1, pages 11, 12 and 13 of the prior renewal application, .

Pursuant to US EPA's directive, additional waste information was obtained in 1987. The characterization results indicated measurement concentrations of PCP and base neutral organics. The characterization results are consistent with past investigations, except that chromium was consistently present at elevated concentrations in the waste pile. In addition, measurable mercury and cadmium levels were detected in the waste pile material. For a complete description of sample strategy and results refer to Appendix M, prior renewal application.

4.0 Waste Analysis Plan (40 CFR.14 (b)(3))

The generation of compounds listed in 40 CFR Part 261 will only possibly occur during the groundwater monitoring portion of the post-closure impoundment and waste pile areas. The only movement of the listed compounds will occur in from the previously closed impoundment and waste pile areas and will be detected by the required monitoring of the ground water. The ground water parameters to be monitored will include the following compounds listed in 40 CFR Part 261: PCP. For additional information refers to the ground water monitoring section.

5.0 Security Procedures and Equipment (40 CFR 270.14(b)(4))

All monitor wells utilized in the monitoring of the ground water will be locked to prevent unauthorized entry. All the listed compounds have been treated and the areas have been capped with a clay barrier. A sand drain zone (six inches) and a topsoil zone (one to two feet) was constructed above a clay cap as depicted in Drawing Number 2, 3 and 5, prior renewal application. A telephone is available in the MBWP office and in the operation room, adjacent to the closure areas. A sign is at the entry to the facility which listed emergency telephone numbers to contact the owner, McCurtain County Health Department, and Oklahoma State Department of Environmental Quality as well as notification of the "Potentially Harmful Materials" and "Unauthorized Personnel Prohibited." The sign also listed hours of operations. Signs are also posted at the closed waste units. The site has adequate lighting during times of limited visibility.

Maintenance of security facilities will be in direct and immediate response to the findings of regular inspections. All deficiencies noted during inspections will be corrected within 15 business days of identification. All maintenance activities will be documented on the Remedial Action Report Form (Appendix N, table 3, prior renewal application).

6.0 General Inspection Schedule (40 CFR 270.14(b)(5))

The inspection will be conducted daily except for weekends and holidays. The inspection will be incorporated into Pollution Prevention Plan for the facility Appendix B and also refer to Appendix H (prior renewal application for a copy of the inspection form).

The site will be inspected semiannually to assess the condition of post-closure components. The date, time, inspection results, and maintenance activities will be logged and filed at the Facility.

6.1 Inspection Components and Schedule

The post-closure components are routinely inspected semiannually during the post-closure care period and include: security control facilities or systems, final cover of closed impoundments and waste pile, run-on/run-off control structures, surveyed benchmark, ground water monitoring wells. Ground water monitoring, inspection, and maintenance of monitoring equipment will be accomplished in accordance with the requirements set forth in Subpart F of 40 CFR Part 265.

6.2 Inspection Procedures

The procedures for the inspection of post-closure care components are the security signs, lighting, final cover and run-on/run-off control drainage areas for the impoundments and waste pile. The inspections will be conducted by the Facility personnel or subcontractors under authority of Mixon Brothers Wood Preserving, Inc. A schedule of the inspected items and a log for recording the inspection observations is provided in Appendix H of the prior renewal application.

6.2.1 Surveyed Benchmark

The benchmark will be maintained throughout the post-closure period. If semiannual inspections reveal that a benchmark is damaged or missing; repair or replacement will be required. A survey team will be used to relocate a missing benchmark, if required.

6.2.2 Final Cover and Run-on/Run-off Control

The HWM units will be inspected semiannually to observe the integrity of the final cover and run-on/run-off control drainage areas. If erosion of the drainage areas or final cover affects the integrity of the units, maintenance will be required.

The final covers will also be inspected semiannually to observe evidence of settling and subsidence. If repairs are required to maintain the integrity of the final cover, the repairs will be completed as direct by the Facility Contact.

6.2.3 Ground Water Monitoring System

The integrity and operation of the ground water monitoring wells will be inspected during ground water sampling events. The locking mechanism and the surface casing of the wells will be inspected to identify damage or deterioration.

The well labeling, concrete seal and pad will be inspected for evidence of deterioration and tampering as well as the retention of water between the surface casing and well casing. The water depth and the well depth will be measured routinely during the inspections to verify the existence of any accumulation of fines within the well bore. Water produced from each well will be visually inspected for excessive sediment accumulation that might indicate poor performance of the sand filter or well screen.

Annually, the Facility will evaluate the ground water surface elevation data to confirm that the monitoring system continues to operate within the system design. If the data indicate that the designed location requirements are no longer within the permit limits, relocation of one or more wells may be required.

6.2.4 Security Signs and Lighting

Security signs at the HWM units and at the facility entrance as well as facility lighting will be routinely checked, during the semiannual inspections for damaged signs or posts, erosion surrounding the sign post, and the facility's lighting. Repairs or maintenance will be made as required during the post-closure period.

6.3 Inspection Records

The records of all inspection and testing activities will be recorded and maintained with the SWPPP at the Facility. Required maintenance will be recorded and documented on a Remedial Action Report Form provided in Appendix N, Table 3 of the prior renewal application.

6.4 Post-Closure Maintenance

The maintenance activities will be performed as required during the post-closure care period as result of deficiencies noted during the inspections. All repair activities concerning the closed HWM units will be kept with the SWPPP repair activities.

A cover crop has been established on the impoundment cover and waste pile cover. The cover will be tested, routinely, to insure adequate growth. The crop will be fertilized and irrigated as necessary to maintain adequate cover. The grass will be mowed routinely and deep-rooted weeds or vegetation will be removed as necessary. As previously stated, erosion will be controlled by vegetative cover and inspected at least semiannually throughout the post-closure period to ensure that erosion does not become problematic. Special attention to the cover, after

periods of severe storms when erosion may be anticipated, will insure its integrity. Eroded areas will be filled, repaired, and revegetated.

7.0 Preparedness and Prevention Requirements (40 CFR 270.14(b)(6))

The HWM units are closed and are capped. The Plant Fire Marshall is Bob Mixon. At the first signs of a fire, the supervisor is notified and the fire is put out. Fire suppression equipment is located in the waste storage area, office, and plant operation area. A telephone is available at the office and the plant operation area to notify emergency response contacts (e.g., EPA, ODEQ, Idabel Fire Department, Ambulance Service, and Police Department). A preparedness and prevention plan (including the requirement of 40 CFR 264 Subpart D) has already been implemented at the facility and is part of the facility's Chemical Storage Contingency Plan, dated January 24, 2025 and the Oil Spill Prevention Control and Countermeasure Plan, dated January 24, 2025.

8.0 Contingency Plan (40 CFR 270.14(b)(7))

The Chemical Storage Contingency Plan, dated January 24, 2025, which includes any hazardous materials and the Oil Spill Prevention Control and Countermeasure Plan, dated January 24, 2025 is already implemented at the facility. The contingency plans are contained in the facility's Stormwater Pollution Prevention Plan dated January 24, 2025 (Appendix L of the prior renewal application). The ground water monitoring system will detect any release of the listed hazardous constituents from the closed HWM units.

9.0 Procedures, Structures, or Equipment Description (40 CFR 270.14(b)(8))

The facility has an office and the plant operation area with telephones as well as all required records, at the entrance of the facility. A sign is posted at the facility's entrance which listed emergency telephone numbers to contact the owner, McCurtain County Health Department, and Oklahoma Department of Environmental Quality as well as notification of the "Potentially Harmful Materials" and "Unauthorized Personnel Prohibited." The sign also listed hours of operations. Lighting is provided at the facility during times of limited visibility.

9.1 Unloading Operations

The facility does not unload hazardous waste at the closed waste units.

9.2 Prevention of Hazardous Waste Handling Area Runoff

All the listed compounds have been treated and the areas have been capped with a clay barrier. A sand drain zone (six inches) and a topsoil zone (one to two feet) was constructed above the clay cap as depicted in Drawing Number 2, 3 and 5. As specified in the Storm Water Pollution Prevention Plan (SWPPP) (Appendix L of the prior renewal application) all hazardous materials and listed hazardous compounds will not be exposed to runoff. Storm water runoff is routinely sampled to identify potential areas of contamination. Routine inspection of the HWM units will insure that the caps will remain intact.

9.3 Prevention of Water Supply Contamination

Closure of the HWM units, including the capping, has insured that surface waters will not be contaminated from these units. Ground water monitoring of these units will detect leachate before the contamination can threaten Public Water Supplies (refer to Ground Water Section for further details concerning the monitoring). The nearest public water supplies are: City of Garvin, eight miles to the West Northwest, 2 water wells, with a depth of 200 and 400 feet; City of Idabel three miles to the North, surface water from Little River; McCurtain County Rural Water District #1, four miles to the North Northwest, Little River; and City of Haworth, eleven miles to the Southeast, water well 63 feet.

9.4 Equipment Failure and Power Outages

If the equipment associated with the HWM fail to function properly or a power outage occurred, a release of the listed hazardous constituents would not occur. Equipment such as lighting and submersible pumps could be replaced or repaired without affecting the closed HWM units. If the in-line telephone service is disrupted, a cellular phone will be utilized, temporary; until the in line telephone service is restored.

9.5 Personnel Safety

Since the closed HWM units are capped with several feet thick of different types of sediments, exposure to any of the listed constituent will only possibly occur during the ground water monitoring phase of the post-closure period. The personnel will have appropriate safety training to minimize exposure to any

hazards associated with the monitoring of the ground water including the exposure to the listed compounds. Some protective covering will include the following: disposal latex and rubber gloves, disposal rubber covers for shoes or boots, coveralls, and safety glasses.

9.6 Prevention of Atmosphere Releases

The closed HWM units are covered with several feet of sediments which will prevent releases to the atmosphere. Routine inspections (Appendix N, Table 2 of the prior renewal application), during the post-closure period, will insure that the integrity of these units is maintained. All wastewater from the ground water monitoring activities will be treated as containing the listed compounds associated with the closed HWM units until analysis indicates otherwise. During temporary storage, the wastewater will be placed in a sealed container to prevent atmosphere releases and transfer the liquid to be recycle in the wood preserving process.

10.0 Precautions to Prevent Accidental Ignition or Reaction of Ignitable, Reactive, or Incompatible Wastes (40 CFR 270.14(b)(9))

The closed HWM units were tested before closure for listed hazardous compounds including analysis for reactivity, corrosivity, and ignitability (see Appendix D and Section 3.0, Waste Characterization of the prior renewal application). During the post-closure no new compounds will be added to these closed units. If the closed waste pile unit downgradient monitor well detects leachate, then the upgradient monitor well will be test for PCP. Testing of the waste pile compounds before closure indicated a reaction with sulfide at 12.8 parts per million (ppm).

11.0 Traffic Patterns (40 CFR 270.14(b)(10))

The only traffic surrounding the closed HWM units are two front end loaders and one forklift which moved logs and other wood products to different areas of the facility. Trucks are unloading logs and finished wood products are loaded at the entrance to the facility. The road surface was constructed with

mostly clay and gravel with a small amount of concrete surfacing at the entrance to the scale.

12.0 Facility Location Information (40 CFR 270.14(b)(11))

12.1 Seismic Standard Applicability

The facility is located in McCurtain County, Oklahoma and is not located in an area listed in appendix VI of part 264.

12.2 Floodplain Information

The facility is located in the city limits of Idabel and the location is on the Federal Insurance Administration's (FIA'S) flood map. The facility is not located in the 100-year flood boundary area which delineated in the FIA Flood Boundary and Floodway Map, City of Idabel, Oklahoma, McCurtain County, Panel 1 and 3 of 4, Community-Panel Number 400108 0003 B and is attached in Appendix O of the prior renewal application.

13.0 Training (40 CFR 270.14(b)(12))

The closed HWM units are covered with several feet of sediments which will prevent releases to the atmosphere and exposure to personnel. Routine inspections, during the post-closure period, will insure that the integrity of these units are maintained. All wastewater from the ground water monitoring activities will be treated as containing the listed compounds associated with the closed HWM units until analysis indicates otherwise. During temporary storage, the wastewater will be placed in a sealed container to prevent atmosphere releases and transfer the liquid to be recycle in the wood preserving process.

The facility inspector of the closed HWM units will complete an on-the-job training that teaches them to perform their duties in a way that ensures the facility's compliance with applicable requirements, including 40 CFR 264.16 requirements. The training program will be directed by a person trained in hazardous waste management procedures which will include instructions that teach the facility personnel hazardous waste management procedures relevant to their position. The training and emergency procedures and records are contained in the facility's contingency plans of the SWPPP and are attached in Appendix L of the prior renewal application. Employees Safety and Pollution Prevention Refresher training are conducted during May and November (Attachment 5).

14.0 Closure Plan (40 CFR 270.14(b)(13))

The RCRA Closure Plan for Surface Impoundments and Waste Pile, Revision II for Mixon Brothers Wood Preserving, Inc. is attached in Appendix P of the prior renewal application. All numbering of the tables, figures, drawings, and appendices refers to in the above plan (Appendix P) are the same as the previous Post-Closure application and therefore not include Appendix P.

15.0 Post-Closure Notices (40 CFR 270.14(b)(14))

The post-closure notices as required by 40 CFR 264.119 are attached in Appendix Q. The notices included are the notices to Mr. Brad Roberts, Chairperson, Idabel Planning & Zoning Authority, dated March 23, 1994 and October 11, 1994; the Plat of Survey dated December 23, 1993 and September 9, 1994; and the Certification of Placement in Deed Records dated May 3, 1994 and November 18, 1994 on both HWM units.

16.0 Closure Estimate (40 CFR 270.14(b)(15))

The closure estimate is provided in Table 6-1 of the prior renewal application. The closure of the HWM units was performed as noted in the closure plan.

17.0 Post-Closure Estimate (40 CFR 270.14(b)(16))

The post-closure estimates are provided in Appendix N, table 4 of the prior renewal application. The requirement to demonstrate financial assurance is provided in 40 CFR 264.145 and similar mechanisms by the State. MBWP has established an Irrevocable Standby Letter of Credit for Post-Closure Costs. If instructed by ODEQ, the McCurtain County National Bank shall deposit the amount of the draft directly into the Standby Trust Fund of MBWP(Attachment 1 of the prior renewal application). The wording of the letter of credit is identical to the wording specified in 40 CFR 264.151 (d). The above line of credit was added yearly for total amount of \$76,736 (Attachment 2). According to 1996 Consent Order, "Mixon Brothers ... \$84,000 figure. After that time, Mixon Brothers' on-going post-closure expenses may be paid out of the Trust fund or by drawing on the Letter of Credit."

The Post-Closure Estimated changed when the current Post-Closure Permit became effective in 2013. The permit requires annual sampling of the Compliance

Well 2 (CW) and PZ 5, 9 and biennal sampling for PZ-2 with the analyses of the collected samples, and the annual measurement for the water elevation of Monitor Wells PZ-2, PZ-3, PZ-4, PZ-5, PZ-6, PZ-7, PZ-8, PZ-9, PZ-10, CW-1, CW-2, and CW-2 (refer to Attachment One of the current Post-Closure Permit). Information concerning the location and construction of these Compliance Wells are provided in Appendix C.

18.0 Topographic Map (40 CFR 270.14(b)(19))

The topographic maps and other maps indicating the 100-year Floodplain, structures, monitor wells, locations of HWM units, surveyed property lines, are provided in Figures 2.2, 2.2(a), 2.3, 4.1, 5.1, 5.13, 5.13a, 18.1, 18.2 Appendix M Figure 1, Appendix O, Appendix U Figures 2 and 3, Appendix V Figures 1 and 2, Appendix W Figure 1, and Appendix X of the prior renewal application. Also, Figures 2.2 and 2.3 are topographic maps, while 19.1 and Appendix G Maps of Groundwater Potentiometric Surface and Flow Direction (2013-2022, depict the locations of HWM.

19.0 Protection of Ground Water (40 CFR 270.14(c))

19.1 Ground water Monitoring Data (40 CFR 270.14(c)(1))

The ground water monitoring data is provided in Table 5.4 and Appendix D, Project Logs Monitor Wells Sampling (2013-2022) and E are Laboratory Analytical Results from Monitor Wells (2013 to 2022).

Additional ground water monitoring data obtained during post-closure, will be reported as required 40 CFR 264.97 to 40 CFR 264.100. From 2013 to 2022, additional data was collected and are listed in Table 2.

The monitoring of Compliance Well (CW) Compliance Wells #2 are required in accordance with Oklahoma Department of Environmental Quality (DEQ), Post-Closure Operations Permit Number 007336258PC (effective July 16, 1998 and continued to 2022). The CWs were constructed during July 1999 (Appendix U) and the sampling and analysis initiated during February 2000 and continued semi-annually (February and August) and from 2013 to 2022 (August) annually with no detectable concentration of naphthalene and pentachlorophenol (PCP) (Table 2 and Appendices C, D, and E provided additional information).

The Annual Compliance and PZ Wells water level sampling are also required in accordance with Oklahoma Department of Environmental Quality (DEQ), Post-Closure Operations Permit Number 007336258PC (effective July 16, 1998) and continued with current permit and are measured during December and the information is provided in Table 19.1 and Appendix F and G.

19.2 Identification of the Uppermost Aquifer (40 CFR 270.14(c)(2))

The subsurface geology was characterized utilizing thirty-five (35) soil borings and thirteen (13) ground water observation wells. Most of the borings ranged in depth from 6 feet to 30 feet, with one (1) boring drilled to a depth of 150 feet (for more detail information refers to Appendix P, page 56 to 60). The results of characterization indicated that the contact between the site soils (reddish-brown to gray clay) CL and the underlying bed rock surface (weathered limestone and shales) is the most permeable horizon which was observed during the drilling of soil borings, PZ and the compliance wells (see attached Appendix D, Geotechnical Laboratory Testing, Appendix E, Soil Boring, Appendix J, Monitor Well Completion Diagrams, figures 5.9, 5.10, and 5.11, and Appendix U, Compliance Well Completion Diagrams).

The uppermost aquifer was identified beneath the facility starting at depths from 8 to 12 feet and 17 to 28, with depth to ground water measured in the observation wells varying from approximately ground level to eight (8) feet below ground level. The ground water found in the shallow geological units at the site occurs in the sandy and gravelly clays between 8 to 12 and a deeper zone 17 to 28, at microfractures principally in the weathered bedrock zone. Based upon the rise in the ground water levels in a drilled well, the ground water in the weathered limestone and shale formations at the site are under confined conditions. The potentiometric surface is shown on the geologic cross-sections presented in Figures 5.10 and 5.11 of Appendix U. The potentiometric maps (Figure 5.13 and 5.13a and Appendix X of the prior renewal application) are depicting the shallow ground water flowing to the east-north with average gradient of 0.01 to 0.017 feet/foot. The potentiometric maps of the most recent results indicated that the shallow ground water flow direction is being influenced in the surrounding areas of PZ - 4, PZ - 6, and PZ - 7 (Appendix X of the prior renewal application). Slug tests indicated that the average horizontal hydraulic conductivity for the shallow weathered bedrock is 2.6×10^{-5} cm/sec. The average ground water flow velocity in the uppermost ground water system is 5.14×10^{-6} cm/sec or 8.9×10^{-3} feet/day (3.27 feet/year). Refer to 5.5 Site Hydrogeology in Appendix P, pages 60-62, Tables 4.7,

5.2, and Figures 5.2, 5.3, 5.4, 5.5, 5.9, 5.10, 5.11, 5.12, 5.13, 5.13a, 5-14, 5-15, n-16, and 5-17 for further information of the prior renewal application. MBWP is not located within an area designated as an actual or potential unconsolidated alluvial aquifer or terrace deposit aquifer or bedrock aquifer or recharge area, as shown on the maps described as "Sheet 1 - Unconsolidated Alluvium and Terrace Deposits" and "Sheet 2 - Bedrock Aquifers and Recharge Areas" of the "Maps Showing Principal Ground Water Resources and Recharge Areas in Oklahoma," compiled by Kenneth S. Johnson, Oklahoma Geological Survey (1983), or any successor map(s) compiled by the Oklahoma Geological Survey (OAC 252:205-11-2). Refer to Appendix O, Figures 5.2, 5.3, 5.4, 5.5, 5.9, 5.10, 5.11, 5.12, and 18.2 for further information.

19.3 Topographic Map of the HWM Units (40 CFR 270.149(c)(3))

The topographic maps are provided in Figures 4.4, 4.8, 5.13, 5.13a, 5.1 and 18.1.

19.4 Ground Water Contamination (40 CFR 270.14(c)(4))

PZ-1 was completed using 2" PVC, screw thread casing on 10-19-87 and is 29 feet deep with a 0.01" screened interval between 16 to 26 feet. PZ-1 top portion of the casing was split, possibly during the pre-closure activities. February 1992 records indicated contamination to PZ-1 from the surface. Roberts/Schornick & Associates, Inc. (RSA) responded to the release and removed all contaminates from PZ-1 and the surrounding surface. Fluids were recycled into the wood preserving process. In accordance with 40 CFR 265.93 (d)(7), the Oklahoma State Department of Health (OSDH) (August 13, 1992) approved RSA Groundwater Assessment Technical Workplan.

After approval from DEQ and Oklahoma Water Resources (OWRB), PZ-1 casing was filled with bentonite pellets to 10 feet and cement grout to 2 feet below the land surface and the remaining 2 feet to the land surface backfilled with compacted uncontaminated soil during February 15, 1995. Based on PZ-1 casing fractures, it is highly probable that the product is from the soil contamination depicted in Figures 4.6, 4.7, and 4.8. PZ-4, 6, and 7 receive contamination which occurred during the PZ-1's release and these wells are maintained to remove contaminated fluids. The contaminated fluids are recycled into the wood preserving process and monthly reports are submitted to DEQ listing the amount of fluids removed and recycled from these wells (Table 2 and 3)(Appendices D, E, and J. PZ-2, 8, 9, 10, CW-1, CW-2, and CW-3 analytical results indicate no

contamination and the contaminants are being mitigated by the fluids removal from PZ-4, 5, 6, and 7 (Appendices F and G).

The amount of ground water removed from PZ-4, 5, 6, and 7 indicated that the shallow aquifers are unable to provide a minimum amount of water for any type of Beneficial Uses (Appendix P, pages 42 and 43 refer to the prior renewal application) Appendices D, F, G, and J. Hydrograph for PZ-4 show a gradual rise in water levels over an approximate 3 months time interval (Figure 5.17 refer to the prior renewal application). Removal of all water in the monitor wells is performed routinely. Since August 1998, the monitor well which derived the most amounts of water was PZ-6, 288 gallons with 24 removal days in December 2013. Between 2013-2022, PZ-6 yield and removed 276 gallons 12 times. The monitor well which derived the least amount of water was PZ-4 with average approximately 1.5 gallons with 12-14 removal days from 2013 to 2022, PZ-7 approximately 2.5 gallons with 12-14 removal days from 2013 to 2022 (Table 3) The recent water level results' Appendices F, G, and J, indicated that surrounding shallow ground water flow direction is being influenced toward the direction of these wells (Appendix G) Since 2013-2022 approximately 2,500 to 3,000 gallons of water have been removed from PZ-4, 5, 6, and 7 (Table 3).

19.5 Ground Water Monitoring Program (40 CFR 270.14(c)(5))

The existing monitoring program consists of twelve (12) monitor wells with adequate depth, to allow the detection of contamination when hazardous waste or constituents have migrated from the HWM units to the shallowest aquifer. The area, east of the southern portion of the HWM surface impoundment unit has detect migration of a PCP plume in both the upper and lower portion of the shallowest aquifer by three monitor wells (PZ-4, 6, and 7) occasionally PZ-5 samples contained PCP August 2016, September 2016 and August 2021.

The monitor well PZ-3 is located hydraulically upgradient of the two HWM units as demonstrated by Figures 5.13 and 5.13a (refer to the prior renewal application). PZ-2 monitor well is located hydraulically downgradient and at the point of compliance for the waste pile HWM unit. PZ-2, PZ-8, PZ-9, PZ-10, CW-1, CW-2, and CW-3 monitor wells are located hydraulically downgradient and CW-1, CW-2, and CW-3 at the point of compliance for the surface impoundment HWM unit. The replacement for the plugged PZ-1 monitor well are PZ-6 and PZ-7, east of the southern portion of the HWM surface impoundment unit. PZ-6 was constructed to monitor the deeper portion of the shallow aquifer while PZ-7 was constructed to monitor the upper portion of the shallow aquifer.

The monitor well completion diagrams are provided in Appendix C and comply with the requirements listed 40 CFR 264.97 (refer to Appendix C for the completion details). The replacement wells for PZ-1 were constructed in a manner which conforms with the plugged well except the inside casings are stainless steel and the concrete surface pads will be three (3) feet squared. During the quarterly sampling events (July 1995) which was designed to establish an adequate data base to detect changes in the groundwater quality, concentration of PCP (54 part per billion (ppb)) was detected in PZ-7 which exceed the MCL of 1 ppb. Later sampling (August 1995) confirm the presence of PCP (3 ppb) in PZ-7 (Table 19.2). As required by 40 CFR 265.93(d)(2), (3) three additional monitor wells (PZ-8, 9, and 10) were located downgradient of PZ-7 to determine the extent of the plume. Sampling of these wells has determined that the plume of the upper portion of the shallow aquifer is localized to the immediate area of PZ-7 (Table D and E). Monitor well, PZ-6, which was constructed to monitor the deeper portion of the shallow aquifer, detect PCP concentration (210 ppb) which also exceed the MCL of 1 ppb. Later sampling of PZ-6 (October 1995) confirm the presence of PCP (37,500 ppb) (Table 19.2 refer to the prior renewal application). Monitor Well PZ-4, which was constructed to monitor the deeper portion of the shallowest aquifer, detect PCP concentration (390 ppb) and additional sampling of PZ-4 (January 1997) confirm the presence of PCP (1,280 ppb) (Table 19.2 refer to the prior renewal application). As required by 40 CFR 265.93(d)(2), BAEC completed CW-1, CW-2, and CW-3 for MBWP and determine the extent of the plume is localized to the immediate area of PZ-4, PZ-5, PZ-6, and PZ-7. MBWP is currently dewatering PZ-4, PZ-5, PZ-6 and 7 to prevent the migration of PCP Plume.

The sampling and analysis procedures provide a consistent and a reliable indication of the ground water quality below the HWM units. The nine (9) monitor wells and later 12 twelve wells were sampled according to RCRA sampling protocol.

19.6 Compliance Monitoring Program (40 CFR 270.14(c)(7)

The Compliance Monitoring Program was established with the completion of the three CWs. The sampling and analysis procedures provide a consistent and a reliable indication of the ground water quality, down gradient of the surface impoundment HWMU. The ground water from one compliance well, CW-2 will be sampled according to 2013 Post-Closure sampling protocol. The ground water parameters to be monitored will include the following compound listed in 40 CFR Part 261 for PCP with a concentration limit of 1 $\mu\text{g/L}$. The ground water will be

sampled for the purpose of characterizing the chemical quality of the shallow ground water down gradient of the surface impoundments. Well depth measurements will also be taken before sampling in the ground water monitor wells. The well depth measurements provide information necessary to assess the condition of the well (i.e., if the wells are experiencing silt buildup), to provide ground water elevation, and to provide the necessary purge volumes during ground water sampling events. In addition, during each purging and sampling event, the sampling personnel will make an initial visual inspection of the top and bottom of the fluid column using a transparent bailer. In addition, two installed monitor wells also will be sampled and the collected samples will be submitted to the laboratory for analysis. Chain of custody will be maintained between the sampling and the analysis (refer to Appendix S and T for the Quality Assurance Plans).

All portions of sampling and test equipment which contacts the interior of the well casing or the probe will be thoroughly cleaned before use. This includes water level indicators, bailers, submersible pumps, probes, tubing, and other equipment, or portions thereof, which are to be immersed. The procedure for initial equipment cleaning is as follows:

- * Clean with tap water and phosphate-free laboratory grade detergent, brush if necessary
- * Rinse thoroughly with tap water
- * Rinse thoroughly with deionized water
- * Equipment cleaned prior to field use will be re-cleaned after transfer to the sampling site unless carefully wrapped for transport

Nondedicated testing equipment (i.e., water level indicator, bailer, etc.) which contact the interior well casing will be field cleaned between each well by washing thoroughly in phosphate-free detergent and rinsing with deionized water. Any necessary deviation from these procedures will be completely documented in the permanent record of the sampling episode and the field sheet.

Upon arrival at each monitor well, the sampling personnel will inspect the well's condition and note any evidence of tampering or damage. Each well will be unlocked and an electronic water level indicator will be used to measure the depth to water and well depth. The water level data will be referenced to a surveyed mark in the top of the inner casing. The data will be used to construct potentiometric surface contour maps and to calculate the static volume of water

within the casing that will be removed prior to ground water sampling. Prior to purging each monitor well, the top six (6) inches of ground water surface and the bottom six (6) inches of base of the water column will be inspected for immiscible phase organics and odors.

The water standing in a well, prior to sampling, may not be representative of the in-situ ground water quality. Therefore, the standing water in the well and filter pack must be removed so that formation water can replace the stagnant water. At a minimum, three (3) casing volumes (including filter pack pore water) must be removed before sampling can begin. The depth-to-water, well depth, and filter pack interval (assume a porosity of 30%) can be used to calculate the volume of ground water to be removed from each well. The following equations will be used to calculate the volume of ground water to withdraw:

$$(1) \quad v_c = \pi r_c^2 h_c (7.48)(3)$$

where: v_c = volume of water in casing storage, gallons
 r_c = radius of casing, feet
 h_c = length of water column in casing, feet
7.48 = conversion factor from cubic feet to gallon
3 = 3 casing volumes, and

$$(2) \quad v_s = \pi r_s^2 h_s - \pi r_c^2 h_{es} (7.48)(3)(0.30)$$

v_s = volume of water in sand pack interval, gallons
 r_s = radius of drilled borehole, feet
 h_s = length of sand pack interval, feet
 r_c = radius of casing, feet
 h_{es} = length of casing/screen in sand pack interval, feet
0.30 = estimated porosity of sand pack

Adding the three (3) casing ground water volumes, to the three (3) sand pack pore water volumes, equal the amount of water that must be purged from the well prior to sampling. Purging will be accomplished by bailing with pre-cleaned, dedicated, Teflon bailers. All bailers will be fitted with clean, dedicated, monofilament line. During purging the pH, specific conductance, and temperature of the purged ground water will be taken and recorded to insure that the water quality in the well has stabilized. If significant variations in any of these field measurements are

observed, additional purging will be required. In addition, the water's physical characteristics (i.e., odor, turbidity, and color) will be observed and noted. Evacuated water will be containerized in five (5) gallon plastic buckets, which will be marked as to contents and source.

In those wells which bail dry, purging will cease and the well will be allowed a reasonable time to recover. After recovery, the well will be evacuated a second time. This will be repeated until the required volume is recovered. If a well is incapable of yielding three (3) casing volumes in a reasonable time, then the well will be evacuated to dryness and allowed to recover until it can provide a representative sample within 48 hours. Several wells especially PZ-8, 9, 10 are very slow to recovered due to the removal of ground water adjacent to these wells

Ground water samples from the monitor wells will be collected with pre-cleaned, dedicated, bailers, lowered into the well on clean, dedicated, monofilament line. The first bailer will be used to rinse the bailer and poured to waste if the well recharge enough to yied for saplling of ground water. Each ground water sample will be carefully poured directly into the appropriate sample bottles. The first aliquot will be retained for field determination of pH, temperature, and specific conductance (units to be reported in umhos/cm). Subsequent aliquots will be used to fill the sample bottles utilizing the following collection order:

* Pentachlorophenol (PCP)

All sample bottles will be laboratory-cleaned and preserved by the testing analytical laboratory. A final aliquot will be retained for a second determination of field pH, temperature, and specific conductance if there is enough groundwater for sampling. The results of these duplicate field measurements (i.e., first and last aliquots) will be used as a check to assure ground water stability during sample collection. All samples will be packed in ice immediately after being collected, and placed under chain-of-custody control. Samples will be submitted to Environmental Testing, Inc. located in Oklahoma City, Oklahoma.

The first and last aliquot collected during ground water sampling events, will be retained for field determination of ph, temperature, and specific conductance. Certain chemical and physical parameters in water can change significantly within a short time of sample acquisition. These parameters cannot be accurately measured in a laboratory more than a few hours after collection, therefore, parameters will be measured on-site with portable equipment. These parameters

are:

- * pH
- * Specific Conductance
- * Temperature

These parameters will be measured in unfiltered, unpreserved, cleaned glass containers separate from those intended for laboratory analysis. The tested samples will be disposed in the same manner as other purged fluid. All field measurements will be recorded on the sampling sheet. All samples will be packed in ice immediately after being collected, and placed under chain-of-custody control. Samples will be submitted to Environmental Testing, Inc. located in Oklahoma City, Oklahoma. The laboratory will provide all sample containers, and any necessary chemical preservatives.

The groundwater samples from Compliance Wells (CW) 2 will be analyzed for Pentachlorophenol (PCP) in accordance with Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA Publication SW-846 (Method Number 8270).

Analysis data will be evaluated utilizing A Ground Water Information Tracking System with Statistical Analysis Capability (GRITS/STAT v4.2) (EPA/625/11-91/002). The normality tests used are: the Skewness Coefficient, the Shapiro-Wilk Test (for sample sets less than 50), and the Shapiro-Francia Test (for sample sets more than or equal to 50). The Variance will be evaluated by either Levene's Test or the utilization of Box plots. The combined Shewart-CUSUM Chart will monitor constituent levels for trends or sudden changes. The ANOVA method will accommodate both Parametric and Non parametric analysis. The Intervals including the Tolerance Intervals on Compliance Limits and Confidence Interval will be based on the analytical results. In addition, the background well will be evaluated with compliance well utilizing the T-Test and Wilcoxin Rank-Sum Test.

19.7 Corrective Action Program (40 CFR 270.14(c)(8)

After PCP was detected in PZ-4, 6, and 7, MBWP initiated dewatering of these wells to prevent the migration of PCP Plume. Since later testing of the surrounding groundwater with PZ-5, 8, 9, and 10 indicated the extent of the plume is localized to the immediate area of PZ-4, PZ-6, and PZ-7. Monitor Wells PZ-2, PZ-3, PZ-4, PZ-5, PZ-6, PZ-7, PZ-8, PZ-9, PZ-10, CW-1, CW-2, and CW-3 will be

measured annually for water elevation. The water elevation of the wells will be utilized to determine the groundwater flow rate and direction in the uppermost aquifer and to verify the effectiveness of mitigating the PCP plume.

In April 2000, MBWP sampled PZ-5 and PZ-8, annually and analysis indicated no detectable concentrations of Naphthalene and PCP. Analytical results of samples collected from PZ 4, 6, and 7 indicated an initial decrease in the PCP concentrations (Table 19.7 refer to the prior renewal application) During February and August 2005, sampling was conducted of 9 monitor wells and two borings and indicated PCP plume is being contained by the dewatering of these wells (Appendix V and W refer to the prior renewal application).

20.0 Drip Pad (40 CFR 270.26)

20.1 List of Hazardous Wastes (40 CFR 270.26 (a))

MBWP installed a new creosote drip pad in 1992 and continued to be utilized during the creosote wood preserving process (Appendix R) until 2017.

20.2 Plan and Engineering Report (40 CFR 270.26 9 (c)(1) - (16))

MBWP Assessment of the Creosote Plant including the Design and Installation of the New Drip Pad dated July 31, 1992, Appendix R contains the report which meets the requirement of 40 CFR 264.573 and includes the following: design characteristics, liner system, leakage detection system, including detection of failure or fluid accumulation, maintenance practices, collection system, control of run-on, control of run-off, removal intervals of drippage/materials from the collection system and a statement demonstrating such intervals are sufficient to prevent overflow, procedures and documentation of cleaning the drip pad once every 7 days, Operating practices and procedures to ensure the tracking of HW and the minimization of waste off the drip pad, procedures to ensure that treated woods are held on the drip pad until the cessation of drippage, including record keeping practices, provisions to ensure the collection and holding units are emptied or managed ASAP after storms, description of the drip pad inspection, and the certification by a P.E. that the drip pad design meets 264.573(a) through (f). In addition, an annual evaluation of the drip pad is conducted by an independent Oklahoma Registered Professional Engineer (Attachment 4). During 2017, MBWP change the wood preserving process to QNAP 8 in lieu of creosote.

CHEMICAL STORAGE CONTINGENCY PLAN

For

Mixon Brothers Wood Preserving, Inc.

Located at

**1202 NW 16th Street
P.O Box 327
Idabel, Oklahoma 74745**

January 24, 2025

Description of Waste Handled:

**RQ, Hazardous Waste Liquid,
(Groundwater Only) K001**
Material is not flammable or explosive
Maximum volume of waste on site:
Maximum volume produced per month

15 gallons
293 gallons

EMERGENCY RESPONSE CONTACTS

LOCAL

Fire Department

Name: Idabel Fire & Police Department
Address: 207 S. Central
Phone #: (580)286-7577

Oklahoma Dept. of Environmental Quality

Name: Land Protection Division
Address: P.O. Box 1677
Oklahoma City, OK 73101-1677
Phone #: (405)702-5100
Spill Reporting Hotline #: (800)522-0206

Ambulance Service

Name: Idabel EMS
Address: 207 S. Central
Phone #: (580)286-7584

***FEDERAL**

Sheriff's Department

Name: Idabel Police Dept.
Address: 207 S. Central
Phone #: (580)286-6554

Environmental Protection Agency Region 6

Name: Ronald Crossland
Address: 1445 Ross Ave, Suite 500
Phone #: (214)665-2721
Information (800)887-6063

Hospital

Name: Idabel Municipal Hospital
Address: 1301 Lincoln Road
Phone #: (580)286-7623

EPA National Response Center#:

(800)424-8802

Arrangements with Sheriff's Department

By contacting one of the Emergency Coordinators access to the site can be obtained. Unless the emergency equipment specified in this plan is employed do not allow any contact with the waste.

Arrangements with the Fire Department

Material is not flammable or explosive.

Absorb the liquid using clay, lime, sand, soda ash, or sawdust, it should not enter any sewer and/ or contaminated ground water. Where possible, do not wash the solid waste away.

Arrangements with Local Hospital

It is extremely unlikely of exposure by inhalation and/or ingestion. Contact dermatitis can result if skin contact is made of either liquid and/or solid waste. In such conditions standard medical treatment is acceptable.

The content in waste will be Groundwater (K001)

Wash with water for 15 minutes for eye contact. Induce vomiting if swallowed. Treat for Pentachlorophenol (PCP) exposure.

Emergency Response - Hazardous Waste Spill

The spillage will immediately be contained upon discovery by an employee. Report it immediately to a member of management.

Contact the designated Emergency Coordinator will be done by a member of management.

The following information will be obtained by the emergency coordinator:

1. the material spilled
2. location of spillage of hazardous material
3. an estimate of quantity released
4. any injuries involved
5. the area contaminated by the spillage

The coordinator will assess the magnitude and seriousness of the spillage based on the information obtained. The Emergency Coordinator will contact and deploy the necessary personnel if the incident is within the capabilities of the company's emergency response organization.

The Emergency Coordinator will contact EPA, DEQ and other appropriate agencies. A list of agencies and phone numbers is shown in the Chemical Contingency Plan.

The waste should contain free liquid if a spill occurs in the hazardous waste areas, but if in the event that liquid is present outside of waste hazardous area, the absorbent material located in the hazardous waste storage area should be used to build a dike around the spill.

The material should be placed in 17H DOT drums after the spill is contained and additional sufficient absorbent. Mark drums with hazardous waste labels (K001). Mark drum label the accumulation start date.

If the spillage comes from a leaking hazardous waste drum, then the drum should be placed by forklift in an 80-gallon recovery drum, the completed hazardous waste label including accumulation start date.

In the emergency operation only those persons involved will be allowed within the designated hazard area. The area will be roped and/or otherwise blocked off, if possible. The curbing and slope should prevent any waste leaving the pad area, if the spillage occurs on the concrete drip pad. Re-use in the Copper Naphthenate process after washing any free liquid into the sump. Place any solid waste into a 17H DOT approved drums. The drip pad has been totally cleaned must be ensured by the Emergency Coordinator.

The Emergency Coordinator will designate the personnel to preform the clean-up. Removal of all non-essential personnel from the hazard area.

Contamination of all material during the clean-up operation must be placed in drums for proper disposal. The responsibility for ensuring this is done by the Emergency Coordinator.

Furthermore, the Emergency Coordinator must reassure that, in the affected area of the plant:

- A. No waste that may be incompatible with the released material is treated, stored or disposed of until clean-up procedures are completed.**
- B. All emergency equipment is clean and conditioned for its intended use before operations are resumed.**

The Operations Manager or his designee must:

- A. Notify the EPA Region 6, DEQ, and appropriate local authorities in the event that a spill has occurred and that the plant must be in compliance with paragraphs (a) and (b) above before operations are resumed in the affected area of the plant.**

- B. The time, date and details of any incident that required implementation of the contingency plan must be noted in the operating records by the Operation Manager or his designee. He must submit a written report on the incident within 15 days after the incident to the EPA Regional 6 Administrator, National Response Center, Oklahoma Department of Environmental Quality including:**
 - 1. Name, address and phone number of the company and plant.**
 - 2. Date, time and type of accident.**
 - 3. Name and quantity of materials involved.**
 - 4. Extent of injuries, if any.**
 - 5. Assessment of actual or potential hazards to human health or the environment.**
 - 6. Estimated quantity and disposition of recovered material resulting from the incident.**

The responsibility for the following items are also the Operations Manager:

Employee Training

An introductory course in hazardous waste management and annual reviews thereafter, per parameter set forth in 40 CFR 265.16, will be given to employees working in areas containing hazardous waste. The established company training program will be used.

Records

Plant Supervisor's office, Operations Manager's office, and all emergency coordinator's files will have a copy of this contingency plan in corporate files.

This contingency plan will be revised for amendment:

- A. When applicable regulations are revised.**
- B. When plan fails in an emergency.**
- C. When situation in the plan change which increase the potential for release of waste.**
- D. When the list of emergency coordinators changes.**
- E. When the list of emergency equipment changes.**

HAZARDOUS WASTE STORAGE

EMERGENCY EQUIPMENT LISTING

- A. Communication System. Telephone is located in main's office and the plant operation area.
- B. Eye wash Stations - Safety Showers. In the hazardous waste storage area should be one commercial brand eyewash bottle.
- C. Respirators. With the appropriate filter cartridge, all operators have NIOSH approved half-face respirators.
- D. Fire Suppression. The location of the fire extinguishers are in the waste storage area, office, and plant operation area.
- E. First Aid. The location of the First Aid Box and is maintained in the office.
- F. Personal Protective Equipment. When handling hazardous waste all operators wear rubber gloves, rubber boots, goggles and/or helmets with splash shields if required to wear depending on the required appropriate personnel protection equipment. There are spares available.
- G. Spill Control. To make temporary dikes and soak up liquids oil dry and absorbent clay is available.
- H. Inspection of Storage Area and Waste Container. To ensure all safety equipment is available and to confirm the integrity of all containers weekly inspections are made.

FIRE AND SPILL CONTROL

Plant Fire Marshall: Bob Mixon-Secretary. At the first signs of a fire, the supervisor is notified and the fire is put out. If we cannot handle (refer to "security of facility").

Spill Containment Provisions

All storage tanks will be located in diked containment areas. The capacity of the dikes will be able to hold the volume of the largest tank plus any accumulated rain water.

To prevent any accidental release from dike containment without drains, spills may only be removed by pumping. Spill contents from the dikes should be returned to the process, but may be disposed in a federally approved hazardous waste disposal site.

Above ground is all transfer piping.

So, that overflows do not occur during filling operations one man is assigned to supervise the operations.

Spill Containment and Disposal

1. **Contain the spill immediately.**
2. **To make temporary barriers use absorbent materials.**
Supplies of absorbent materials are located in the office.
3. **Any non-plumbable liquid absorb with absorbent material.**
4. **For disposal transfer the sludge to appropriate D.O.T.-approved 55-gallon drums.**
5. **Spills are not to be washed into the storm drains.**
6. **All leaks and spills are to be reported to the supervisor.**

Inspections

Operations and plant management will inspect the equipment daily.

**OIL SPILL PREVENTION CONTROL
and
COUNTERMEASURE PLAN
(SPCC)**

For

Mixon Brothers Wood Preserving, Inc.

Located at

1202 NW 16th Street
P.O Box 327
Idabel, Oklahoma 74745

January 24, 2025

I. Purpose

This plan is established to prevent the accidental release of oil from the facility into nearby streams or groundwater, as specified in 40 CFR 110-13.

II. Oil Storage Area Information

1. One (1) 20,000 gallons Copper Naphthenate (CAS Number 1338-02-9) tank
2. All tanks are above ground and the tanks are surrounded by a concrete block containment dike with a spill containment sump.

III. Fueling Procedures

1. One person will be assigned to supervise filling operations. The person will ensure tanks are not overfilled by checking tank levels prior to and during filling.
2. Filling supervisor will place a warning sign in front of the tractor cab driver's door, reminding to check loading lines are disconnected before leaving.
3. All lines will be blown free of oil by compressed air before maintenance work is performed
4. Loading lines will be capped when not in use.
5. Any sight glass valves will be kept in the "off" position when not in use.
6. Tank weld seams, pipe fittings, flanges and valves will be visually inspected during each filling operation. Any leaks or spills will be reported immediately to the Emergency Coordinator.
7. Vehicular traffic will be prohibited in areas of oil transfer lines.

IV. SECURITY

1. No outlet valves or permanent sump pumps are on the containment dikes and are covered.
2. When not in use the oil pump starter control will be locked in the off position.
3. For after dark operations the area is properly lit. For night-time spill or leak detection the lighting is adequate.

V. PERSONNEL TRAINING

Instruction in the operation and maintenance of oil handling equipment and the rules, regulations and procedures as outlined in this plan for all new personnel. There will be annual training provided to them and other employees involved in oil handling and spill prevention measures.

VI. EMERGENCY COORDINATORS

A list of primary and secondary coordinators in the "Hazardous Waste Contingency Plan". The coordinators have the authorization to commit the facility resources necessary to carry out this plan. Emergency Response Contacts are listed in the Chemical Storage Contingency Plan.

VII. REPORTABLE QUANTITIES

The exact quantity of oil spilled, that is to be reported to governing agencies including DEQ. The specified regulations by the federal is only " a film or sheen upon or discoloration of the surface of the water..."

SPILL CONTROL AND COUNTERMEASURES