## Benefit Cost Narrative

# Bridging The Gap: Multimodal Connections On I-35 Over The Oklahoma River 

Oklahoma Department of Transportation

## Multimodal Project Discretionary Grant Application

May 6, 2024


## Table of Contents

Executive Summary ..... 1
Overview ..... 1
Project Description ..... 1
No-Build Alternative ..... 1
Build Alternative ..... 1
BCA Methodology ..... 2
Main Components ..... 2
Analysis Years .....  2
Economic Assumptions ..... 3
Construction Costs ..... 3
Operating and Maintenance (O\&M) Costs ..... 4
Development of AADT and Travel Time Savings ..... 5
Travel Time Savings ..... 5
Construction Disbenefits ..... 9
Safety Analysis. ..... 10
Project Area Crash Data ..... 10
Crash Reduction Factors ..... 11
Pedestrian and Bicyclist Benefits ..... 12
Factors Not Quantified ..... 12
Additional Safety Benefits ..... 12
Remaining Capital Value ..... 12
Bridge Condition and Closures ..... 12
Resiliency to Weather, Seismic or Other Extreme Events ..... 13
Wildlife, Noise, and Water Run Off ..... 13
Pedestrian and Bicycle Benefits ..... 13
BCA Results ..... 13
TABLES
Table 1: Payout Schedule ..... 2
Table 2: Project Cost and Bridge Cost Proportion. ..... 3
Table 3: Cost Distribution to Individual Vehicular Bridges ..... 4
Table 4: Operations \& Maintenance Cost Schedules ..... 5
Table 5: Travel Speed, Travel Time, and Travel Time Savings Assumptions ..... 9
Table 6: Crashes on I-35 between SE 15th Ave and the Dallas Interchange ..... 10
Table 7: Active Commute Characteristics in the Vicinity of the Multimodal Bridge ..... 12
Table 8: BCA Results ..... 14
FIGURES
Figure 1-2020 AM Peak LOS ..... 6
Figure 2-2020 PM Peak LOS ..... 7
Figure 3-2035 AM Peak LOS ..... 7
Figure 4-2035 PM Peak LOS ..... 8
Figure 5 - I-35 Capacity Needs ..... 8

## Executive Summary

This Benefit Cost Analysis (BCA) supports Oklahoma Department of Transportation (ODOT) request of $\$ 100$ million in Multimodal Project Discretionary Grant (MPDG) funds to replace the I-35 NB and SB bridges, construct a new I-35 ramp NB bridge, rehabilitate the I-35 bridge over the Stillwater Railroad, and construct a new multimodal pedestrian and bicycle bridge (the Project). The new l-35 bridges would provide six 12-foot lanes in each direction, and a minimum of 12 -foot inside and outside shoulders. Currently, the l-35 bridges have five lanes in each direction, but the shoulder widths are inadequate, causing both bridges to be considered functionally obsolete. The Project will provide new, safer, and geometrically improved bridges over the Oklahoma River. The main vehicular bridge replacement will deliver major safety benefits to a high crash-prone river crossing, while adding vehicular capacity through travel lane expansion and the provision of safety lanes in both directions, which are currently functionally obsolete on the existing bridge. The Project also includes a new multimodal bridge for pedestrians and people riding bikes, which will improve active transportation connectivity in the area.

The BCA captures and monetizes three categories of benefits arising from the vehicular bridge project: maintenance cost savings, travel time savings, and crash reduction benefits. Other benefits that have not been monetized (but are discussed below) include resilience, emissions, and other environmental benefits. Economic benefits such as enhanced labor and business productivity (over and above those embodied in travel time savings) are also not included. However, the overall improvements in regional accessibility may generate benefits.

Results: The Project yields an overall Benefit-Cost Ratio (BCR) of 1.74 and a Net Present Value of $\$ 114.0$ million. The preponderance of benefits is from vehicular travel time savings, with smaller but still significant shares due to crash reduction savings and maintenance savings arising from the Project.

## Overview

The BCA has been conducted following the USDOT's Benefit-Cost Analysis Guidance for Discretionary Grant Programs and the Bridge Investment Program (BIP) BCA tool. The general parameters and assumptions used in the BCA are described in the sections Project Description and BCA Methodology.

## Project Description

For the purposes of this analysis, a No-Build and Build Alternative were under consideration.

## No-Build Alternative

The No-Build Alternative included leaving the existing bridges and their geometry as is with no modifications or restrictions to current access.

## Build Alternative

The Project, centrally located in downtown Oklahoma City, will provide a new, safer, and geometrically improved bridge over the Oklahoma River. The Project includes replacing two
mainline bridges on I-35 (National Bridge Inventory (NBI) 21356 and 21723), rehabilitating the two I-35 ramp bridges over the BNSF Railway (NBI 21335 and 21708), constructing a new I-35 ramp bridge spanning the Oklahoma River, lengthening an existing box structure (NBI 14239) that traverses underneath the I-35, and constructing a new multimodal pedestrian and bicycle bridge to the west of the existing bridges. The bridge width will be approximately 96 feet for I35 SB to accommodate six lanes with 12 -foot shoulders. I- 35 NB will be approximately 72 feet wide (four-lanes with shoulders) and the two-lane ramp bridge approximately 42 feet wide. The three bridges will be approximately 820 feet long with a primary span extending at least 360 feet. The Project will deliver major safety benefits to a high crash-prone crossing while adding vehicular capacity through travel lane expansion and the provision of safety lanes in both directions, which are currently functionally obsolete on the existing bridge. The bridge is an essential connecting link along I-35, a major north-south interstate route that provides passenger and truck freight connectivity from the Texas-Mexico border through the Dallas metro area, to Oklahoma City, and on to points north.

## BCA Methodology

Methodology and assumptions largely followed the processes outlined by FHWA and USDOT for using the BIP BCA Tool and standard BCA assumptions. Specific details regarding the values used in the accompanying BCA Tool are outlined in the sections below:

## Main Components

The main components analyzed included:

- Initial capital costs
- Maintenance and costs
- Traving time/delay (vehicle hours traveled - VHT)
- Crashes by severity
- Pedestrian and bicycle benefits


## Analysis Years

This analysis assumed that the Build Alternative would be constructed over a four-year period, starting in 2026 with completion in 2030. Therefore, the year 2031 was assumed to be the first full year that benefits will be accrued from the Project. The Project costs also account for costs already incurred in 2023. The annual cost burden for each bridge was based on the payout schedule in Table 1.

Table 1: Payout Schedule

| Year | $\mathbf{2 0 2 3}$ | $\mathbf{2 0 2 4}$ | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 2 6}$ | $\mathbf{2 0 2 7}$ | $\mathbf{2 0 2 8}$ | $\mathbf{2 0 2 9}$ | $\mathbf{2 0 3 0}$ | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vehicular <br> Bridges | $2 \%$ | $4 \%$ | $4 \%$ | $6 \%$ | $15 \%$ | $28 \%$ | $28 \%$ | $13 \%$ | $\mathbf{1 0 0 \%}$ |
| Multimodal <br> Bridge | $2 \%$ | $4 \%$ | $4 \%$ | $6 \%$ | $20 \%$ | $23 \%$ | $23 \%$ | $18 \%$ | $\mathbf{1 0 0 \%}$ |

The analysis focused on the estimated daily benefits. For the two river crossing bridges an analysis period of 20 years was used as the bridges are being reconstructed, but the improvement is to expand capacity. For the railroad crossing bridges and box culvert extension,
an analysis period of 20 years was used as these are rehabilitation projects. The multimodal bridge also had an analysis period of 20 years. The present value of all benefits and costs was calculated using 2022 as the year of current dollars.

## Economic Assumptions

The value of time, occupancy, and cost of crashes were obtained from the Benefit Cost Analysis Guidance for Discretionary Grant Programs, dated January 2023 and are consistent with the default values provided in the BIP BCA Tool. A user value was provided for average bus occupancy by EMBARK who operates the lone route crossing the bridges in the Project area. This is based on 2023 ridership to date, and for purposes of this analysis was not expected to grow over time, which should be considered a conservative estimate.

## Construction Costs

ODOT estimated costs based on estimated quantities and recent similar projects. The costs developed by ODOT were originally estimated in 2023 dollars for the vehicular bridges and 2024 dollars for the multimodal bridges. The estimates for both the roadway and bridge portions of the Project included a 30 percent contingency. For purposes of this analysis these were converted to 2022 dollars using the GDP price deflator. Costs were not developed in year of expenditure dollars.

As the BIP BCA Tool was set up to conduct the analysis by bridge and it was anticipated that there will be contingency costs and additional roadway and traffic costs associated with the Project, these costs were distributed to each bridge based on the bridges proportion of the total bridge costs. Original costs, 2022 converted costs for the analysis, and distribution of additional non-bridge costs are provided in Table 2. This table also contains the proportional breakout of bridge versus roadway costs for the purpose of calculating the remaining capital value of the Project. Table 3 shows the distribution of roadway and contingency costs to each individual vehicular bridge based on the cost proportion in Table 2.

Table 2: Project Cost and Bridge Cost Proportion

| Item and Component | Total Cost | Total Cost <br> in 2022 $\mathbf{~ \$ ~}$ |
| :--- | ---: | ---: |
| Roadway |  |  |
| Construction | $\$ 26,450,000$ | $\$ 25,406,199$ |
| Other Items (Traffic Control, Striping, etc.) | $\$ 5,050,000$ | $\$ 4,850,711$ |
| $30 \%$ Contingency | $\$ 9,450,000$ | $\$ 9,077,073$ |
| Roadway Total | $\$ 40,950,000$ | $\$ 39,333,983$ |
| I-35 Bridges |  |  |
| I-35 SB over Oklahoma River | $\$ 42,660,000$ | $\$ 40,976,501$ |
| I-35 NB over Oklahoma River | $\$ 30,510,000$ | $\$ 29,305,978$ |
| I-35 Ramp over Oklahoma River | $\$ 18,630,000$ | $\$ 17,894,801$ |
| Double 10'x10' RCB Extension | $\$ 270,000$ | $\$ 259,345$ |
| I-35 over Stillwater RR Bridge Rehab | $\$ 2,520,000$ | $\$ 2,420,553$ |
| $30 \%$ Contingency | $\$ 28,377,000$ | $\$ 27,257,153$ |


| Mainline Bridge Aesthetics | $\$ 4,500,000$ | $\$ 4,332,416$ |
| :--- | ---: | ---: |
| Bridge Total | $\$ 127,467,000$ | $\$ 112,436,746$ |
| Sub Total I-35 Roadway and Bridges <br> (Component 1) | $\mathbf{\$ 1 6 8 , 4 1 7 , 0 0 0}$ | $\$ 161,770,729$ |
| Multimodal Bridge \& Trail |  |  |
| Multimodal Bridge over Oklahoma River | $\$ 13,612,400$ | $\$ 13,083,814$ |
| $30 \%$ Contingency | $\$ 4,083,720$ | $\$ 3,925,144$ |
| Bridge Aesthetics | $\$ 4,000,000$ | $\$ 3,844,675$ |
| Sub Total Multimodal Bridge \& Trail <br> (Component 2) | $\mathbf{\$ 2 1 , 6 9 6 , 1 2 0}$ | $\mathbf{\$ 2 0 , 8 5 3 , 6 3 3}$ |
| Total | $\mathbf{\$ 1 9 0 , 1 1 3 , 1 2 0}$ | $\mathbf{\$ 1 8 2 , 6 2 4 , 3 6 2}$ |

Source: ODOT (Roadway and Bridges Q4 2023 Dollars; Multimodal Bridge Q1 2024)

Table 3: Cost Distribution to Individual Vehicular Bridges

| Item and component (NBI \#) | $\begin{gathered} \text { Cost } \\ (2022 \$) \end{gathered}$ | Proportion | Bridge Contingency and Aesthetics | Total <br> Bridge | Roadway | Bridge and Roadway |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-35 SB over <br> River (21723) | \$40.98M | . 451 | \$14.24M | \$55.22M | \$17.74M | \$72.96M |
| I-35 NB over River (21356) | \$29.31M | . 323 | \$10.19M | \$39.49M | \$12.69M | \$52.18M |
| I-35 NB New <br> Ramp (\# TBD) | \$17.89M | . 197 | \$6.22M | \$24.11M | \$7.75M | \$31.86M |
| Box Culvert Extension (14239) | \$0.26M | . 003 | \$0.09M | \$0.35M | \$0.11M | \$0.46M |
| I-35 over RR Bridge (21708 and 21335) | \$2.42M | . 027 | \$0.84M | \$3.26M | \$1.05M | \$4.31M |
| Vehicular Bridge Total | \$90.86M |  | \$31.58M | \$122.44M | \$39.33M | \$161.77M |

## Operating and Maintenance (O\&M) Costs

It is expected that reconstructing the Project bridges will reduce the required future rehabilitation and maintenance activities to keep the roadway serviceable. Future maintenance activities were obtained for the No-Build and Build scenarios from project planning staff. The provided rehabilitation and maintenance schedules for each scenario are listed below in Table 4. All dollar amounts are provided in 2021 dollars.

Table 4: Operations \&Maintenance Cost Schedules

| Bridge | No-Build Routine Costs | No-Build Large Maintenance Costs | Build <br> Routine Costs | Build Large Maintenance Costs |
| :---: | :---: | :---: | :---: | :---: |
| I-35 SB over <br> River (21723) | \$1,000 | $\begin{aligned} & \text { \$1.0M (2026) } \\ & \$ 1.5 \mathrm{M}(2040) \end{aligned}$ | \$1,000 | None |
| I-35 NB over <br> River (21356) | \$1,000 | $\begin{aligned} & \text { \$1.0M (2026) } \\ & \$ 1.5 \mathrm{M}(2040) \end{aligned}$ | \$1,000 | None |
| I-35 NB New <br> Ramp (\# TBD) | None | None | \$1,000 | None |
| Box Culvert <br> Extension <br> (14239) | \$1,000 | None | \$1,000 | None |
| I-35 over RR <br> Bridge (21708 <br> and 21335) | \$1,000 | \$0.5M (2040) | \$1,000 | \$0.5M (2040) |
| Multimodal <br> Bridge | None | None | \$1,000 | None |

The routine repair costs are expected to occur every other year for both the No-Build and Build and largely cancel out except for those occurring before the construction of the Build Alternative.

## Development of AADT and Travel Time Savings

This analysis assumed the NBI AADT values for all bridges with only one small exception. All bridges assumed a bus AADT of 9 trips per day and subtracted this amount from the provided passenger AADT value. The bus trip count obtained by local transit provider EMBARK. No growth was assumed for this transit route into the future. All bridges in the BIP BCA Tool are directional (e.g., only northbound, or only southbound) except for the box culvert and the multimodal bridge. For this reason, the box culvert assumes 18 bus trips per day as both inbound and outbound trips cross this structure.

## Travel Time Savings

To compute travel time savings the BIP BCA Tool breaks out the travel time benefit and construction disbenefit by bridge. In actuality, the bridges included in the Project work as a system. That is, vehicles traveling across one bridge in each direction travel across all the bridges in that direction (e.g., southbound vehicles travel across the river bridge, the box culvert, and the railroad bridge). It is for this reason that all travel time savings for a given

OKLAHOMA
direction were assigned to the river crossing bridges. This methodology was selected as to not triple count the benefits by applying travel time savings to all bridges in each direction. It was selected to not have to break out the benefits for all bridges in each direction, which implies that a given bridge accounts for a certain proportion of the directional benefits. If one directional bridge is down, it does not matter if the other two bridges in that direction are in service, vehicles will not be able to access that bridge.

To compute the travel time savings, this analysis used assumed travel speeds through the 2mile project area in each direction. The project capacity expansion is expected to resolve two bottlenecks that exist in the project area:

- I-35 Southbound: There is currently a lane drop at SE $15^{\text {th }}$ Street. This bottleneck routinely backs up to Harrison Avenue, which is two miles to the north.
- I-35 Northbound: There is currently a weave and dual lane drop entering the Dallas Junction interchange where I-35 splits to send traffic to the right (I-40/I-35) or continue north (I-235). Queues from this section of freeway can back up between SE Grand Boulevard and SE 44 ${ }^{\text {th }}$ St.

Existing segment performance is documented in the I-35/I-40/I-235 Dallas Junction OKC Preliminary Lane Capacity Analysis developed by ODOT's Traffic Engineering Division. Figures below illustrate the existing and future expected LOS.

Figure 1-2020 AM Peak LOS


Figure 2-2020 PM Peak LOS


Figure 3-2035 AM Peak LOS


OKLAHOMA

Figure 4-2035 PM Peak LOS


These deficiencies are also highlighted in ODOT's Forward 35 Report and Dashboard:
Figure 5-I-35 Capacity Needs


These bottlenecks exist in the existing condition and are only expected to worsen as traffic continues to grow into the future. ODOT estimates that the future volume crossing need for this section of freeway will exceed 178,000 vehicles per day.

For these reasons, the analysis assumes that the benefit of the 0.5 -mile project will extend to users of this facility who are required to travel through long and slow traffic queues caused by the existing mobility deficiencies that exist in this segment of roadway. A value of 2 miles was used in both the northbound and southbound directions to account for users' reduced travel speed in these queues under the No Build condition. These conditions exist today and are expected to worsen in the future with no treatment. This should be considered a conservative estimation of travel time benefits.

The assumed travel speeds and resultant travel times, and travel time savings are included in Table 5.

Table 5: Travel Speed, Travel Time, and Travel Time Savings Assumptions

| Year | No-Build <br> Speed <br> (mph) | No-Build <br> Travel Time <br> (min.) | Build Travel <br> Speed <br> $(\mathbf{m p h})$ | Build Travel <br> Time (min.) | Travel Time <br> Savings <br> (min.) | Travel Time <br> Savings <br> Used (min.) |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2030 | 35 | 3.43 | 55 | 2.18 | 1.25 | .623 |
| 2040 | 30 | 4 | 55 | 2.18 | 1.82 | .910 |
| 2059 | 23.6 | 5.09 | 55 | 2.18 | 2.90 | .145 |

The No-Build speed in 2059 was based off the trend in travel time between 2030 and 2040. The travel speeds are assumptions based on existing peak period data from the NPMRDS.

Although ODOT also recognizes that although the Project includes an increase in capacity, no induced demand is included. This has to do with where the Project is in the planning process and when future year forecasts are developed using traditional travel demand forecasting techniques. Often the influence of induced demand as it relates to travel time savings 'cancels out'. That is, the additional traffic added to the facility under an induced demand scenario, which reduces the facility speeds for existing users, is offset by the travel time savings observed by those users transferring to the facility. Without any additional information regarding induced demand, the analysis used this as a reasonable and conservative assumption.

Additionally, the assumed travel time savings were reduced by 50 percent (Table 5 'Travel Time Savings Used' column). This assumption was made since it is not expected that all vehicles will realize this benefit. Only those traveling during peak periods when speeds are depressed will realize improved travel time benefits. Further, the annualization factor for these benefits was set to 260 days, so that benefits were realized only on weekdays (commute days).

For the l-35 northbound river crossing bridges (mainline and new ramp bridge), the travel time benefits were split 60 percent to the mainline bridge and 40 percent to the new ramp bridge based on the proportion of total travel lanes.

It should also be noted that the free flow speed assumed for the build condition is lower than the posted speed limit and free flow speed and should also be considered conservative.

## Construction Disbenefits

Similar assumptions were used to calculate construction disbenefits. All disbenefits were attributed to the river bridges, and NBI AADT values were used with adjustments for bus trips. For the construction of the I-35 NB and SB river bridges it is expected that two lanes in each
direction will be always maintained during construction. It was also assumed that this condition will be in place for all 365 days for all four years for the purpose of the BCA analysis.

The analysis assumed a delay of 1 minute per vehicle. This is equivalent to a reduction in speed from 60 mph to 30 mph for 1 mile of the construction zone. This would also be equivalent to 20 percent of vehicles (e.g., those at the peaks) experiencing a 5-minute delay, or traveling at 10 mph.

The crash increase was based on CMF ID: 520 (active work zone with temporary lane closure compared to no work zone - all areas and severities) which is associated with a 66 percent increase in crashes during construction.

## Safety Analysis

## Project Area Crash Data

ODOT uses crash data from the Oklahoma Highway Safety Office (OHSO) because it provides indepth crash data for specific project locations. OSHO produces publications and problem identification data including in-depth analysis of crash numbers, rates, and locations. The OHSO crash data is used by highway safety professionals across Oklahoma to evaluate traffic safety priority areas and propose potential solutions.

Crash data were obtained from the OHSO to determine the nature and frequency of collisions along the interstates and ramps. Collision history was for the northbound and southbound segments of I-35 between SE $15^{\text {th }}$ Ave and the Dallas Interchange. As shown in Table 6, a total of 463 collisions were recorded. Of those, 105 were of injury crashes, and 3 were fatal.

Table 6: Crashes on I-35 between SE 15th Ave and the Dallas Interchange

| Type of Collision | Fatality | Injury | Property Damage | Total |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Rear-End | 1 | 61 | 167 | 229 |  |
| Head-On | 1 | 1 |  | 2 |  |
| Right Angle |  | 1 |  | 1 |  |
| Angle Turning |  |  |  |  |  |
| Other Angle |  |  |  | 128 | 141 |
| Sideswipe Same Direction |  | 13 |  | 1 |  |
| Sideswipe Opposite Direction |  | 1 | 44 | 57 |  |
| Fixed Object | 1 | 12 |  |  |  |
| Pedestrian |  |  |  |  |  |
| Pedal Cycle |  |  |  | 6 | 20 |
| Animal |  |  |  |  | 1 |
| Overturn/Rollover |  | 14 |  | 10 |  |
| Other Single Vehicle Crash |  | 1 |  | 11 |  |
| Other |  | 1 |  | 455 | 463 |
| Total | 3 | 105 |  |  |  |

SOURCE: OKLAHOMA HIGHWAY SAFETY OFFICE

The most prevalent collision type within the interchange was rear-end (front to rear) collisions, accounting for nearly half of all collisions. These types of crashes are commonly observed with congested roadways where stopped traffic occurs in the driving lanes and sudden deceleration from vehicles traveling at higher rates of speed is required. The limited bridge travel lane capacity, reduced shoulders, and merging of travel lanes directly south lead to conditions that cause traffic stopping and weaving. It has been demonstrated that the queues caused by deficiencies from this segment extend well outside of the project area. The area of crash history included in this analysis does not extend beyond the project limits and should be considered a conservative estimate as there are likely many more similar crashes occurring in the queues caused by these bottle necks that are not included in this crash history.

The replacement bridges for I-35 NB and SB would have six lanes each as well as adequate shoulder widths. This would allow for the I-35 NB bridge to have a dedicated lane for I-40 WB and the I-35 SB bridge to have an additional lane from I-40 WB. South of the I-35 SB bridge, the proposed roadway would narrow to four lanes instead of three; this is an additional lane from the current configuration. The additional lane should help reduce the number of rear-end collisions by reducing the backup at the interchange during peak hours which, in turn, increases the capacity of the interchange. The addition of a SB through-lane would lessen the weave movements which occur today.

The next most common collision type found was sideswipe same direction at nearly 30 percent. The reduction of the five-lane bridge to three lanes south of the bridge causes a weaving movement on both sides of the roadway for I-35 SB and causes a considerable number of sideswipe collisions as drivers seek to merge. The I-35 bridge replacement would provide an additional lane and would eliminate the weaving movement on the inside of the roadway and help reduce the number of sideswipe collisions.

Additionally, the I-35 bridge replacement would restore the inside and outside shoulders to adequate widths. Full shoulders are important for the safety of a bridge because they allow for broken-down cars to pull off to the shoulder rather than blocking a lane of traffic. The shoulders also permit emergency vehicles to bypass stopped traffic to access the scene of a crash or incident more quickly, allowing injured persons to receive medical attention sooner.

For this analysis and to facilitate use of the BIP BCA Tool, the interchange crashes were distributed to each of the individual project bridges proportional to the construction cost relative to the total bridge costs.

## Crash Reduction Factors

To compute the expected crash reduction associated with the infrastructure improvements, this analysis leverages CMFs from the CMF Clearing house.

Lane Increase: The analysis uses CMF ID: 8335 to estimate the expected crash reduction associated with the additional lane. The CMF is .75 for an additional lane in an urban area, which indicates an expected crash decrease of 25 percent. This reduction is applicable to all crash types and for all severities except for property damage only (PDO) crashes. Given the amount of PDO crashes on these facilities, and the nature of the crashes, this should be
considered a conservative estimate for included no benefit is applied to 74 percent of the crashes.

## Pedestrian and Bicyclist Benefits

To estimate future use of the pedestrian and bicycle bridge, this analysis looked at the difference in commute to work by walking and biking in the census tracts on either side of the river, as shown in Table 7.

Table 7: Active Commute Characteristics in the Vicinity of the Multimodal Bridge

| Tract | Side of River | Total Commuters | Walking Commuters | Biking Commuters |
| :--- | :--- | ---: | ---: | ---: |
| Tract 1097 | North | 1489 | $163(10.9 \%)$ | $5(0.3 \%)$ |
| Tract 1039 | South | 1898 | $26(1.4 \%)$ | $0(0.0 \%)$ |
| Tract 1053 | South | 1565 | $19(1.2 \%)$ | $0(0.0 \%)$ |

Source: American Community Survey 2022 5-year Estimates
To maintain a conservative estimate of induced walkers and bikers, the analysis assumed that the construction of the new multimodal bridge will close one tenth of the gap in walking rates on the south side, as residents on the south side will have access to job opportunities on the north side of the river by walking. This results in an estimated 33 new pedestrian commuters over the bridge. Due to the low number of cyclists on the north side of the river, the analysis does not assume that any additional bicycle trips will be induced by construction of the multimodal bridge. It also does not account for additional recreational bicycle and pedestrian trips, although data from Strava shows that on average over 100 bikers who use the Strava app use the river trails every week.

## Factors Not Quantified

## Additional Safety Benefits

The Project includes additional shoulder widening to be consistent with modern design practice. For this improvement, the CRF Desktop Reference Manual has a crash reduction factor (CRF) of 20 (or a CMF of 80 ) for upgrading facilities with less than 4 -foot shoulder to over 8 foot. Traditional practice for combining CMFs as prescribed by the Highway Safety Manual is that CMFs be multiplied together. In this project's case, that would equate to a combined CMF of $\left(.75^{*} .8\right)=0.6$ to account for both geometric improvements. This was not included in the BCA to ensure a conservative estimate of benefits.

## Remaining Capital Value

The Project emphasizes roadway capacity improvement. However, the 20-year-old bridge structure will remain at the end of the analysis period. ODOT has no intention of shutting down this bridge at the end of the analysis period, and any future use of this bridge will have value and count toward project benefits.

## Bridge Condition and Closures

The BIP BCA Tool leverages this section to calculate benefits for the bridge as closures are avoided. These include additional vehicle operating costs, emissions, and other environmental impacts associated with rerouted traffic. For all Project bridges except for the new NB I-35 ramp bridge, it was assumed that the detour would route vehicles on a similar facility (I-240 and I-44
to the west of I-35) to complete a similar NB/SB through trip that can currently be completed using l-35 through the Project area. This detour is 7.7 miles longer ( 18 miles compared to 10.3 miles) than a trip completed using the Project bridges. Based on Google Maps, this trip would take 17 minutes (travel speed of 63.5 mph ) to complete, or an additional 7.3 minutes than using the Project bridges. The new I-35 NB ramp bridge has an equidistant but slower local route that could be used to make the movement. Based on Google Maps, this would take an additional .2 minutes, but this does not include any congestion that would be associated with the local road system handling freeway level volumes.

It was determined that while the Project will improve or preserve the bridges condition in a way that reduces the risk of closure and/or road posting (especially related to potential bridge scour impacts), there was no data or analysis available to complete this section of the BIP BCA Tool. Excluding these benefits is a conservative estimate, particularly because even a 10 percent reduction in future traffic starting in 2040, escalating to a 20 percent reduction in 2050 could result in another approximately $\$ 26 \mathrm{M}$ in benefits per direction.

## Resiliency to Weather, Seismic or Other Extreme Events

Like the approach for bridge conditions and closures, the analysis does not account for these benefits as there was no data or analysis available to complete this section of the BIP BCA Tool. It is expected that there will be benefits from the Project for this category, and not including them should be considered a conservative estimate.

## Wildlife, Noise, and Water Run Off

Like the approach for bridge conditions and closures, the analysis does not account for these benefits as there was no data or analysis available to complete this section of the BIP BCA Tool. It is expected that there will be benefits from the Project associated with noise and water runoff improvements, and not including them should be considered a conservative estimate.

## Pedestrian and Bicycle Benefits

Beyond the benefits qualified above, the Project includes $\$ 8.5$ million in total funding for aesthetic improvements on both the vehicular and multimodal bridges, such as lighting, enhanced piers, and gateway elements. Although these benefits are not quantified, they will improve the experience of residents and visitors who use the bridge.

## BCA Results

The benefit-cost analysis provides an indication of the economic desirability of a scenario, but results must be weighed by decision-makers along with the assessment of other effects and impacts. Projects are considered cost-effective if the benefit-cost ratio is greater than 1.0. The larger the ratio number, the greater the benefits per unit cost. Results of the benefit-cost analysis for the Project in provided in Table 7.

Table 8: BCA Results

| Category | New l-35 Ramp | I-35 Box Culvert | I-35 NB RR | I-35 SB RR | I-35 SB | I-35 NB | Multimodal | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Safety | \$3.55M | \$0.05M | \$0.23M | \$0.23M | \$2.94 M | \$2.10M |  | \$9.09M |
| Travel Time | \$70.65M |  |  |  | \$126.52M | \$55.03M |  | \$252.20M |
| Health and Amenity |  |  |  |  |  |  | \$1.02M | \$1.02M |
| Maintenance | -\$0.01M | \$0.00M | \$0.28M | \$0.28M | \$1.50M | \$1.50M | -\$0.01M | \$3.56M |
| Residual Value |  |  |  |  |  |  | \$1.68M | \$1.68M |
| Total Benefits | \$74.20M | \$0.05M | \$0.52M | \$0.52M | \$130.95M | \$58.63M | \$2.70M | \$267.55M |
| Total Discounted Costs | \$26.91M | \$0.39M | \$1.82M | \$1.82M | \$61.63M | \$44.07M | \$16.92M | \$153.56M |
| BCR | 2.76 | 0.14 | 0.28 | 0.28 | 2.12 | 1.33 | 0.16 | 1.74 |
| Net Present Value | \$47.28M | -\$0.34M | -\$1.31M | -\$1.31M | \$69.32M | \$14.56M | -\$14.22M | \$113.99M |

